农业废物堆肥化中木质素的降解及其微生物特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质素是农业废物堆肥化过程中的主要限速有机物,其降解被认为是快速堆肥的关键。本文系统研究了农业废物堆肥化中木质素的降解过程及其微生物特性,首先分别运用传统方法、Biolog法、PLFA法、醌指纹法研究木质素降解微生物群落演替规律,其次筛选高效优势的木质素降解微生物,并研究非白腐真菌简青霉(P.simplicissimum)、黑曲霉(A.niger)的木质素降解特性和降解机理,最后研究一株高效优势的木质素降解放线菌栗褐链霉菌对腐殖质产生的作用。
     传统方法研究发现,木质素降解主要发生在高温期和二次发酵期。多酚氧化酶PPO和过氧化物酶POD是木质素降解的主要酶系,其中PPO的催化氧化作用较强。木质素降解细菌、放线菌、真菌在堆肥化各阶段变化复杂,其中,放线菌是主要的木质素降解者,从整个过程看,各类群微生物对木质素降解的贡献为放线菌>真菌>细菌。
     细菌群落在堆肥化进程中木质素的生物降解方面起着重要的协作作用。应用Biolog法检测堆肥化过程中细菌群落沿替,并通过多元统计分析,发现堆肥初期细菌生长快速、群落丰富,随着堆制的进行,其平均活性逐渐下降。细菌群落结构在一次发酵期间发生着剧烈变化,二次发酵期间趋于稳定。能转化BiologGN2板上第一、二、四类碳源的细菌与木质纤维素的转化有关,其中第一、二类碳源表征农业废物堆肥化进程中的主要细菌种群,第四类碳源表征细菌能够耐受高温。
     应用PLFA-PLS法构建了木质素含量与PLFA之间的定量回归模型,分析模型参数可发现,农业废物堆肥化过程中木质素的有效降解是数量少、能力强与数量多、能力弱的微生物共同作用的结果,前者主要是真菌、放线菌,后者主要是细菌,其中真菌与放线菌在堆肥化过程中占主导地位。微生物种类较之数量对于木质素降解更为有利。在高温期,有效的木质素降解微生物群落组成为:革兰氏阳性细菌/革兰氏阴性细菌/放线菌/真菌=42/35/6/17;在二次发酵期为:革兰氏阳性细菌/革兰氏阴性细菌/放线菌/真菌=58/23/4/15。微生物浓度数量级为108cells/gdw。醌指纹法证实堆肥化过程中发生着剧烈的群落演替,且微生物群落
     结构随着堆肥成熟逐步趋于复杂。MK-7指示的细菌和Q-9指示的真菌在堆肥化初期为优势菌群,主要降解易降解有机物,与木质纤维素降解无关。部分饱和、长链的甲基萘醌指示的放线菌是高温期优势微生物,这类微生物是木质素降解的主要作用者。放线菌、真菌和小部分细菌在二次发酵期间共同协作,对木质素降解有一定作用。Q-9与Q-10(H2)指示的微生物是纤维素与半纤维素降解的主要微生物,而木质素的有效降解是一些还未被广泛认识的含Q-9(H2)为主要醌的微生物与高温放线菌共同协作的结果。
     筛选到几株较强的木质素降解菌,包括AspergillusnigerF4-1,AspergillusoryzaeF1-4、PenicilliumsimplicissimumF1-1、StreptomycesbadiusA4-2以及高温放线菌Thermoactinomycessp.A2-2。对黑曲霉的研究发现该菌能攻击木质素酚型、非酚型结构和苯环侧链结构。在实验条件下,该菌主要依靠胞外LiP、Lac、MnP共同作用降解木质素,并表现出次级代谢降解机制。简青霉具有较强的攻击木质素酚型结构的能力,降解木质素主要依靠胞外Lac,表现出明显的初级代谢机制。pH值对降解系统有较大的影响,Mn2+不利于降解,而Cu2+对木质素降解有较强的促进作用。
     对简青霉产酶调控机理研究发现,附加碳源抑制漆酶Lac活性,适量氮源可显著提高酶活,常用的Lac诱导剂ABTS和二甲苯胺并不能促进简青霉产生Lac。在发酵过程中,前期Lac主要起聚合作用,而后期可能在某些降解产物的协同作用下,Lac表现出较好的降解能力。各种附加营养条件诱使简青霉在第3d出现Lac活性峰,该峰值下漆酶聚合能力特别强,直接影响最后木质素的降解率。
     比较黄孢原毛平革菌和栗褐链霉菌对腐殖质形成的作用,结果表明,接种木质素降解菌能促进发酵体系中腐殖质的形成,栗褐链霉菌的促进作用更强。由于黄孢原毛平革菌和栗褐链霉菌具有不同的木质素降解机制,它们分别形成腐殖质的途径也不同。黄孢原毛平革菌转化木质素生成简单分子(FA),然后聚合FA生成复杂的分子(HA),而栗褐链霉菌改性木质素,先生成HA,然后将HA转化成FA。
Since lignin is the major organic compound that limiting composting speed, its degradation is essential for the operation of composting. Lignin biodegradation and its microbial characteristics during composting of agricultural wastes were studied. Firstly, traditional method, Biolog assay, PLFA analysis and quinone profiles were used respectively to investigate the microbial community succession with lignin degrading potential. Secondly, dominant and effectively lignin degrading microorganisms were screened. Nonwhite-rot fungi, Penicillium simplicissimum and Aspergillus niger, were found to be important in lignin degradation. Their degrading characteristics and mechanisms were also studied. Finally, effect of lignin biodegradation on humification by Streptomyces badius isolated from maturation phase was investigated.
     The results obtained through the traditional method indicated that lignin was mainly degraded during the thermophilic phase and maturation phase of composting. Polyphenol oxidase (PPO) and peroxidase (POD), especially PPO was found to be the most important catalyzer in lignin degradation. Bacteria, fungi and actinomycetes with lignin degrading ability changed greatly during every compost phase. Actinomycetes were found to be the most effective microorganism to degrade lignin followed by fungi and bacteria.
     Since bacterial communities played important synergic function in lignin degradation, they were analyzed using Biolog method in agricultural waste composting. The results of cluster analysis and principle component analysis indicated that bacterial communities varied greatly during the first stage of composting, while began to stabilize during the second stage. Bacteria that could utilize the first, second and fourth kinds of carbon sources on Biolog GN2 plate were found to be able to degrade lignocellulose. Thereinto, the first and second kinds of carbon sources were the dominant ones during composting, while the bacteria that metabolize the fourth kind of carbon sources were believed to be thermophilic ones.
     Phospholipid fatty acid (PLFA) and Partial Least- squares Regression (PLS) methods were selected to establish the quantitative regressive model
     between lignin content and PLFA. Through the analysis of model parameters, it was found that a few microorganisms with strong lignin degrading ability and plentiful microbes with weak lignin degrading ability cooperated during the composting of agricultural wastes. The former were fungi and actinomycetes that dominant in lignin degradation, while the latter was bacteria. Microbial species were believed to be more important than amounts. During the thermophilic phase, the effective lignin degrading microbial proportion was 42:35:6:17 (Gram-positive bacteria: Gram-negative bacteria: actinomycetes: fungi), while the proportion was 58:23:4:15 during the maturation phase of composting. The microbial content was about 108cells/g dw.
     The changes of microbial community during agricultural waste composting were successfully studied by quinone profiles. Mesophilic bacteria indicated by MK-7 and mesophilic fungi containing Q-9 as major quinone were predominant and seemed to be important during the initial stage of composting. Actinobacteria indicated by a series of partially saturated and long-chain menaquinones were preponderant during the thermophilic period. While actinomycetes, fungi and some bacteria, especially those microbes containing MK-7(H4) found in Gram-positive bacteria with a low G+C content or actinomycetes were found cooperate during the latter maturating period. Since lignocellulsoe is abundant in the agricultural wastes and its degradation is essential for the operation of composting, it’s important to establish the correlation between the quinone profiles changes and lignocellulose degradation. The microbes containing Q-9 or Q-10(H2) as major quinone were found to be the most important hemicellulose and cellulose degrading microorganisms during composting. While the microorganisms containing Q-9(H2) as major quinone and many thermophilic actinomycetes were believed to be responsible for lignin degradation during agricultural waste composting.
     Several strains include Aspergillus niger F4-1, Aspergillus oryzae F1-4, Penicillium simplicissimum F1-1, Streptomyces badiusA4-2 and thermophilic actinomycetes Thermoactinomyces sp.A2-2 that have strong lignin degrading ability were obtained through the screening experiments. A. niger was capable of utilizing phenolic and nonphenolic lignin model compounds. Lignin peroxidase (LiP), Manganses peroxidase (MnP), Laccase were believed to be the most important catalyzes in biodegrading process. P. simplicissimum was capable of utilizing several lignin model compounds, making aromatic dyes decolourise and degrading natural lignin. All these results proved that P. simplicissimum has ligninolytic ability. Laccase was the most important catalyzes in the biodegrading process. Different from the degrading mechanism of the white-rot fungi, the lignin degradation by P.simplicissimum mainly happened during the primary metabolism and it was greatly influenced by the pH of media, the concentration of Cu2+ and Mn2+.
     The laccase activities of P. simplicissimum during solid state fermentation with rice straw were studied. And the degradation of lignocellulose was also determined. Results show that all supplemental carbon sources inhibited the laccase activity in different degrees. While proper concentration of supplemental nitrogen sources remarkably enhanced the laccase activity. The enhancement of laccase activity by ordinary laccase inducers 2, 2’-azino-bis (3-ethylbenzthiazoline- 6-sulfonic acid) and xylidine was not observed in this study. Lignocellulose degradation was improved when laccase activity was relatively low during prophase of fermentation, which proved the polymerizing function of laccase in lignin degradation by P. simplicissimum. Some metabolites may act as mediators to help lignin degradation during the fermentation anaphase. All supplemental sources may induce the peak of Lac activity on day 3 when the polymerizing function was especially strong.
     The effect of lignin biodegradation on humification by Phanerochaete chrysosporium and S. badius were compared. The results indicate that lignin degrading microorganisms could promote humus formation. Since the degrading mechanisms of two strains were different, the approaches of humus formation from lignin with P. chrysosporium and S. badius were also different. P. chrysosporium metabolize lignin to simple molecules (FA), which then were polymerized to complex molecules (HA). While S. badius modified lignin to HA, which then were transformed to FA.
引文
[1] 陈 志 宇 , 苏 继 影 , 栾 冬 梅 . 畜 禽 粪 便 堆 肥 技 术 研 究 进 展 . 当 代 畜 牧 ,2004, 10: 41-43
    [2] 鲁 聪 达 , 杨 继 隆 , 高 发 兴 . 畜 禽 废 物 的 无 害 化 资 源 化 处 理 技 术 . 浙 江工 业 大 学 学 报 ,2003, 31(2):192-196
    [3] 徐 达 ,周 青 . 农 业 废 物 的 环 境 生 态 效 应 与 资 源 化 利 用 . 中 国 农 学 通 报 ,2006, 22(6): 414-417
    [4] 邓 缘 . 浅 谈 秸 秆 木 质 素的 生 物降解 . 江西饲料, 2005, 5: 27-29
    [5] 张 承 龙 . 农 业 废 物 资 源 化 利 用 技 术 现 状 及 其 前 景 . 中 国 资 源 综 合 利用 ,2002, 2: 14-16
    [6] 杨 渤 京 , 王 洪 涛 . 农 业 固 体 废 物 堆 肥 生 产 复 混 肥 的 工 艺 试 验 研 究 . 环境 科 学 , 2006, 27(7): 1464-1468
    [7] 柯 为 . 发 展 堆 肥 生 物 技 术 治 理 有 机 废 弃 物 . 微 生 物 学 通 报 , 2006,33(3): 23
    [8] 王 连 稹 , 王 祯 丽 , 黄 华 波 . 白 腐 菌 在 秸 秆 堆 肥 化 中 的 应 用 . 石 河 子 大学 学 报 ( 自 然 科 学 版 ),2003,7(2):161-164
    [9] 曾 光 明 , 黄 国 和 , 袁 兴 中 , 等 . 堆 肥 环 境 生 物 与 控 制 . 北 京 : 科 学 出版 社 ,2006, 3-4
    [10] 席 北 斗 , 刘 鸿 亮 , 白 庆 中 , 等 . 堆 肥 中 纤 维 素 和 木 质 素 的 生 物 降 解研 究 现 状. 环 境 污 染 治 理 技术与设备, 2002, 3(3): 19-23
    [11] 蒋挺 大 . 木 质 素 . 北 京 : 化学工业 出版社, 2001
    [12] 陈 立 祥 ,章 怀 云 . 木 质 素 生 物 降 解 及 其 应 用 研 究 进 展 . 中 南 林 学 院 学报 , 2003, 23(1): 79-85
    [13] 陈 子 爱 ,邓 小 晨 . 微 生 物 处 理 利 用 秸 秆 的 研 究 进 展 . 中 国 沼 气 ,2006,24(3): 31-35
    [14] T. Kent Kirk , Takayoshi Higuchi , Hou-min Chang. Lignin biodegradation: microbiology, chemistry, and potential applications. Boca Raton, Florida: CRC Press, 1980
    [15] 马 登 波 ,刘 紫 娟 ,高 培 基 ,等 . 木 素 生 物 降 解 的 研 究 进 展 . 纤 维 素 科学 与 技 术 ,1996, 4(1):1-12
    [16] 岑 沛 霖 , 蔡 谨 . 工 业微 生 物学 . 北京:化学工 业出版社 , 2000
    [17] Zacchi L, Burla G, Zuolong D, et al. Metabolism of cellulose by Phanerochaete chrysosporium in continuously agitated culture isassociated with enhanced production of lignin peroxidase. Journal of Biotechnology, 2000, 78(2): 185-192
    [18] Shingo K,Masanori A,Noriko O,et al. Degradation of a non-phenolic L-O-4 substructure and of polymeric lignin model compounds by laccase of Coriolus versicolor in the presence of 1-hydroxybenzotriazole. FEMS Microbiology Letters, 1999, 170(1): 51-57
    [19] 席 北 斗 ,刘 鸿 亮 ,孟 伟 ,等 . 垃 圾 堆 肥 高 效 复 合 微 生 物 菌 剂 的 制 备 . 环境 科 学 研 究 , 2003,16(2): 58-64
    [20] Reddy G V,Babu P R,Komaraiah P,et al. Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajorcaju). Process Biochemistry, 2003, 38(10): 1457-1462
    [21] Tuomela M , Oivanen1 P , Hatakka A. Degradation of synthetic 14C-lignin by various white-rot fungi in soil. Soil Biology & Biochemistry, 2002, 34(11): 1613-1620
    [22] 林 鹿 , 陈 嘉 翔 , 余 家 , 等 . 高 效 产 生 降 解 木 素 酶 和 降 解 聚 木 糖 酶的 菌 种 选 育. 中 国 造 纸 学 报, 1996(增刊),11: 61-68
    [23] 谢 君 , 任 路 , 李 维 , 等 . 白 腐 菌 液 体 培 养 产 生 木 质 纤 维 素 降 解 酶 的研 究 . 四 川 大 学 学 报 ( 自然 科学版),2000,37:161-166
    [24] Capelari M,Zadrazil F. Lignin degradation and in vitro digestibility of wheat straw treated with Brazilian tropical species of white rot fungi. FOLIA MICROBIOLOGICA, 1997, 42(5): 481-487
    [25] Hyodo F, Azuma J, Abe T. A new pattern of lignin degradation in the fungus comb of Macrotermes carbonarius (Isoptera, Termitidae Macrotermitinae). SOCIOBIOLOGY, 1999, 34(3): 591-596
    [26] Ferraz A, Duran N. Lignin degradation during softwood decaying by the ascomycete Chrysonilia sitophila. Biodegradation, 1995, 6(4):265-274
    [27] Zohar Kerem,Wuli Bao,Kenneth E.Hammel. Extracellular degradation of polyethers by the brown rot fungus Gloeophyllum. Biological Sciences Symposium, 1997, 461-462
    [28] Dey S,Maiti TK,Bhattacharyya BC. Production of some extracellular enzymes by a lignin peroxidase producing brown-rot fungus, Polyporus ostreiformis,and its comparative abilities for lignin degradation and dye decolorization. Applied and Environmental Microbiology,1994,60(11):4216-4218
    [29] Carol A C. Bacterial Associations with Decaying Wood: a Review. International Biodetertoration & Biodegradation,1996,37(1):101-107
    [30] Lokesh K V. (14)C-lignin-lignocellulose biodegradation by bacteria isolated from polluted soil. Indian Journal of Experimental Biology,2001, 39(6): 584-589
    [31] Tuomela M,Vikman M,Hatakka A,et al. Biodegradation of lignin in a compost environment: a review. Bioresource Technology, 2000, 72:169-183
    [32] Mohammed R,Bernard B,Geneviève V,et al. Ultrastructural patterns of beech leaf degradation by Sporotrichum pulverulentum. Eur. J. Soil. Biol., 2001, 37: 75-84
    [33] 张 甲 耀 , 龚 利 萍 , 罗 宇 煊 , 等 . 嗜 碱 细 菌 复 合 碳 源 条 件 下 对 麦 草 木质 素 的 降 解. 环 境 科 学 ,2002,23(1): 70-73
    [34] Antai S P, Crawford D L. Degradation of softwo- od, hardwood,and grass lignocelluloses by two Streptomyces strains. Appl.Environ. Microbiol., 1981, 42(2): 378-380
    [35] Kukolya J D. Isolation and identification of thermophilic cellulolytic actinomycetes. Acta Phytopathologicaet Entomologica Hungarica. ,1997, 32(1): 97-107
    [36] González J M, Moran M A. Numerical dominance of a group of marine bacteria in the subclass of Proteobacteria in coastal seawater. Appl. Environ. Microbiol., 1997, 63: 4237-4242
    [37] 陈 敏 ,郭 鹏 ,宋 晓 岗 . 选 育 高 效 降 解 木 质 素 优 势 混 合 菌 的 研 究 . 中 国造 纸 , 1998, 3: 40-45
    [38] 胡 天 觉 , 曾 光 明 , 黄 国 和 , 等 . 有 机 固 体 废 物 好 氧 堆 肥 过 程 中 微 生物 降 解 有 机 质 的 微 观 机 理. 环境工程, 2002,增 刊: 167-172
    [39] 席 北 斗 , 孟 伟 , 刘 鸿 亮 , 等 . 垃 圾 堆 肥 高 效 纤 维 素 分 解 菌 的 筛 选 与培 育 技 术 . 环 境 污 染 与 防 治, 2002,24(6):339-342
    [40] 杨 朝 晖 , 曾 光 明 , 袁 兴 中 , 等 . 微 生 物 选 育 技 术 在 生 活 垃 圾 堆 肥 处理 中 的 应 用. 环 境 卫 生 工 程, 2003,11(3):115-118
    [41] 王 地 , 刘 期 松 . 长 白 山 地 区 真 菌 降 解 木 质 素 的 研 究 . 微 生 物 学 报 ,1990, 30(4): 296-304
    [42] 蔡 磊 , 尹 峻 峰 , 杨 丽 萍 , 等 . 几 种 简 便 的 木 质 素 降 解 真 菌 定 性 筛 选方 法 . 微 生 物 学 通 报 ,2002, 29(1):67-69
    [43] Temp U, Eggert C, Eriksson K L. A small-scale method for screening of lingin-degrading microorganisms. Appl Microbiol Biotechnol, 1998,64(4): 1548-1549
    [44] Mary Schutter, Richard Dick. Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates. Soil Biology & Biochemistry, 2001, 33: 1481-1491
    [45] Jared L. DeForest,Donald R. Zak,Kurt S. Pregitzer,et al. Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest. Soil Biology & Biochemistry,2004, 36: 965-971
    [46] 徐 海 娟 ,梁 文 芷 . 白 腐 菌 降 解 木 素 酶 系 及 其 作 用 机 理 . 环 境 污 染 治 理技 术 与 设 备 ,2000,1(3):51-54
    [47] 张 建 军 , 罗 勤 慧 . 木 质 素 酶 及 其 化 学 模 拟 的 研 究 进 展 . 化 学 通 报 ,2001, 8: 470-477
    [48] Kenneth E. HAMMEL. Extracellular free radical biochemistry of ligninolytic fungi. NEW JOURNAL OF CHEMISTRY, 1996, 20(2):195-198
    [49] 夏 炳 乐 , 彭 敦 耕 , 刘 清 亮 . 过 氧 化 物 酶 的 反 应 机 理 和 应 用 的 研 究 进展 . 国 际 网 上 化 学 学 报 ,2003,5(1):1-3
    [50] J.Pérez·J. Muńoz-Dorado,T.de la Rubia. J.Martínez. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol, 2002, 5: 53-63
    [51] Eggert C, Temp U, Eriksson KEL. Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS LETTERS, 1997, 407(1): 89-92
    [52] Varela E,Martinez AT,Martinez MJ. Molecular cloning of aryl-alcohol oxidase from the fungus Pleurotus eryngii,an enzyme involved in lignin degradation. BIOCHEMICAL JOURNAL, 1999, 341: 113-117
    [53] Bao W., Fukushima Y., Jensen K.A., et al. Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett., 1994, 354: 297-300
    [54] V. Regalado,A. Rodríguez,F. Perestele,et al. Lignin degradation and modification by the soil-inhabiting fungus Fusarium proliferatum. Applied and Eenvironmental Microbiology, 1997, 63(9): 3716-3718
    [55] V. Regalado, F. Perestelo, A. Rodríguez, et al. Activated oxygenspecies and two extracellular enzymes: laccase and aryl-alcohol oxidase, novel for the lignin-degrading fungus Fusarium proliferatum. Appl Microbiol Biotechnol, 1999, 51: 388-390
    [56] Frederick Green, Terry L. Highley. Mechanism of brown-rot decay:paradigm or paradox. International Biodeterioration and Biodegradation, 1997, 39(2): 113-124
    [57] 王 蔚 ,高 培 基 . 褐 腐 真 菌 降 解 木 质 纤 维 素 降 解 机 制 的 研 究 进 展 . 微 生物 学 通 报 , 2002, 29(3):90-93
    [58] Shimazono H. Oxalic acid decarboxylase a new enzyme from the mycelium of wood destroying fungi. J. Biochem., 1955, 42: 321-340
    [59] Seifert K. Chemical changes in beechwood cell walls by soft rot (Chaetomium globosum). Holz Rohu. Werkst., 1966, 24: 185-189
    [60] Reid I D. Biodegradation of lignin. Can. J. Bot.,1995,73:1011-1018
    [61] Kamoda S , Saburi Y. Structural and enzymatical comparison of lignostilbene-α , β-dioxygenase isozymes , I , II , and III , from Pseudomonas paucimobilis TMY1009. Biosci Biotech Biochem., 1993,57: 931–934
    [62] Borneman W S, Hartley R D, Morrison W H, etal. Feruloyl and p-coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation. Appl. Microbiol. Biotechnol., 1990, 33: 345-351
    [63] Kuhad R C, Singh A, Eriksson K E L. Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv.Biochem.Eng.Biotechnol., 1997, 57: 45-125
    [64] 管 筱 武 , 张 甲 耀 , 罗 宇 煊 . 木 质 素 降 解 酶 及 其 调 控 机 理 研 究 的 进 展 . 上海 环 境 科 学 ,1998, 17(11): 46-49
    [65] Kinya K, Shinya K, Masanori S. Degradation of lignin compounds by bacteria from termite guts. Biotechnology Letters.,1998,20(5):459-462
    [66] Jouni J, Jukka P, Mirjasalkinoja S. Initial steps in the pathway for bacterial degradation of two tetrameric lignin model compounds. Appl. Environ. Microbiol., 1987, 53(11): 2642-2649
    [67] 王 宜 磊 . 碳 源 和 氮 源 对 彩 绒 革 盖 菌 Coriolus versicolor 木 质 纤 维 素 酶和 木 质 素 酶 分 泌 的 影 响. 微 生物学杂志, 2000,20( 1): 29-31
    [68] 周 金 燕 ,张 发 群 . 真 菌 产 生 的 锰 过 氧 化 物 酶 和 漆 酶 的 研 究 Ⅰ . 富 氮 培养 基 筛 选 产 酶 的 真 菌. 微 生 物学报, 1993,33(5): 387-391
    [69] 钞 亚 鹏 ,叶 军 ,钱 世 钧 . 担 子 菌 组 成 型 漆 酶 产 生 特 性 的 研 究 . 微 生 物学报 , 2000, 40(6): 628-632
    [70] 李 华 钟 , 章 燕 芳 , 华 兆 哲 , 等 . 黄 孢 原 毛 平 革 菌 选 择 性 合 成 木 质 素过 氧 化 物 酶. 过 程 工 程 学 报, 2002,2(2):137-141
    [71] Zadrazil F, Puniya AK. Influence of carbon-dioxide on lignin degradation and digestibility of lignocellulosics treated with Pleurotus sajor-caju. International Biodeterioration & Biodegradation, 1994,33(3): 237-244
    [72] Fang J, Liu W, Gao PJ. Cellobiose dehydrogenase: Inhibition of polymerization of phenolic compounds and enhancing lignin degradation by ligninases. ACTA BIOCHIMICA ET BIOPHYSICA SINICA, 1999, 31(4): 415-419
    [73] Ardon O, Kerem Z, Hadar Y. Enhancement of lignin degradation and laccase activity in Pleurotus ostreatus by cotton stalk extract. CANADIAN JOURNAL OF MICROBIOLOGY, 1998, 44(7): 676-680
    [74] Kerem Z, Hadar Y. Effect of manganese on lignin degradation by Pleurotus ostreatus during solig-state fermentation. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1993, 59(12): 4115-4120
    [75] Singhal V, Rathore VS. Effects of Zn2+ and Cu2+ on growth, lignin degradation and ligninolytic enzymes in Phanerochaete chrysosporium. WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY,2001,17(3): 235-240
    [76] Barder M J , Crawford D L. Effects of carbon and nitrogen supplementation on lignin and cellulose decomposition by a Streptomyces. Can.J.Microbiol., 1981, 27: 859-863
    [77] Anthony L, Pometto Ⅲ A L, Crawford D L. Effects of pH on lignin and cellulose degradation by Streptomyces viridosporus. Appl.Environ. Microbiol., 1986, 52(2): 246-250
    [78] 罗 宇 煊 , 张 甲 耀 , 管 筱 武 , 等 . 嗜 碱 细 菌 降 解 木 素 的 复 合 碳 源 共 代谢 研 究 Ⅰ ——复 合 碳 源 组 合 方 式 及 氮 源 的 选 择 . 城 市 环 境 与 城 市 生态 ,2000, 13(2): 8-10
    [79] 罗 宇 煊 , 张 甲 耀 , 龚 利 萍 , 等 . 嗜 碱 细 菌 降 解 木 素 的 复 合 碳 源 共 代谢 研 究 Ⅱ ——营 养 条 件 调 控 机 制 的 研 究 . 城 市 环 境 与 城 市 生 态 ,2000,13(6): 57-59
    [80] 罗 宇 煊 , 张 甲 耀 , 许 威 亚 , 等 . 正 交 试 验 选 择 嗜 碱 细 菌 降 解 木 质 素的 金 属 离 子 最 有 综 合 培 养 条件. 环境 科学与技术, 2001, 4: 5-7
    [81] 李 学 垣 . 土 壤 化 学 . 北 京:高 等教育出版社, 2001, 46-47
    [82] Fustec E,Chauvet E,Gas G. Lignin Degradation and Humus Formation in Alluvial Soils and Sediments. Appl. Environ. Microbiol., 1989,55(4): 922-926
    [83] Sánchez-Monedero M,Roig A,Cegarra J,et al. Relationships between water-soluble carbohydrate and phenol fractions and the humification indices of different organic wastes during composting. Bioresource Technology, 1999, 70: 193-201
    [84] 冀 玲 芳 ,石 淑 兰 . 木 质 素 的 微 生 物 降 解 . 广 西 轻 工 业 ,2002,1:4-5
    [85] Yavmetdinov I S, Stepanova E V, Gavrilova V P, et al. Isolation and Characterization of Humin-Like Substances Produced by Wood-Degrading White Rot Fungi. Applied Biochemistry and Microbiology, 2003, 39(3): 257-264
    [86] Crawford D L,Pometto Ⅲ A L,Crawford R L. Lignin Degradation by Streptomyces viridosporus: Isolation and Characterization of a New Polymeric Lignin Degradation Intermediate. Appl. Environ. Microbiol.,1983, 45(3): 898-904
    [87] Waksman S.A. , Umbreit W.W. , Cordon T.C. Thermophilic actinomycetes and fungi in soils and in composts. Soil Sci.,1939a,47,37-61
    [88] Waksman S.A.,Cordon T.C.,Hulpoi N. Influence of temperature upon the microbiological population and decompositionprocesses in composts of stable manure. Soil Sci., 1939b, 47, 83-114
    [89] Horwath W.R., Elliott L.F. Ryegrass straw component decomposition during mesophilic and thermophilic incubations. Biol. Fertil. Soils,1996, 21, 227-232
    [90] Tomati U., Galli E., Pasetti L., et al. Bioremediation of olive-mill wastewaters by composting. Waste Manag. Res., 1995, 13, 509-518
    [91] M. Vikman, S. Karjomaa, A. Kapanen, et al. The influence of lignin content and temperature on the temperature on the biodegradation of lignocellulose in composting conditions. Appl Microbiol Biotechnol,2002, 59: 591-598
    [92] Dimitris P. Komilis, Robert K. Ham. The effect of lignin and sugars to the aerobic decomposition of solid wastes. Waste Management, 2003,23: 419-423
    [93] Kluczek-Turpeinen B,Tuomela M,Hatakka A,et al. Lignin degradation in a compost environment by the deuteromycete Paecilomyces inflatus. Appl Microbiol Biotechnol, 2003, 61: 374-379
    [94] E. Galli,L. Pasetti,F. Fiorelli,et al. Olive-mill wastewater composting: microbiological aspects. Waste Management & Research, 1997, 15:323-330
    [95] Kakezawa M. , Mimura A. , Takahara Y. Application of two-step composting process to rice straw compost. Soil Sci. Plant Nutr., 1992,38: 43-50
    [96] M. J. López, M.A.Elorrieta, M.C.Vargas-García, et al. The effect of aeration on the biotransformation of lignocellulosic wastes by white-rot fungi. Bioresource Technology, 2002, 81: 123-129
    [97] 朱 能 武 . 堆 肥 微 生 物 学 研 究 现 状 与 发 展 前 景 . 氨 基 酸 和 生 物 资 源 ,2005, 27(4): 36-40
    [98] George P. Chamuris , Susan Koziol-Kotch , Tawnya M. Brouse. Screening fungi isolated from woody compost for lignin-degrading potential. Compost Science & Utilization, 2000, 8(1): 6-11
    [99] 丁 佐 龙 ,邢 邦 启 . 木 素 过 氧 化 物 酶 合 成 的 部 分 影 响 因 素 . 合 肥 工 业 大学 学 报 ( 自 然 科 学 版 ),1998,21(6):131-134
    [100] 于 新 ,黄 小 丹 ,冯 彤 ,等 . 草 菇 多 酚 氧 化 酶 及 过 氧 化 物 酶 特 性 的 研究. 仲 恺 农 业 技 术 学 院 学报 ,1998,11(3):27-33
    [101] Elia N. Aquino-Bola?os, E. Mercado-Silva. Effects of polyphenol oxidase and peroxidase activity, phenolics and lignin content on the browning of cut jicama. Postharvest Biology and Technology,2004,33:275-283
    [102] 王 玉 万 ,徐 文 玉 . 木 质 纤 维 素 基 质 发 酵 物 中 半 纤 维 素 、纤 维 素 和 木素 的 定 量 分 析 程 序. 微生 物 学通报, 1987,13(2): 82-84
    [103] 谭 小 琴 ,邓 良 伟 ,伍 钧 ,等 . 猪 场 废 水 堆 肥 化 处 理 过 程 中 微 生 物 及酶 活 性 的 变 化. 农 业 环 境 科学学报, 2006,25(1): 244-248
    [104] 李 国 学 , 张 福 锁 . 固 体 废 物 堆 肥 化 与 有 机 复 混 肥 生 产 . 北 京 : 化 学工 业 出 版 社 ,2000,80
    [105] 沈 其 荣 , 王 瑞 宝 , 王 岩 , 等 . 堆 肥 制 作 中 的 生 物 化 学 变 化 特 征 . 南京 农 业 大 学 学 报 , 1997, 20: 51-57
    [106] 倪 治 华 , 薛 智 勇 . 猪 粪 堆 制 过 程 中 主 要 酶 活 性 变 化 . 植 物 营 养 与 肥料 学 报 , 2005, 11(3):406-411
    [107] 谷 洁 ,李 生 秀 ,秦 清 军 ,等 . 氧 化 还 原 类 酶 活 性 在 农 业 废 弃 物 静 态高 温 堆 腐 过 程 中 变 化 的研 究. 农业工 程学报, 2006, 22(2):138-141
    [108] Gary F. Leatham, R. L. Crawford, T. Kent Kirk. Degradation of phenolic compounds and ring cleavage of catechol by Phanerochaete chrysosporium. Applied and Environmental Microbiology,1983,46(1):191-197
    [109] 黄 丹 莲 ,曾 光 明 ,黄 国 和 ,等 . 白 腐 菌 的 研 究 现 状 及 其 在 堆 肥 中 的应 用 展 望. 微 生 物 学 通 报 ,2004, 31(2):112-116
    [110] 王 伟 东 ,刘 建 斌 ,牛 俊 玲 ,等 . 堆 肥 化 过 程 中 微 生 物 群 落 的 动 态 及接 菌 剂 的 应 用 效 果. 农业 工 程学报, 2006,22(4): 148-152
    [111] 唐 劲 瑛 , 胡 洪 营 . Biolog 方 法 在 环 境 微 生 物 群 落 研 究 中 的 应 用 . 微生 物 学 报 , 2003, 43(1):138-141
    [112] 郑 华 , 欧 阳 志 云 , 方 治 国 , 等 . Biolog 在 土 壤 微 生 物 群 落 功 能 多 样性 研 究 中 的 应 用. 土 壤 学 报, 2004,41(3):456-461
    [113] 席 劲 瑛 ,胡 洪 营 ,姜 健 ,等 . 生 物 过 滤 塔 中 微 生 物 群 落 的 代 谢 特 性 . 环境 科 学 ,2005, 26(4):165-170
    [114] 杨 元 根 , Paterson E, Campbell C. Biolog 方 法 在 区 分 城 市 土 壤 与 农村 土 壤 微 生 物 特 性 上 的应 用. 土壤学 报, 2002,39(4): 582-589
    [115] Mondini C, Insam H. Community level physiological profiling as a tool to evaluate compost maturity : a kinetic approach. European Jouranal of Soil Biology, 2003, 39: 141-148
    [116] Laine M M, Haario H, J?rgensen K S. Microbial functional activity during composting of chlorophenol-contaminated sawmill soil. Journal of Microbiological Methods, 1997, 30: 21-32
    [117] Buyer J S , Roberts D P , Millner P , et al. Analysis of fungal communities by sole carbon source utilization profiles. Journal of Microbiological Methods, 2001, 45: 53-60
    [118] 冯 宏 ,张 新 明 ,李 华 兴 ,等 . 接 种 菌 剂 对 堆 肥 微 生 物 利 用 碳 源 能 力的 影 响. 华 南 农 业 大 学 学 报, 2005,26(4):19-22
    [119] 姬 广 海 ,张 世 光 ,许 志 刚 . 植 物 病 原 细 菌 的 BIOLOG 系 统 鉴 定 及 其多 元 统 计 初 析. 应 用 与 环 境生物学报, 2001, 7(3): 288-290
    [120] O’Connell S, Lawson R D, Watwood M E, et al. Basic program for reduction of data from community-level physiological profiling using Biolog microplates:rationale and critical interpretation of data. Journal of Microbiological Methods, 2000, 40: 213-220
    [121] White DC, Bobbie RJ, Herron JS, et al. Biochemical measurements of microbial biomass and activity from environmental samples. In:Costerton JW, Colwell RR (eds) Native aquatic bacteria: enumeration,activity, and ecology. American Society for Testing and Materials,Philadelphia, Spec Tech Publ, 1979a, 695: 69-81
    [122] White DC, Davis WM, Nickels JS, et al. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia, 1979b, 41: 51-62
    [123] 陈 振 翔 ,于 鑫 ,夏 明 芳 ,等 . 磷 脂 脂 肪 酸 分 析 方 法 在 微 生 物 生 态 学中 的 应 用. 生 态 学 杂 志 ,2005,24(7): 828-832
    [124] 齐 鸿 雁 ,薛 凯 ,张 洪 勋 . 磷 脂 脂 肪 酸 谱 图 分 析 方 法 及 其 在 微 生 物 生态 学 领 域 的 应 用. 生 态 学 报, 2003,23(8):1576-1582
    [125] 王 曙 光 , 侯 彦 林 . 磷 脂 脂 肪 酸 方 法 在 土 壤 微 生 物 分 析 中 的 应 用 . 微生 物 学 通 报 , 2004,31(1): 114-117
    [126] 潘 响 亮 ,邓 伟 ,张 道 勇 . 磷 脂 脂 肪 酸 在 地 下 水 微 生 物 生 态 学 中 的 应用 及 存 在 的 若 干 问 题. 地 理 科学, 2003, 23(6):740-745
    [127] 张 恒 喜 ,郭 基 联 ,朱 家 元 ,等 . 小 样 本 多 元 数 据 分 析 方 法 及 应 用 . 西安 : 西 北 工 业 大 学 出 版 社, 2002, 22-23
    [128] 李 林 , 强 . 偏 最 小 二 乘 回 归 模 型 的 城 市 水 资 源 承 载 能 力 研 究 . 水科 学 进 展 , 2005, 16(6):822-825
    [129] R.F. Herrmann, J.F. Shann. Microbial community changes during the composting of municipal solid waste. Microbial Ecology, 1997, 33:78-85
    [130] Morten Klamer,Erland B??th. Microbial community dynamics during composting of straw material studied using phospholipid fatty acid analysis. FEMS Microbiology Ecology, 1998, 27: 9-20
    [131] F. Lei, J.S. VanderGheynst. The effect of microbial inoculation and pH on microbial community structure changes during composting. Process Biochemistry, 2000, 35: 923-929
    [132] F. Eiland,M. Klamer,A.-M. Lind,et al. Influence of initial C/N ratio on chemical and microbial composition during long term composting of straw. Microbial Ecology, 2001, 41: 272-280
    [133] Kotaro Kato,Nobuaki Miura,Hiroyasu Tabuchi,et al. Evaluation of maturity of poultry manure compost by phospholipid fatty acid analysis. Biol Fertil Soils, 2005, 41: 399-410
    [134] 韩 东 海 ,鲁 超 ,刘 毅 . 纯 牛 奶 、还 原 奶 、参 加 奶 、牛 奶 新 鲜 度 的 近红 外 检 测. 中 国 供 销 商 情 乳业导刊, 2006,4: 39-41
    [135] Ingvar Sundh, Mats Nilsson, Peter Borg?. Variation in microbial community structure in two boreal peatlands as determined by analysis of phospholipid fatty acid profiles. Applied and Environmental Microbiology, 1997, 63(4): 1476-1482
    [136] Martin Potthoff, Kerri L. Steenwerth, Louise E. Jackson, et al. Soil microbial community composition as affected by restoration practices in California grassland. Soil Biology & Biochemistry,2006,38:1851-1860
    [137] Silvina Andrea Pombo. A field-scale approach to link microbial community structure and function in a petroleum hydrocarbon contaminated aquifer. Doctoral Dissertation, Universidad Nacional de Rio Cuarto, Argentina, 2005
    [138] Rebecca L. Phillips, Donald R. Zak, William E. Holmes, et al. Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone. Oecologia,2002, 131: 236-244
    [139] Fang J,Kato C. Piezophilic bacteria:taxonomy, diversity, adaptation,and potential biotechnological applications. Recent Advances in Marine Biotechnology, Enfield, Science Publishers, 2002
    [140] Dominique Haubert. Unraveling the structure of soil food webs:stable isotope, fatty acid and compound-specific fatty acid analysis. Doctoral Dissertation, Fachbereich Biologie der Technischen Univerist?t, 2006
    [141] Christiane Kramer , Gerd Gleixner. Variable use of plant- and soil-derived carbon by microorganisms in agricultural soils. Soil Biology & Biochemistry, 2006, 38: 3267-3278
    [142] V. Acosta-Martínez,Z. Reicher,M. Bischoff,et al. The role of tree leaf mulch and nitrogen fertilizer on turfgrass soil quality. Biol Fertil Soils, 1999, 29: 55-61
    [143] 唐 景 春 , Kataya Arata. 醌 类 图 谱 分 析 在 环 境 微 生 物 生 态 测 定 中 的应 用 . 应 用 与 环 境 生 物 学报 ,2004,10( 4): 530-536
    [144] Katayama A,Funasaka K,Fujie K.Changes in the respiratory quinone profile of a soil. Water SciTechnol, 1998, 38(8): 69-76
    [145] Katayama A , Fujie K . Characterization of soil microbiota with quinone profile.In:Bollag JM,Stotzky G eds.Soil Biochemist ry(Vol10). New York: Marcel Dekker, 2000, 303-347
    [146] Hu HY, Fujie K, Nakagome H, et al. Quantitative analyses of the change in microbial diversity in a bioreactor for wastewater treatment based on respiratory quinones. Water Res, 1999, 33(15): 3263-3270
    [147] Tang JC, Kanamori T, Inoue Y, et al. Changes in the microbial community structure during thermophilic composting of manure as detected by the quinone profile method. Process Biochem, 2004, 39:1999-2006
    [148] Katayama A,Funasaka K,Fujie K.Changes in the respiratory quinone profile of a soil treated with pesticides. Biol. Fert. Soils, 2001, 33(6):454-459
    [149] Katayama A, Hu HY, Nozawa M, et al. Changes in the microbial community structure in soils treated with a mixture of glucose and peptone with reference to the respiratory quinone profile. Soil Sci Plant Nutr, 2002, 48(6): 841-846
    [150] World Data Center for Microorganisms. Quinone Database. http:rrwdcm.nig.ac.jprwdcmr Quinone.html, 1995
    [151] Hasanudin U,Fujita M,Kunihiro T,et al. The effect of clams (Tapes philippinarum) on changes in microbial community structure in tidal flat sediment mesocosms,based on quinone profiles. Ecol. Eng.,2004,22:185-196
    [152] 高 孟 春 , 杨 敏 , 邵 兵 , 等 . 固 相 萃 取 -LC-MS 定 性 分 析 微 生 物 呼 吸醌 方 法 的 建 立 . 环 境 化 学 ,2004, 23(5):578-583
    [153] 陈 梅 雪 , 王 菊 思 . 细 菌 细 胞 中 类 异 戊 二 烯 醌 的 分 析 . 环 境 化 学 ,1996, 15(5): 467-475
    [154] 韩 福 芹 ,胡 琳 ,徐 迪 诚 . 微 生 物 的 醌 类 测 定 . 哈 尔 滨 商 业 大 学 学 报 ,2001, 17(2): 95-96, 99
    [155] Miyuki Nishijima,Miho Araki-Sakai,Hiroshi Sano. Identification of isoprenoid quinones by firt-FAB liquid chromatography-mass spectrometry for the chemotaxonomy of microorganisms. Journal of Microbiological Methods, 1997, 28: 113-122
    [156] Hiraishi A. , Morishima Y. , Takeuchi J. Numerical analysis of lipoquinone patterns in monitoring bacterial community dynamics in wastewater treatment systems. J. Gen. Appl. Microbiol.,1991,37:57-70
    [157] Saitou K.,Nagasaki K.,Yamakawa H.,et al. Linear relation betweenthe amount of respiratory quinones and the microbial biomass in soil. Soil Sci. Plant Nutr., 1999, 45: 775-778.
    [158] Tiquia S. M.,Tam N. F. Y.,Hodgkiss I. J. Microbial activities during composting of spent pig-manure sawdust litter at different moisture contents. Bioresource Technology, 1996, 55: 201-206
    [159] Byung-Ran Lim , Kyu-Hong Ahn , Piyaporn Songprasert , et al. Microbial community structure in an intermittently aerated submerged membrane bioreactor treating domestic wastewater. Desalination,2004,161: 145-153
    [160] Katayama A, Hu HY, Nozawa M , et al. Long-term changes in microbial community structure in soils subjected to different fertilizing practices revealed by quinone profile analysis. Soil Sci Plant Nutr.,1998, 44: 559-69
    [161] 胡 洪 营 ,童 中 华 . 微 生 物 醌 指 纹 法 在 环 境 微 生 物 群 体 组 成 研 究 中 的应 用. 微 生 物 学 通 报 ,2002, 29(4):95-98
    [162] Romano I.,Gambacorta A.,Lama L.,et al. Bacillus saliphilus sp. vov., isolated from a mineral pool in Campania,Italy. International Journal of Systematic and Evolutionary Microbiology, 2005, 55: 159-163
    [163] Jin X.,Xu L H.,Mao P H.,et al. Description of Saccharomonospora xinjiangensis sp. nov. based on chemical and molecular classification. International Journal of Systematic Bacteriology,1998,48:1095-1099
    [164] Hu H. Y., Lim B R., Goto N., et al. Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. Journal of Microbiology Methods, 2001, 47: 17-24
    [165] Fujie K.,Hu H.Y.,Tanaka H.,et al. Analysis of respiratory quinone profile in soil for characterization of microbiota. Soil Sci. Plant Nutr.,1998, 44: 393-404
    [166] Song D. , Katayama A. Monitoring microbial community in a subsurface soil contaminated with hydrocarbons by quinone profile. Chemosphere, 2005, 59: 305-314
    [167] Blanc M,Marilley L,Beffa T. Thermophilic bacterial communities in hot composts as revealed by most probable number counts and molecular 16S rDNA methods. FEMS Microbiol Ecol, 1999, 28: 141-149
    [168] Pantazaki A. A., Pritsa A. A., Kyriakidis D. A. Biotechnologicallyrelevant enzymes from Thermus thermophilus. Appl Microbiol Biotechnol, 2002, 58: 1-12
    [169] Takizawa K., Fukushima K., Maebayashi Y., et al. Isolation and structural elucidation of a dihydroubiquinone-9 from the fungus Aureobasidium pullulans. FEMS Microbiology Letters, 1992, 92: 120
    [170] Fujia M., Haga H., Nishida K., et al. Evaluation of hydrological processes in a mountainous small basin using a quinone biomarker. Water Science & Technology, 2006, 53(2): 93-99
    [171] Rodrguez A.,Perestelo F.,Carnicero A.,et al. Degradation of natural lignins and lignocellulosic substrates by soil-inhabiting fungi imperfecti. FEMS Microbiology Ecology, 1996, 21: 213-219
    [172] Norris. D.M. Degradation of 14C-labeled lignin and 14C-labeled aromatic acids by Fusarium solani. Appl Environ Microbiol.,1980,40:376-380
    [173] Milstein. O.,Trojanowski. J.,Gressel. J.,et al. A. Biodegradation of 14C-labeled synthetic lignin polymer by Aspergillus species. Microbios Lett., 1984, 25: 722-725
    [174] Kadam. K. L., Drew. S. W. Study of lignin biotransformation by Aspergillus fumigatus and white-rot fungi using 14C-labeled and unlabeled Kraft lignins. Biotechnol Bioeng., 1986, 28: 394-404
    [175] Carnicero. A.,Trojanowski. J.,Falcn. M. A.,et al. Lignin degrading capacities of several fungi imperfecti isolated from soils tested by the respirometric method. Microbios., 1992, 72: 17-25
    [176] Rodrguez A, Carnicero A, Perestelo F, et al. Effect of Penicillium chrysogenum on lignin transformation. Appl Environ Microbiol., 1994,60: 2971-2976
    [177] Rodrguez A, Falcn M A, Carnicero A, et al. Laccase activities of Penicillium chrysogenum in relation to lignin degradation. Appl Microbiol Biotechnol., 1996, 45: 399-403
    [178] 管 筱 武 ,张 甲 耀 ,郑 连 爽 ,等 . 嗜 碱 性 木 素 降 解 菌 降 解 能 力 的 初 步研 究. 中 国 造 纸 ,1999, 6: 19-22
    [179] 毕 鑫 ,路 福 平 ,杜 连 祥 . 白 腐 真 菌 木 素 过 氧 化 物 酶 发 酵 条 件 及 其 酶液 对 稻 草 降 解 的 研 究. 纤 维 素科学与技术 , 2002,10(4): 41-48
    [180] Baily M J, Biely P, Poutanen K J. Interlaboratory testing of methods for assay of xylanase. Biotechnol, 1992, 23: 257-270
    [181] 余 惠 生 , 黄 秀 瑜 . 稻 草 木 素 生 物 降 解 研 究 . 纤 维 素 科 学 与 技 术 ,1993, 1(1): 12-22
    [182] Tatarko M , Bumpus J A. Biodegradation of congo red by Phanerochaete chrysosporium. Wat Res, 1998, 1-5
    [183] 王 彩 华 ,余 惠 生 , 时 雨 . 贝 壳 状 革 耳 菌 和 黄 孢 平 革 菌 固 体 培 养 酶系 比 较. 微 生 物 学 报 ,1999, 39(2):127-131
    [184] 王 景 林 , 刘 晓 明 , 吴 东 林 , 等 . 纤 维 素 酶 产 生 菌 黑 曲 霉 X-15 的 选育 及 其 产 酶 条 件. 中 国 兽 医学报, 2000, 20(1):97-99
    [185] 吴 克 , 蔡 敬 民 , 刘 斌 , 等 . 黑 曲 霉 A3 木 聚 糖 酶 酶 学 性 质 研 究 . 菌物 系 统 , 2000, 19(3): 383-388
    [186] 郭 建 林 ,程 彦 伟 ,李 欢 庆 . 黑 曲 霉 木 聚 糖 酶 性 质 的 研 究 . 河 南 科 学 ,2004, 22(4): 477-479
    [187] 时 雨 ,余 惠 生 ,王 佳 玲 . 漆 酶 -助 剂 体 系 催 化 氧 化 具 有 α-苄 基 氢 的木 素 模 型 物. 纤 维 素 科 学 与技术, 1999, 7(1):45-50
    [188] Leontievsky A,Myasoedova N,Pozdnyakova N,et al. Yellow laccase of Panus tigrinus oxidizes non-phenolic substrates without electron-transfer mediators. FEBS Letters, 1997: 446-448
    [189] Jacaues A.E.B.,Paloma S.T.,Matthé J.M.W.,et al. Molecular cloning, sequencing, and heterologous expression of the vaoA gene from Penicillium simplicissimum CBS 170.90 encoding Vanillyl-alcohol oxidase. J Biol Chem, 1998, 273: 7865-7872
    [190] Whipps J. M. Method for estimation of chitin content of mycelium of ectomycorrhizal fungi grown on solid substrates. Transaction of the British Mycological Society, 1987, 89: 199-203
    [191] Fernando E. Nieto , John J. Lee , Robert J. Koestler. Assessing biodeterioration in wood using ATP photometry: part Ⅱ. calculating a conversion factor for Phanerochaete chrysosporium using ATP and adenylate energy charge. International Biodeterioration & Biodegradation, 1997, 39(2-3): 159-164
    [192] Sibel S. Kahraman, Ismail H. Gurdal. Effect of synthetic and natural cultures media on laccase production by white rot fungi. Bioresource Technology, 2002, 82: 215-217
    [193] C. Srinivasan,T. M. D’souza,K. Boominathan,et al. Demonstration of laccase in the white rot basidiomycete Phanerochaete chrysosporium BKM-F1767. Applied and Environmental microbiology, 1995, 61(12):4274-4277
    [194] 蒋 挺 大 . 甲 壳 素 . 北京 : 化学工业出版 社, 2003: 1-5
    [195] Shi Yu Fu,Hui-sheng Yu,John A. Buswell. Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Pleurotus sajor-caju. FEMS Microbiology Letters,1997,147:133-137
    [196] Daljit Singh Arora, Paramjit Kaur Gill. Laccase production by some white rot fungi under different nutritional conditions. Bioresource Technology, 2000, 73: 283-285
    [197] Hong-Duk Youn, Yung Chil Hah, Sa-Ouk Kang. Role of laccase in lignin degradation by white-rot fungi. FEMS Microbiology Letters,1995, 132: 183-188
    [198] R. Bourbonnais, M. G. Paice, I. D. Reid, et al. Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2’-azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Applied and Environmental Microbiology, 1995,61(5): 1876-1880
    [199] Hong man Hou,Jiti Zhou,Jing Wang,et al. Enhancement of laccase production by Pleurotus ostreatus and its use for the decolorization of anthraquinone dye. Process Biochemistry, 2004, 39: 1415-1419
    [200] Ishihara T., M. Miyazaki. Oxidation of milled wood lignin by fungal laccase. Mokuzai Gakkaishi, 1972, 18: 415-419
    [201] Higuchi T. Mechanisms of lignin degradation by lignin peroxidase and laccase of white-rot fungi. ACS Symp. Ser., 1989, 399: 482-502
    [202] Kaichang Li, Feng Xu, Karl-erik L. Eriksson. Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Applied and Environmental Microbiology, 1999, 65(6):2654-2660
    [203] Eggert C, Temp U, Dean JFD, et al. A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett, 1996, 391: 144-148
    [204] Lopez M.J. , Vargas-García M.C. , Suárez-Estrella F. , et al. Biodelignification and humification of horticultural plant residues by fungi. International Biodeterioration & Biodegradation,2006,57:24-30
    [205] 来 航 线 ,程 丽 娟 ,王 中 科 . 几 种 微 生 物 对 土 壤 腐 殖 质 形 成 的 作 用 . 西北 农 业 大 学 学 报 , 1997, 25(6):79-82
    [206] Ramachandra M, Crawford D L, Hertel G. Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Applied and Environment Microbiology,1988, 54(12): 3057-3063
    [207] Tomati U.,Madejon E.,Galli E.. Evaluation of humic acid molecular weight as an index of compost stability. Compost Science and Utilization, 2000, 8: 108-115
    [208] Jouraiphy A. , Amir S. , Gharous M. El. , et al. Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste. International Biodeterioration & Biodegradation, 2005, 56: 101-108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700