双自由度涡激振动的涡强尾流振子模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涡激振动是导致深水立管疲劳损伤的一个重要因素,关于圆柱状结构体涡激振动机理的研究正逐步趋于完善。现阶段提出的大量涡激振动预报模型主要针对圆柱体的单自由度横向振动,而结构在顺流向上的振动往往被限制或者忽略。最近的研究表明,对于海洋立管这种低质量比结构,涡激振动导致顺流向的疲劳损伤与横向上的疲劳损伤在同一量级。因此,正确地认识和描述顺流向和横向的双向涡激振动特性,全面地预报和评估立管结构的综合疲劳寿命,对保证海洋工程结构物的经济效益和服役期的安全运行有着重要的意义。
     本文针对结构的双向涡激振动问题开展了一系列研究,建立了一种具有工程实际意义的半经验模型来预报刚性圆柱体和细长柔性立管的顺流向和横向涡激振动响应。论文的主要内容和成果包括:
     (1)系统地归纳和评述了圆柱体双向涡激振动的研究现状和成果,阐释了涡激振动相关的若干物理概念和基本物理参数,总结了现有的涡激振动半经验性模型。
     (2)基于二维离散点涡方法推导出流体对刚性圆柱体在顺流向和横向的脉动水动力,重新定义了传统尾流振子控制变量的含义,采用范德波尔方程描述近壁点涡的非线性特征,进而建立了一种能够预报双自由度涡激振动响应的涡强尾流振子模型,并给出了模型中经验参数的确定方法。利用本文模型预报了刚性圆柱体的双向涡激振动响应,得到的横向锁定、顺流向初始响应峰值、运动相位角以及“8”字形运动轨迹等的变化规律与实验结果吻合,同时讨论了质量比和阻尼比对结构顺流向和横向振幅响应的影响。
     (3)针对水平放置的外径5cm,长120cm的刚性圆柱体开展了顺流向和横向在不同频率比条件下的双自由度涡激振动模型试验。试验中发现频率比可能对结构的涡激振动特性产生显著影响。当频率比在1.0附近时,圆柱的涡激振动特性与等频率比双自由度圆柱的结果没有明显不同,但随着频率比的增加顺流向和横向振幅以及两者之间的相位差发生了显著改变。利用涡强尾流振子模型预报了不同频率比的圆柱体涡激振动响应,分析了频率比和质量比对响应振幅和运动轨迹的影响。
     (4)使用切片法建立了可以预报细长弹性体双向涡激振动的三维时域半经验模型。将该模型应用到研究在阶梯状来流作用下的顶部张紧式立管的涡激振动响应,结果显示顺流向振幅峰值小于横向振幅峰值,但是顺流向激活模态的阶数大约为横向振动的2倍。两个方向上的振动中均存在驻波和行波,当顺流向振动的模态较高时,处于静水中的立管上半段表现为驻波振动状态,截面的运动轨迹沿管变化较大,而处于均匀流的作用下的立管下半段将以行波振动为主,截面的运动轨迹更趋于均匀,模型预报的振动特性与实验结果吻合。
     (5)利用三维涡强尾流振子模型分析了深水钢悬链立管的双向涡激振动响应。在自由剪切流的作用下,立管各节点的运动轨迹可能不会形成稳定的“8”字形,响应振幅和相位角随时间改变。顺流向的振动模态显著高于横向的振动模态,除靠近触地点立管段处于驻波振动,立管大部分中间段的行波效应明显。由于顺流向具有高频高模态的振动特性,该方向的涡激振动疲劳损伤与横向疲劳损伤在同一量级,且沿管的分布不同,因此考虑顺流向的影响将益于全面地评估立管的涡激振动疲劳损伤。
VIV is an important factor leading to the fatigue damage of deepwater riser, the VIVmechanism research on cylindrical structure is gradually tending to be perfect. A large numberof VIV prediction models proposed at the present stage mainly focus on thesingle-degree-of-freedom CF vibration of cylinder, while the IL vibration of the structure isoften restricted or ignored. Recent studies have indicated that, for the low mass ratio structurelike marine riser, the IL fatigue damage caused by VIV is in the same order of magnitude asthe CF’s. Therefore, correctly understand and describe the bidirectional VIV characteristics ofIL and CF, while forecast and assess the comprehensive fatigue life of riser structure in detail,which is of great significance for ensuring the economic benefit and safe operation duringservice of offshore structures.
     This paper has carried out a series of in-depth research on the structure bidirectional VIVproblems, proposing a semi-empirical model with practical significance of engineering toforecast the IL and CF VIV response of rigid cylinder and slender flexible riser. The maincontents and results include:
     (1) Systematically induce and review the research status and achievements of thecylinder bidirectional VIV, explain related certain physical concepts and basic physicalparameters of VIV, and summarize the existing semi-empirical models of VIV.
     (2) Deduce the IL and CF fluctuating hydrodynamic acting on rigid cylinder by fluidbased on two-dimensional discrete point vortex method, redefine the meaning of the controlvariables of traditional wake oscillator, and adopt van der Pol equation describe the nonlinearcharacteristics of the near-wall point vortex, thereby establishing a vortex strength wakeoscillator model which can forecast the VIV response of the two degrees of freedom, andproviding the method to determine the experience parameters in the model. Employ the modelto predict the bidirectional VIV response of rigid cylinder, the variation of obtained CFlock-in, IL initial response peak, phase angle of movement and "8"shape trajectory etc.coinciding with the experimental results, while discuss the effect of mass ratio and dampingratio on the IL and CF amplitude response of the structure.
     (3) Carry out bidirectional VIV model experiment with different IL and CF frequencyratio for the horizontally arranged outer diameter of5cm, length of120cm rigid cylinder. It is found in the experiment that the frequency ratio may have a significant impact on the VIVcharacteristics of the structure. when the frequency ratio is near1.0, there is no significantdifference between the conclusions of cylinder VIV characteristics and the two degrees offreedom cylinder with the equal frequency ratio, but with the increase in frequency ratio, theIL and CF amplitude together with the phase difference between them change significantly.Apply the vortex strength wake oscillator model to forecast the VIV response of the cylinderwith different frequency ratio, which indicates that under the specific frequency ratio, whileanalyze the effect of frequency ratio and mass ratio on the response amplitude and trajectory.
     (4) Adopt section method establish the semi-empirical model of three-dimensional time-domainwhich can forecast the bidirectional VIV of slender elastomer. Apply the model to the study onthe VIV response of TTR under the action of step flow, which indicates that the IL amplitudepeak is less than the CF’s, but the order of IL activation mode is about2times the CF. Thevibration in two directions both exists the standing wave and traveling wave, when the IL is inrelatively high vibration mode, the upper half of the riser in the still water presents a standingwave vibration mode and the section trajectory along the pipe is rather changeable, while thelower half of the riser in the uniform flow is mainly on traveling wave vibration and thesection trajectory tends to be more uniform, the vibration characteristics forecast by modelcoinciding with the experimental results.
     (5) Employ three-dimensional vortex strength wake oscillator model to forecast thebidirectional VIV response of deepwater SCR. Under the action of free shear flow, thetrajectory of each riser node may not form a steady "8" shape, while the response amplitudeand phase angle change with time. The IL vibration mode is significantly higher than the CF’s,and in addition to the riser section near the touchdown point which is in standing wavevibration, the traveling wave has significant effect on the most part of the intermediate sectionof the riser. Due to the high-frequency and high-modal vibration characteristics of IL, thefatigue damage in IL direction is in the same order of magnitude as the CF’s, and has differentdistribution along the pipe, so taking the effect of IL into consideration benefits thecomprehensive assessment of the VIV fatigue damage in riser section.
引文
[1] Sarpkaya T. A Critical Review of the Intrinsic Nature of Vortex-Induced Vibrations [J].Journal of Fluids and Structures,2004,19(4):389-447.
    [2]高云.钢悬链式立管疲劳损伤分析[D];大连理工大学博士论文,2011.
    [3]王一飞.深海立管涡激振动疲劳损伤预报方法研究[D];上海交通大学博士论文,2008.
    [4] Dahl. J M. Vortex-Induced Vibration of a Circular Cylinder with Combined in-Line andCross-Flow Motion [D]; Massachusetts Institute of Technology,2008.
    [5] Raghavan K, Bernitsas M M. Experimental Investigation of Reynolds Number Effect onVortex Induced Vibration of Rigid Circular Cylinder on Elastic Supports [J]. OceanEngineering,2011,38(5-6):719-31.
    [6]陈正寿.柔性管涡激振动的模型实验及数值模拟研究[D];中国海洋大学博士论文,2009.
    [7] Ong M C. Applications of a Standard High Reynolds Number K-Ε Model and aStochastic Scour Prediction Model for Marine Structures [D]; Norwegian University ofScience and Technology,2009.
    [8] Feng C C. The Measurements of Vortex-Induced Effects in Flow Past a Stationary andOscillating Circular and D-Section Cylinders [D]; University of British Columbia,1968.
    [9] Sarpkaya T. Vortex-Induced Oscillations [J]. ASME J Appl Mech,1995,46(p.241-58.
    [10] Govardhan R, Williamson C H K. Modes of Vortex Formation and Frequency Responseof a Freely Vibrating Cylinder [J]. Journal of Fluid Mechanics,2000,420(01): p.85-130.
    [11] Gharib M R. Vortex-Induced Vibration, Absence of Lock-in and Fluid Force Deduction
    [D]; California Institute of Technology,1999.
    [12] Bearman P W. Vortex Shedding from Oscillating Bluff Bodies [J]. Annual Review ofFluid Mechanics,1984,16(195-222.
    [13] Naudascher E, Rockwell D. Flow-Induced Vibrations an Engineering Guide [M].Balkema,1994.
    [14] Fredsoe B, Sumner B M. Hydrodynamics around Cylindrical Structures [M]. WorldScientific Publishing Co.,1997.
    [15] Moe G, Wu Z J. Lift Force on a Vibrating Cylinder in a Current; proceedings of theProceedings of the Eighth International Conference on Offshore Mechanics and ArcticEngineering-1989, March19,1989-March23,1989, Hague, Neth, F,1989[C]. Publby American Soc of Mechanical Engineers (ASME).
    [16] Sarpkaya T. Hydrodynamic Damping, Flow-Induced Oscillations, and BiharmonicResponse [J]. Journal of Offshore Mechanics and Arctic Engineering,1995,117(4):232-8.
    [17] Jauvtis N, Williamson C H K. Vortex-Induced Vibration of a Cylinder with TwoDegrees of Freedom [J]. Journal of Fluids and Structures,2003,17(7):1035-42.
    [18] Jauvtis N, Williamson C H K. The Effect of Two Degrees of Freedom onVortex-Induced Vibration at Low Mass and Damping [J]. Journal of Fluid Mechanics,2004,509(23-62.
    [19] Tryantafyllou M S, Hover F S, Techet A H,2004.
    [20] Dahl J M, Hover F S, Triantafyllou M S. Two-Degree-of-Freedom Vortex-InducedVibrations Using a Force Assisted Apparatus [J]. Journal of Fluids and Structures,2006,22(6-7):807-18.
    [21] Sanchis A. Two Degrees of Freedom Vortex-Induced Vibrations of a Rigid CircularCylinder with Varying Natural Frequencies in the X and Y Directions; proceedings ofthe28th International Conference on Ocean, Offshore and Arctic Engineering,OMAE2009, May31,2009-June5,2009, Honolulu, HI, United states, F,2009[C].American Society of Mechanical Engineers.
    [22] Jeon D, Gharib M. On Circular Cylinders Undergoing Two-Degree-of-Freedom ForcedMotions [J]. Journal of Fluids and Structures,2001,15(533-41.
    [23] Khalak A, Williamson C H K. Dynamics of a Hydroelastic Cylinder with Very LowMass and Damping [J]. Journal of Fluids and Structures,1997,10(5):455-72.
    [24] Klamo J T, Leonard A. The Effects of Damping on the Amplitude and FrequencyResponse of a Freely Vibrating Cylinder in Cross-Flow [J]. Journal of Fluids andStructures,2006,22(845-56.
    [25] Khalak A, Williamson C H K. Motions, Forces and Mode Transitions in Vortex-InducedVibrations at Low Mass-Damping [J]. Journal of Fluids and Structures,1999,13(7-8):813-51.
    [26] Klamo J T, Leonard A, Roshko A. The Effects of Damping on the Amplitude andFrequency Response of a Freely Vibrating Cylinder in Cross-Flow [J]. Journal of Fluidsand Structures,2006,22(6-7):845-56.
    [27] Sanchis A, Slevik G, Grue J. Two-Degree-of-Freedom Vortex-Induced Vibrations of aSpring-Mounted Rigid Cylinder with Low Mass Ratio [J]. Journal of Fluids andStructures,2008,24(6):907-19.
    [28] Griffin O M. Vortex-Excited Cross-Flow Vibrations of a Single Cylindrical Tube [J].Journal of Pressure Vessel Technology, Transactions of the ASME,1980,102(2):158-66.
    [29]李效民.顶张力立管动力响应数值模拟及其疲劳寿命预测[D];中国海洋大学博士论文,2010.
    [30] Williamson C H K, Govardhan R. A Brief Review of Recent Results in Vortex-InducedVibrations [J]. Journal of Wind Engineering and Industrial Aerodynamics,2008,96(6-7):713-35.
    [31] Gabbai R D, Benaroya H. An Overview of Modeling and Experiments ofVortex-Induced Vibration of Circular Cylinders [J]. Journal of Sound and Vibration,2005,282(3-5):575-616.
    [32] Wu X, Ge F, Hong Y. A Review of Recent Studies on Vortex-Induced Vibrations ofLong Slender Cylinders [J]. Journal of Fluids and Structures,2012,28(292-308.
    [33] D B R. Flow-Induced Vibration [M]. second ed. Malabar: Krieger Publishing Company,2001.
    [34]蔡洪滨.圆柱体的涡激升力研究及其动力响应分析[D];中国海洋大学硕士论文,2007.
    [35] Flemming F, Williamson C H K. Vortex-Induced Vibrations of a Pivoted Cylinder [J].Journal of Fluid Mechanics,2005,522(215-52.
    [36] Williamson C H K, Roshko A. Vortex Formation in the Wake of an Oscillating Cylinder[J]. Journal of Fluids and Structures,1988,2(4):355-81.
    [37] Bishop R E D, Hassan A Y. The Lift and Drag Forces on a Circular Cylinder in aFlowing Fluid [J]. Proceedings of the Royal Society Series A,1964,277(32-75.
    [38] Hartlen R T, Currie I G. Lift-Oscillator Model of Vortex Induced Vibration [J]. Journalof the Engineering Mechanics,1970,96(5):577-91.
    [39] Skop R A, Griffin O M. A Model for the Vortex-Excited Resonant Response of BluffCylinders [J]. Journal of Sound and Vibration,1973,27(2):225-33.
    [40] Griffin O M, Skop R A, Koopman G H. The Vortex-Excited Resonant Vibrations ofCircular Cylinders [J]. Journal of Sound and Vibration,1973,31(2):235-49.
    [41] Iwan W D, Blevins R D. Model for Vortex Induced Oscillation of Structures [J]. Journalof Applied Mechanics, Transactions ASME,1974,41Ser E(3):581-6.
    [42] Landl R. A Mathematical Model for Vortex-Excited Vibrations of Bluff Bodies [J].Journal of Sound and Vibration,1975,42(2):219-34.
    [43] Facchinetti M L, De Langre E, Biolley F. Coupling of Structure and Wake Oscillators inVortex-Induced Vibrations [J]. Journal of Fluids and Structures,2004,19(2):123-40.
    [44] Ogink R H M, Metrikine A V. A Wake Oscillator with Frequency Dependent Couplingfor the Modeling of Vortex-Induced Vibration [J]. Journal of Sound and Vibration,2010,329(26):5452-73.
    [45] Iwan W D. Vortex Induced Oscillation of Elastic Structural Elements [J]. Journal ofEngineering for Industry, Transactions of the ASME,1975,97Ser B(4):1378-82.
    [46] Skop R A, Griffin O M. On a Theory for the Vortex-Excited Oscillations of FlexibleCylindrical Structures [J]. Journal of Sound and Vibration,1975,41(3):263-74.
    [47] Skop R A, Balasubramanian S. A New Twist on an Old Model for Vortex-ExcitedVibrations [J]. Journal of Fluids and Structures,1997,11(4):395-412.
    [48] Krenk S, Nielsen S R K. Energy Balanced Double Oscillator Model for Vortex-InducedVibrations [J]. Journal of Engineering Mechanics,1999,125(3):263-71.
    [49] Furnes G K, Srensen K. Flow Induced Vibrations Modeled by Coupled Non-LinearOscillators; proceedings of the17th2007International Offshore and Polar EngineeringConference, ISOPE2007, July1,2007-July6,2007, Lisbon, Portugal, F,2007[C].International Society of Offshore and Polar Engineers.
    [50] Ge F, Long X, Wang L, Hong Y. Flow-Induced Vibrations of Long Circular CylindersModeled by Coupled Nonlinear Oscillators [J]. Science in China, Series G: Physics,Mechanics and Astronomy,2009,52(7):1086-93.
    [51] Xm L, Hy G, Fs M. Nonlinear Coupled in-Line and Cross-Flow Vortex-InducedVibration Analysis of Top Tensioned Riser [J]. China Ocean Engineering,2010,24(749-58.
    [52] Srinil N, Zanganeh H. Modelling of Coupled Cross-Flow/in-Line Vortex-InducedVibrations Using Double Duffing and Van Der Pol Oscillators [J]. Ocean Engineering,2012,53(0):83-97.
    [53] Goswami I, Scanlan R H, Jones N P. Vortex-Induced Vibration of Circular Cylinders.I:Experimental Data [J]. Journal of Engineering Mechanics,1993,119(11):2270-87.
    [54] Goswami I, Scanlan R H, Jones N P. Vortex-Induced Vibration of Circular Cylinders.Ii:New Model [J]. Journal of Engineering Mechanics,1993,119(11):2288-302.
    [55] Simiu E, Scanlan R H. Wind Effects on Structures [M]. New York: Wiley,1986.
    [56] Billah K. A Study of Vortex-Induced Vibration [D]; Princeton University,1989.
    [57] Chen S S, Zhu S, Cai Y. An Unsteady Flow Theory for Vortex-Induced Vibration [J].Journal of Sound and Vibration,1995,184(1):73-92.
    [58] Sarpkaya T. Fluid Forces on Oscillating Cylinders [J].1978,104(4):275-90.
    [59] Griffin O M, Koopmann G H. Vortex-Excited Lift and Reaction Forces on ResonantlyVibrating Cylinders [J]. Journal of Sound and Vibration,1977,54(3):435-48.
    [60] Wang X Q, So R M C, Chan K T. A Non-Linear Fluid Force Model for Vortex-InducedVibration of an Elastic Cylinder [J]. Journal of Sound and Vibration,2003,260(2):287-305.
    [61] K V, Lili. USA: Department of Ocean Engineering, MIT,2005.
    [62] J V, Leverette S, J C, et al. USA: Department of ocean Engineering, MIT,2007.
    [63] Ms T. Cambridge, MA, USA: Massachusetts Institute of Technology, Department ofocean Engineering,2003.
    [64] M L C. Trondheim, Norway: NTNU,2000.
    [65] Baarholm G S, Larsen C M, Lie H. On Fatigue Damage Accumulation from in-Line andCross-Flow Vortex-Induced Vibrations on Risers [J]. Journal of Fluids and Structures,2006,22(1):109-27.
    [66] Chen Y N. Fluctuating Lift Forces of the Karman Vortex Streets on Single CircularCylinders and in Tube Bundles-2. Lift Forces of Single Cylinders [J].1972,94Ser B(2):613-22.
    [67] Chen Y N. Fluctuating Lift Forces of the Karman Vortex Streets on Single CircularCylinders and in Tube Bundles-1. The Vortex Street Geometry of the Single CircularCylinder [J].1972,94Ser B(2):603-12.
    [68] Chen Y N. Fluctuating Lift Forces of the Karman Vortex Streets on Single CircularCylinders and in Tube Bundles-3. Lift Forces in Tube Bundles [J].1972,94Ser B(2):623-8.
    [69] Griffin O M, Ramberg S E. On Vortex Strength and Drag in Bluff-Body Wakes [J].Journal of Fluid Mechanics,1975,69(pt4):721-8.
    [70] Sarpkaya T, Ihrig C J. Impulsively-Started Flow About Rectangular Prisms:Experiments and Discrete Vortex Analysis; proceedings of the Fluid Transients inFluid-Structure Interaction-1985Presented at the Winter Annual Meeting of theAmerican Society of Mechanical Engineers, Miami Beach, FL, USA, F,1985[C].ASME.
    [71] T S, Garrison. Vortex Formation and Resistance in Unsteady Flow [J]. Journal ofApplied Mechanics,1963,16-24.
    [72]陈伟,宗智.二维圆柱绕流的离散涡数值模拟[J].舰船科学技术,2010,32(5):
    [73]陈伟,宗智.立管涡激振动的离散涡数值模拟[J].中国海洋平台,2010,25(1):6.
    [74]陈伟民,张立武,李敏.采用改进尾流振子模型的柔性海洋立管的涡激振动响应分析[J].工程力学,2010,27(5):240-6.
    [75]宋芳,林黎明,凌国灿.圆柱涡激振动的结构-尾流振子耦合模型研究[J].力学学报,2010,42(3):
    [76] Ge F, Lu W, Wang L, Hong Y-S. Shear Flow Induced Vibrations of Long SlenderCylinders with a Wake Oscillator Model [J]. Acta Mechanica Sinica/Lixue Xuebao,2011,27(3):330-8.
    [77]吴介之,马晖扬,周明德.涡动力学引论[M].北京:高等教育出版社,1993.
    [78]童秉纲,夏南,李潜.物体绕流的离散涡方法[J].力学进展,1985,15(03):318-28.
    [79] Blevins R D. Flow-Induced Vibrations [M]. New York: Van Nostrand Reinhold,1990.
    [80] Pantazopoulos M S. Vortex-Induced Vibration Parameters: Critical Review; proceedingsof the Proceedings of the13th International Conference on Offshore Mechanics andArctic Engineering, February27,1994-March3,1994, Houston, TX, USA, F,1994[C].Publ by ASME.
    [81] Currie I G, Turnbull D H. Streamwise Oscillations of Cylinders near the CriticalReynolds Number [J]. J Fluids Struct,1987,1(2):185-96.
    [82] P.K. S. The Locking-on of Vortex Shedding Due to the Cross-Stream Vibration ofCircular Cylinders in Uniform and Shear Flows [J]. Journal of Fluid Mechanics,1976,74(4):641-65.
    [83] Stappenbelt B, Lalji F, Tan G. Low Mass Ratio Vortex-Induced Motion; proceedings ofthe16th Australasian Fluid Mechanics Conference,16AFMC, December3,2007-December7,2007, Gold Coast, QLD, Australia, F,2007[C]. University of Queensland.
    [84] Minorsky N. Nonlinear Oscillations [M]. Princeton: Van Nostrand,1962.
    [85] Blevins R D, Coughran C S. Experimental Investigation of Vortex-Induced Vibration inOne and Two Dimensions with Variable Mass, Damping, and Reynolds Number [J].Journal of Fluids Engineering, Transactions of the ASME,2009,131(10):1012021-7.
    [86] G M, J W Z. The Lift Force on a Cylinder Vibrating in a Current [J]. ASME Journal ofOffshore Mechanics and Arctic Engineering,1990,
    [87] Sarpkaya T. Hydrodynamic Damping, Flow-Induced Oscillations, and BiharmonicResponse; proceedings of the Proceedings of the14th International Conference onOffshore Mechanics and Arctic Engineering Part5(of5), June18,1995-June22,1995,Copenhagen, Den, F,1995[C]. ASME.
    [88] Someya S, Kuwabara J, Li Y, Okamoto K. Experimental Investigation of aFlow-Induced Oscillating Cylinder with Two Degrees-of-Freedom, Langford Lane,Kidlington, Oxford, OX51GB, United Kingdom, F,2010[C]. Elsevier Ltd.
    [89] Rheem C-K, Kato K. A Basic Research on the Viv Response of Rotating CircularCylinder in Flow; proceedings of the ASME201130th International Conference onOcean, Offshore and Arctic Engineering, OMAE2011, June19,2011-June24,2011,Rotterdam, Netherlands, F,2011[C]. American Society of Mechanical Engineers.
    [90] Hover F S, Techet A H, Triantafyllou M S. Forces on Oscillating Uniform and TaperedCylinders in Crossflow [J]. Journal of Fluid Mechanics,1998,363(97-114.
    [91] Hover F S, Davis J T, Triantafyllou M S. Three-Dimensionality of Mode Transition inVortex-Induced Vibrations of a Circular Cylinder; proceedings of the Bluff Body Wakesand Vortex-Induced Vibrations, December17,2002-December20,2002, Port Douglas,Australia, F,2004[C]. Elsevier Ltd.
    [92] Lie H, Larsen C M, Vandiver J K. Vortex Induced Vibrations of Long Marine Risers;Model Test in a Rotating Rig; proceedings of the Proceedings of the199716thInternational Conference on Offshore Mechanics and Arctic Engineering Part1-B (of6),Apr13-171997, Yokohama, Japan, F,1997[C]. ASME.
    [93] Lie H, Mo K, Vandiver J K. Viv Model Test of a Bare-and a Staggered Buoyancy Riserin a Rotating Rig; proceedings of the Proceedings of the199830th OffshoreTechnology Conference, OTC Part1(of4), May4,1997-May7,1997, Houston, TX,USA, F,1998[C]. Offshore Technol Conf.
    [94] Chaplin J R, Bearman P W, Cheng Y, et al. Blind Predictions of LaboratoryMeasurements of Vortex-Induced Vibrations of a Tension Riser [J]. Journal of Fluidsand Structures,2005,21(1SPEC. ISS.):25-40.
    [95] Chaplin J R, Bearman P W, Huera Huarte F J, Pattenden R J. Laboratory Measurementsof Vortex-Induced Vibrations of a Vertical Tension Riser in a Stepped Current [J].Journal of Fluids and Structures,2005,21(1SPEC. ISS.):3-24.
    [96] Lie H, Kaasen K E. Modal Analysis of Measurements from a Large-Scale Viv ModelTest of a Riser in Linearly Sheared Flow [J]. Journal of Fluids and Structures,2006,22(4):557-75.
    [97] Vandiver J K, Jaiswal V, Jhingran V. Insights on Vortex-Induced, Traveling Waves onLong Risers [J]. Journal of Fluids and Structures,2009,25(4):641-53.
    [98] Mathelin L, De Langre E. Vortex-Induced Vibrations and Waves under Shear Flow witha Wake Oscillator Model [J]. European Journal of Mechanics, B/Fluids,2005,24(4):478-90.
    [99] Violette R, De Langre E, Szydlowski J. A Linear Stability Approach to Vortex-InducedVibrations and Waves [J]. Journal of Fluids and Structures,2010,26(3):442-66.
    [100] Huera Huarte F J, Bearman P W, Chaplin J R. On the Force Distribution Along the Axisof a Flexible Circular Cylinder Undergoing Multi-Mode Vortex-Induced Vibrations [J].Journal of Fluids and Structures,2006,22(6-7):897-903.
    [101] K. V J. Dimensionless Parameters Important to the Prediction of Vortex-InducedVibration of Long, Flexible Cylinders in Ocean Currents [J]. Journal of Fluids andStructures,1993,7(423-55.
    [102]宋儒鑫.深水开发中的海底管道和海洋立管[M].2002年度海洋工程学术会议论文集.2002.
    [103]黄维平,李华军.深水开发的新型立管系统——钢悬链线立管(Scr)[J].中国海洋大学学报(自然科学版),2006,36(5):7.
    [104]刘贤雷.钢悬链线立管静力及涡激疲劳损伤研究[D];天津大学硕士论文,2010.
    [105] Martins C A, Higashi E, Silva R M C. Parametric Analysis of Steel Catenary Risers:Fatigue Behavior near the Top; proceedings of the Proceeedings of the10thInternational Offshore and Polar Engineering Conference, May28,2000-June2,2000,Seattle, WA, USA, F,2000[C]. ISOPE.
    [106] Dalheim J. Numerical Prediction of Viv on Deepwater Risers Subjected to ShearCurrents and Waves [J]. Proceedings of the Annual Offshore Technology Conference,1999,2(II/.
    [107] Mekha B B, Heijermans B. The Prince Tlp Steel Catenary Risers: Design and FatigueChallenges; proceedings of the22nd International Conference on Offshore Mechanicsand Arctic Engineering; Offshore Technology Ocean Space Utilization, June8,2003-June13,2003, Cancun, Mexico, F,2003[C]. American Society of MechanicalEngineers.
    [108] Giertsen E, Verley R, Schrder K. Carisima a Catenary Riser/Soil Interaction Model forGlobal Riser Analysis; proceedings of the23rd International Conference on OffshoreMechanics and Arctic Engineering, June20,2004-June25,2004, Vancouver, BC,Canada, F,2004[C]. American Society of Mechanical Engineers.
    [109] Xia J, Das P K, Karunakaran D. A Parametric Design Study for a Semi/Scr System inNorthern North Sea [J]. Ocean Engineering,2008,35(17-18):1686-99.
    [110] Song R, Stanton P. Advances in Deepwater Steel Catenary Riser TechnologyState-of-the-Art: Part Ii-Analysis; proceedings of the28th International Conference onOcean, Offshore and Arctic Engineering, OMAE2009, May31,2009-June5,2009,Honolulu, HI, United states, F,2009[C]. American Society of Mechanical Engineers.
    [111]杨和振,李华军.深海钢悬链立管时域疲劳寿命预估研究[J].振动与冲击,2010,29(3):4.
    [112]饶志标,杨建民,付世晓,李润培.剪切流下钢悬链线立管涡激振动响应研究[J].振动与冲击,2010,29(10):
    [113]郑文青,杨和振.深海钢悬链立管应力接头的多轴疲劳分析[J].哈尔滨工程大学学报,2011,32(11):
    [114]饶志标,付世晓,杨建民.钢悬链线的涡激振动分析(英文)[J].船舶力学,2011,15(3):245-58.
    [115]郭海燕,傅强,娄敏.海洋输液立管涡激振动响应及其疲劳寿命研究[J].工程力学,2005,22(4):220-4.
    [116]潘志远,崔维成,刘应中.阶梯状来流中立管的涡激振动响应预报[J].上海交通大学学报,2006,40(6):1065-8.
    [117]唐世振,黄维平,刘建军.深水立管两向自由度涡激振动的数值分析[J].振动与冲击,2010,29(9):206-11.
    [118] Xiaomin L, Haiyan G, Fanshun M. Nonlinear Coupled in-Line and Cross-FlowVortex-Induced Vibration Analysis of Top Tensioned Riser [J]. China OceanEngineering,2010,24(4):749-58.
    [119] Srinil N, Wiercigroch M, O’brien P. Reduced-Order Modelling of Vortex-InducedVibration of Catenary Riser [J]. Ocean Engineering,2009,36(17–18):1404-14.
    [120] Newman D J, Karniadakis G E M. A Direct Numerical Simulation Study of Flow Past aFreely Vibrationg Cable [J]. J Fluid Mech,1997,344(95-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700