微纳双重结构黑硅的制备及光电特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
晶体硅由于易提纯,易掺杂,耐高温等优点在半导体行业中有非常广泛的应用,然而由于晶体硅的反射率高和对近红外光的吸收率低这两个特点,使基于晶体硅的传统光电探测器具有灵敏度低以及不能探测近红外光等缺点。黑硅是一种新型的硅材料,它的出现为克服这些缺点提供了基础。然而采用传统的高能飞秒激光辐射的方法制备黑硅具有成本高昂、难以大面积生产以及与现有的半导体集成电路制造工艺不兼容等缺陷,因此采用其他的新技术和方法制备黑硅成为目前研究的重点和热点。本文以此为背景,提出了一种基于两步湿法腐蚀的微纳双重结构黑硅制备技术,并围绕微纳双重结构黑硅的制备与光电性能分析开展了大量的研究工作,主要包括以下几个方面:
     1.分别采用正交实验法优化了氢氧化钾碱腐蚀技术和金属催化酸腐蚀技术的工艺参数。通过碱腐蚀工艺前在硅片表面制备大小相等、排列规则的氮化硅圆掩膜阵列,得到在碱腐蚀处理后的硅片表面排列规则、大小相等的四面体尖锥阵列,这种尖锥阵列的存在,使得最终制备的微纳双重结构黑硅具有较好的规则性和均匀性,为单元探测器以至阵列探测器的制备提供了有利的条件。通过控制酸腐蚀工艺的腐蚀时间,可以在硅片表面得到具有不同的孔直径和孔深度的纳米孔结构,这种纳米孔结构的存在,使微纳双重结构黑硅具有了更好的减反射和增吸收的性质。
     2.测试和比较了晶体硅、微米和纳米结构硅以及微纳双重结构黑硅在250-2500nm波段范围的光学性能。晶体硅表面在分别经过微米结构化、纳米结构化以及微纳双重结构化后,对入射光的反射率都大量减少,其中微纳双重结构的减反射效果最佳,纳米结构次之,微米结构最差。微纳双重结构黑硅对紫外-可见光的吸收率高达98%,比晶体硅在此波段的吸收率平均值高50%;对波长大于1100nm的近红外光的吸收率高达30%,比晶体硅在此波段的吸收率平均值高28%。
     3.对微纳双重结构黑硅的电学性能,包括微纳双重结构黑硅的金-半接触特性、微纳双重结构黑硅的载流子浓度和迁移率以及电阻温度变化特性等进行了测试研究。在退火前,晶体硅表面在经过微纳双重结构化以后,与金属铝电极的接触特性有所改善。在退火后,晶体硅和微纳双重结构黑硅与铝电极的接触特性都有了不同程度的改善。晶体硅表面经过微纳双重结构化以后,载流子浓度和迁移率有所下降,电阻温度系数由正数值变成了负数值,且负数绝对值随着纳米结构的腐蚀时间增加而逐渐增大,体现了微纳双重结构黑硅的电阻温度系数的可调节性。当腐蚀时间为7分钟时,微纳双重结构黑硅在35-50°C的平均电阻温度系数为-3.01%,这个数值优于目前大多数热敏探测材料的热敏特性。
     4.采用金属-半导体-金属(MSM)这种横向表面型器件结构,利用反转胶-剥离的方法制作了基于微纳双重结构黑硅的光电探测器,制备得到的叉指电极边缘整齐、粗细均匀,而且叉指宽度和间距与设计尺寸一致。对具有不同纳米结构化时间以及不同叉指尺寸的微纳双重结构黑硅MSM探测器的光电响应特性进行了测试与分析。微纳双重结构黑硅MSM探测器的暗电流-电压曲线在某一电压附近具有负微分电阻效应,与微纳双重结构中纳米结构的量子隧穿效应有关。微纳双重结构黑硅MSM探测器的暗电流较大,通过在铝与硅之间增加一层100nm厚的SiNX薄膜,可使器件的暗电流下降至少两个数量级,在5V偏压下,该器件的暗电流密度为3.6μA/cm~2。微纳双重结构黑硅MSM探测器的响应度随着纳米结构化时间的增加以及叉指电极尺寸的优化逐渐增大,当腐蚀时间为5分钟,叉指尺寸为5:10时,微纳双重结构黑硅MSM探测器的响应度达到0.72A/W。
     5.利用MEDICI软件对基于微纳双重结构黑硅的MSM探测器和PIN探测器的光电响应特性进行了建模与仿真,仿真与实验结果的对比证实了MEDICI软件对微纳双重结构黑硅光电响应特性的仿真可行性。在5V的偏压下,叉指尺寸为5:10和2:10的微纳双重结构黑硅MSM探测器的峰值响应波长都为760nm,峰值响应度分别为0.89A/W和1.35A/W,峰值响应度在使用透明叉指电极后分别提高至1.31A/W和1.61A/W。晶体硅PIN探测器表面进行了1μm的微纳双重结构化后,探测器对800nm入射光的饱和光电流由1.9μA增大到2.7μA,响应度由0.337A/W增大到0.472A/W,增长幅度为40%,而响应时间基本不变,上升时间约为20ns,下降时间约为60ns。微纳双重结构黑硅PIN探测器的峰值响应波长和相对响应度曲线相较晶体硅PIN探测器而言有红移的现象,红移的宽度在5μm微纳双重结构黑硅PIN探测器中达到了60nm。基于PIN结构的微纳双重结构黑硅探测器要比基于MSM结构的微纳双重结构黑硅探测器的响应度减少53%。
Silicon is the most commonly used material in semiconductor industry because itis easily purified and doped. However, the sensitivity and efficiency of silicon-basedphotodetectors are limited by two factors: silicon performs highly reflection across theelectromagnetic spectrum, and silicon is transparent to wavelengths longer than1100nm. The discovery of black silicon makes it realizable to dramatically enhance thesensitivity and efficiency of silicon-based photodetectors. Black silicon is fabricated byirradiating a silicon surface with ultrahigh energy femtosecond laser pulses. However,the femtosecond laser process is complex, and it is incompatible with mass productiontechnology and silicon-based semiconductor technology. Therefore, new methods forfabricating black silicon have attracted more and more attention recently. In this study,micro/nano two-tier structured black silicon (micro/nanostructured silicon) has beenfabricated using a simple wet chemical etching process. The optical and electricalproperties of micro/nanostructured silicon have been studied.
     1. The optimum parameters of alkaline anisotropic etching and metal assistedisotropic etching have been obtained from orthogonal test, respectively. The regulardistributed pyramids which are produced through alkaline anisotropic etching with amask layer are advantageous to the application of micro/nanostructured silicon in thearray photodetectors. The nanopores, whose diameters and depth are varied with theincease of etching time in metal assisted isotropic etching, are advantageous to thesuppression of reflection and enhancement of absorption of micro/nanostructuredsilicon.
     2. The optical properties of unstructured silicon, microstructured silicon,nanostructured silicon, and micro/nanostructured silicon have been studied. Thereflectance from the surface of silicon is dramatically decreased after micro/nanostructured, and the reflectance of micro/nanostructured silicon is the lowest. Themicro/nanostructured silicon absorbs about98%and30%of the incident light atultraviolet-visible wavelengths and near infrared wavelengths, respectively. Theabsorbance of the micro/nanostructured silicon is, on average, higher than that of unstructured silicon by50%and28%at ultraviolet-visible wavelengths and nearinfrared wavelengths, respectively.
     3. The electrical properties of micro/nanostructured silicon, such as contactresistance, carrier concentrations, carrier mobility, and temperature coefficients ofresistance(TCR) have been studied. The contact performance of micro/nanostructuredsilicon-aluminium are better than that of unstructured silicon-aluminium beforevacuum annealing, and the contact performance has been largely improved for allsmples after vacuum annealing. The carrier concentration is slightly reduced, whereascarrier mobility is drastically decreased after micro/nanostructuring. TCR of siliconchanges from positive value into negative value after micro/nanostructuring, and theabsolute value of TCR increases with nanostructuring duration. The capability ofmodulating TCR is one of the major advantages of micro/nanostructured silicon. HighTCR of-3.01%/°C is obtained after etching for7min, which is larger than that of mostheat sensitive materials.
     4. Micro/nanostructured silicon photodetectors based on metal-semiconductor-metal (MSM) structure have been fabricated and studied. Interdigital electrodes,produced by lift-off technology, are regular and uniform. The sizes of producedinterdigital electrodes are as same as the designed ones. The photoresponses ofmicro/nanostructured silicon MSM photodetectors with different nanostructuringduration and interdigital electrode sizes have been studied. Negative resistance effectcaused by quantum tunneling effect of nanostructures is observed inmicro/nanostructured silicon. The dark current of micro/nanostructured silicon MSMphotodetector is relative high, although was reduced by at least two orders ofmagnitude after introducing a100nm SiNXthin film between micro/nanostructuredsilicon and aluminium. The dark current density is3.6μA/cm~2with the bias of5V. Theresponsivities of micro/nanostructured silicon MSM photodetectors increase with theincreasing of nanostructuring duration as well as the optimizing of interdigitalelectrode sizes. Responsivity of0.72A/W is obtained after etching for5min whenInterdigital electrode size is5:10.
     5. Photoresponses of micro/nanostructured silicon detectors are simulated byMEDICI software. Simulation results of current density of micro/nanostructuredsilicon detector are compared with experimental values, respectively. The results indicate that MEDICI software is suitable for the simulation of properties ofmicro/nanostructured silicon photodetectors. The peak response wavelengths ofmicro/nanostructured silicon MSM photodetectors are760nm when interdigitalelectrode sizes are5:10and2:10, but the peak responsivities are0.89A/W and1.35A/W, respectively. Moreover, the peak responsivities raise to1.31A/W and1.61A/W after using transparent electrodes. The photocurrent and responsivity ofunstructured silicon PIN photodetector to incident light with wavelength of800nm is1.9μA and0.337A/W, respectively, and the values raise to2.7μA and0.472A/W afterusing micro/nanostructured silicon with thickness of1μm. The response times inunstructured silicon PIN photodetector and micro/nanostructured silicon PINphotodetectors are the same, and the rising time and dropping time are about20ns and60ns, respectively. Peak response wavelengths and response spectra of variousmicro/nanostructured silicon PIN photodetectors show different red-shifts comparedwith that of unstructured silicon PIN photodetector, and the red-shift is60nm in PINphotodetectors with5μm micro/nanostructured silicon. The responsivity ofmicro/nanostructured silicon PIN photodetector reduces about53%compared with thatof micro/nanostructured silicon MSM photodetector.
引文
[1] M. U. Pralle, J. E. Carey, H. Homayoon, et al. Black silicon enhanced photodetectors: a path toIR CMOS[C]. Proceedings of SPIE, Infrared Technology and Applications XXXVI, Orlando,Florida,2010,7660(76600N):1-3
    [2] C. Wu, C. H. Crouch, L. Zhao, et al. Near-unity below-band gap absorption by microstructuredsilicon[J]. Applied Physics Letters,2001,78(13):1850-1852
    [3]姜晶,吴志明,王涛等.革命性的新材料—黑硅[J].材料导报,2010,24(7):122-126
    [4] C. Martinet, V. Paillard, A. Gagnaire, et al. Deposition of SiO2and TiO2thin films by plasmaenhanced chemical vapor deposition for antireflection coation[J]. Journal of Non-CrystallineSolids,1997,216:77-82
    [5] A. Lennie, H. Abdullah, S. Shaari, et al. Fabrication of single layer SiO2and Si3N4asantireflection coating on silicon solar cell using silvaco software[J]. American Journal ofApplied Sciences,2009,6(12):2043-2049
    [6] H. J. Hovel. TiO2antireflection coatings by a low temperature spray process[J]. Journal ofElectrochemical Society,1978,125(6):983-985
    [7]陈宇.晶硅太阳能电池减反射薄膜的制备与特性研究[D].长沙:中南大学.2011,10-11
    [8] U. Gangopadhyay, K. Kim, D. Mangalaraj, et al. Low cost CBD ZnS antireflection coating onlarge area commercial mono-crystalline silicon solar cells[J]. Journal of Applied SurfaceScience,2004,230:364-370
    [9] S. Korkmaz, S. Elmas, N. Ekem, et al. Deposition of MgF2thin films for antireflection coatingby using thermionic vacuum arc(TVA)[J]. Optics Communications,2012,285(9):2373-2376
    [10] T. J. Rehg, J. A. Ochoa-Tapia, A. Knoesen, et al. Solgel derived tantalum pentoxide films asultraviolet antireflective coatings for silicon[J]. Applied Optics,1989,28(24):5215-5221
    [11] T. Wiktorczyk, M. Ole. Design, fabrication and optical characterization of ceriumoxide-magnesium fluoride double layer antireflection coatings on monocrystalline siliconsubstrates[J]. Optical Materials,2007,29(12):1768-1773
    [12] S. E. Lee, S. W. Choi, J. Yi. Double-layer anti-reflection coating using MgF2and CeO2filmson a crystalline silicon substrate[J]. Thin Solid Film,2000,376(1-2):208-213
    [13] I. S. Jeong, J. H. Kim, H. H. Park. n-ZnO/p-Si UV photodetectors employing AlOx films forantireflection[J]. Thin Solid Films,2004,447:111-114
    [14]刘光友,谭兴文,姚金才等.电化学制备薄黑硅抗反射膜[J].物理学报,2008,50(1):514-518
    [15] D. M. Braun, R. L. Jungerman. Broadband multilayer antireflection coating for semiconductorlaser facets[J]. Optics Letters,20(10):1154-1156
    [16] D. Bouhafs, A. Moussi, A. Chikouche, et al. Design and simulation of antireflection coatingsystems for optoelectronic devices: application to silicon solar cells[J]. Solar Energy Materialsand Solar Cells,1998,52(1-2):79-93
    [17] L. Ye, Y. Zhang, X. Zhang, et al. Sol-gel preparation of SiO2/TiO2/SiO2-TiO2broadbandantireflective coating for solar cell cover glass[J]. Solar Energy Materials and Solar Cells,2013,111:160-164
    [18] E. D. Palik, V. M. Bermuder, O. J. Glembocki. Ellipsonetric study of orientation dependentetching of silicon in aqueous KOH[J]. Journal of The Electrochemical Society,1985,132(4):871-884
    [19] H. Seidel, L. Csepregi, A. Heuberger, et al. Anisotropic etching of crystalline silicon inalkaline solutions[J]. Journal of The Electrochemical Society,1990,137(11):3612-3626
    [20] C.-R. Yang, P.-Y. Chen, Y.-C. Chiou, et al. Effects of mechanical agitation and surfactantadditive on silicon anisotropic etching in alkaline KOH solution[J]. Sensors and Acruators A,2005,119:263-270
    [21] T. H. Her, R. J. Finlay, C. Wu, et al. Microstructuring of silicon with femtosecond laserpulses[J]. Applied Physics Letters,1998,73(12):1673-1675
    [22] R. Younkin, J. E. Carey, E. Mazur, et al. Infrared absorption by conical silicon microstructuresmade in a variety of background gases using femtosecond-laser pulses[J]. Journal of AppliedPhysics,2003,93(5):2626-2629
    [23] C. H. Crouch, J. E. Carey, M. Shen, et al. Infrared absorption by sulfur-doped silicon formedby femtosecond laser irradiation[J]. Applied Physics A,2004,79:1635-1641
    [24] M. A. Sheehy, L. Winston, J. E. Carey, et al. Role of the background gas in the morphologyand optical properties of laser-microstructured silicon[J]. Chemistry of Matererials,2005,17:3582-3586
    [25] T. H. Her, R. J. Finlay, C. Wu, et al. Femtosecond laser-induced formation of spikes on silicon[J]. Applied Physics A,2000,70:383-385
    [26] C. H. Crouch, J. E. Carey, J. M. Warrender, et al. Comparison of structure and properties offemtosecond and nanosecond laser-structured silicon[J]. Applied Physics Letters,2004,84(11):1850-1852
    [27] M. Y. Shen, C. H. Crouch, J. E. Carey, et al. Formation of regular arrays of silicon microspikesby femtosecond laser irradiation through a mask[J]. Applied Physics Letters,2003,82(11):1715-1717
    [28] C. Wu, C. H. Crouch, L. Zhao, et al. Visible luminescence from silicon surfacesmicrostructured in air[J]. Applied Physics Letters,2002,81(11):1999-2001
    [29] A. Serpengüzel, A. Kurt, I. Inan, et al. Luminescence of black silicon[J]. Journal ofNanophotonics,2008,2:021770
    [30] B. R. Tull, J. E. Carey, M. A. Sheehy, et al. Formation of silicon nanoparticles and web-likeaggregates by femtosecond laser ablation in a background gas[J]. Applied Physics A,2006,83:341-346
    [31] M. Y. Shen, C. H. Crouch, J. E. Carey, et al. Femtosecond laser-induced formation ofsubmicrometer spikes on silicon in water[J]. Applied Physics Letters,2004,85(23):5694-5696
    [32] M. Shen, J. E. Carey, C. H. Crouch, et al. High-density regular arrays of nanometer-scale rodsformed on silicon surfaces via femtosecond laser irradiation in water[J]. Nano Letters,2008,8(7):2087-2091
    [33] M. A. Sheehy, B. R. Tull, C. M. Friend, et al. Chalcogen doping of silicon viafemtosecond-laser irradiation[J]. Materials Science and Engineering B,2007,137:289-294
    [34] B. R. Tull, M. T. Winkler, E. Mazur. The role of diffusion in broadband infrared absorption inchalcogen-doped silicon[J]. Applied Physics A,2009,96:327-334
    [35] R. J. Younkin. Surface studies and microstructure fabrication using femtosecond laserpulses[D]. Cambridge: Harvard University.2001
    [36] El-cat. Properties of silicon and silicon wafers[DB/OL]. http://www.el-cat.com/silicon-properties.htm
    [37] R. O. Carlson, R. N. Hall, E. M. Pell. Sulfur in silicon[J]. Journal of physics and chemistry ofsolids,1959,8:81-83
    [38] J. E. Carey, C. H. Crouch, M. Shen, et al. Visible and near-infrared responsivity offemtosecond-laser microstructured silicon photodiodes[J]. Optics Letters,2005,30(14):1773-1775
    [39] T. Sarnet, M. Halbwax, R. S. Torre, et al. Femtosecond laser for black silicon and photovoltaiccells[C]. Proceedings. of SPIE, Commercial and Biomedical Applications of Ultrafast LasersVIII, San Jose, CA,2008,6881(688119):1-15
    [40] M. Halbwax, T. Sarnet, P. Delaporte, et al. Micro and nano-structuration of silicon by femtosecondlaser: Application to silicon photovoltaic cells fabrication[J]. Thin Solid Films,2008,516:6791-6795
    [41] R. Torres, T. E. Itina, V. Vervisch, et al. Study on laser-induced periodic structures andphotovoltaic application[C]. AIP Conference Proceedings, Santa Fe,2010,1278:576-581
    [42] S. I. Kudryashov, E. V. Golosov, A. A. Ionin, et al. Evolution of black silicon nano-and micro-scale surface topologies upon femtosecond laser irradiation[C]. Proceedings of SPIE, SiliconPhotonics and Photonic Integrated Circuits II, Brussels, Belgium,2010,7719(771921):1-5
    [43] A. A. Ionin, E. V. Golosov, Y. R. Kolobov, et al. Formation of quasi-periodic nano-andmicrostructures on silicon surface under IR and UV femtosecond laser pulses[J]. QuantumElectronics,2011,41(9):829-834
    [44] E. V. Golosov, A. A. Ionin, Y. R. Kolobov, et al. Topological evolution of self-inducedsilicon nanogratings during prolonged femtosecond laser irradiation[J]. Applied Physics A,2011,104:701-705
    [45]赵明,苏卫锋,赵利.表面微构造的硅材料-一种新型的光电功能材料[J].物理,2003,32(7):455-457
    [46]朱京涛,赵明,尹钢等.超短激光脉冲对硅表面的微构造[C].中国光学学会2004年学术大会,杭州,2004:11-14
    [47]李平,王煜,冯国进等.超短激光脉冲对硅表面微构造的研究[J].中国激光,2006,33(12):1687-1691
    [48]刘洋.飞秒激光微构造硅的光学特性[D].上海:复旦大学.2007
    [49] S. Y. Liu, J. T. Zhu, Y. Liu, et al. Laser induced plasma in the formation ofsurface-microstructured silicon[J]. Materials Letters,2008,62:3881.
    [50]门海宁,程光华,孙传东.飞秒激光作用下的硅表面微结构及发光特性[J].强激光与粒子束,2006,18(7):1081-1084
    [51] H. Mei, C. Wang, J. Yao, et al. Development of novel flexible black silicon[J]. OpticsCommunications,2011,284:1072-1075
    [52]计红梅.黑硅的故事---一种革命性的新材料是如何诞生的[J].科学时报,2008
    [53] J. Jiang, S. B. Li, Y. D. Jiang, et al. Enhanced ultraviolet to near-infrared absorption bytwo-tier structured silicon formed by simple chemical etching[J]. Philosophical Magazine,2012,92(34):4291-4299
    [54] G. Kumaravelu, M. M. Alkaisi, A. Bittar. Surface texturing for silicon solar cells using reactiveion etching technique[C]. Proceedings of the29th IEEE Photovoltaic Specialists Conference,New Orleans,2002:258-261
    [55] M. Kroll, T. K sebier, M. Otto, et al. Optical modeling of needle like silicon surfaces producedby an ICP-RIE process[C]. Proceedings of SPIE, Photonics for Solar Energy Systems III,Brussels, Belgium,2010,7725(772505):1-10
    [56] M. C.–K. Cheung, P. J. R. Roche, M. H. Hassan, et al. Controlling optical properties andsurface morphology of dry etched porous silicon[J]. Journal of Nanophotonics,2011,5:053503
    [57] L. Sainiemi, V. Jokinen, A. Shah, et al. Non-reflecting silicon and polymer surfaces by plasmaetching and replication[J]. Advanced materials,2011,23:122-126
    [58] D.–Y. Kong, C.–S. Cho, J.–H. Jo, et al. Surface texturing for crystalline silicon solar cellusing RIE equipped with metal-mesh[J]. Advanced Materials Research,2011,328-330:747-750
    [59] C. C. Striemer, P. M. Fauchet. Dynamic etching of silicon for broadband antireflectionapplications[J]. Applied Physics Letters,2002,81(16):2980-2982
    [60] G. D. Cody, R. B. Stephens. Optical properties of a microscopically textured surface[C].Proceedings of AIP,1978,40:225-238
    [61] L. L. Ma, Y. C. Zhou, N. Jiang, et al. Wide-band “black silicon” based on porous silicon[J].Applied Physics Letters,2006,88:171907
    [62] D. D. Malinovska, M. S. Vassileva, N. Tzenov, et al. Preparation of thin porous silicon layersby stain etching[J]. Thin Solid Films,1997,297(1-2):9-12
    [63] X. Li, P. W. Bohn. Metal-assisted chemical etching in HF/H2O2produces porous silicon[J].Applied Physics Letters,2000,77(16):2572-2574
    [64] S. Koynov, M. S. Brandt, M. Stutzmann. Black nonreflecting silicon surfaces for solar cells[J].Applied Physics Letters,2006,88,203107
    [65] H. M. Branz, V. E. Yost, S. Ward, et al. Nanostructured black silicon and the opticalreflectance of grade-density surfaces[J]. Applied Physics Letters,2009,94:231121
    [66] L. Tsakalakos, J. Balch, J. Fronheiser. Strong broadband optical absorption in siliconnanowires films[J]. Journal of Nanophotonics,2007,1:013552
    [67] T. G. Kim, J. M. Warrender, M. J. Aziz. Strong sub-band-gap infrared absorption in siliconsupersaturated with sulfur[J]. Applied Physics Letters,2006,88:241902
    [68] H.-C. Yuan, V. E. Yost, M. R. Page, et al. Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and designrules[J]. Applied Physics Letters,2009,95:123501
    [69] J. Oh, H.–C. Yuan, H. M. Branz. An18.2%-efficient black-silicon solar cell achieved throughcontrol of carrier recombination in nanostructures[J]. Nature Nanotechnology,2012, DOI:10.1038/NNANO.2012.166
    [70]中国新能源网.黑硅太阳能电池转换效率达到18.2%[EB/OL]. http://www.newenergy.org.cn/Html/01211/1151250211.html,11,2012
    [71]中国科学院.微电子所等在多晶黑硅太阳能电池研究上再获突破[EB/OL].http://www.cas.ac.cn/ky/kyjz/201211/t20121109_3680656.shtml,11,2012
    [72] Y. H. Xiu, D. W. Hess, C. P. Wong. Preparation of multi-functional silicon surface structuresfor solar cell applications[C]. Proceedings of the58th IEEE Electronic Components andTechnology Conference, Lake Buena Vista,2008:2117-2122
    [73] K. Nishioka, T. Sueto, N. Saito. Antireflection structure of silicon solar cells formed by wetprocess using catalysis of single nano-sized gold or silver particle[C]. Proceedings of the34thIEEE Photovoltaic Specialists Conference, Philadelphia,2009:000169-000171
    [74] H.–C. Yuan, V. E. Yost, M. R. Page, et al. Efficient black silicon solar cells with nanoporousanti-reflection made in a single-step liquid etch[C]. Proceedings of the34th IEEE PhotovoltaicSpecialists Conference, Philadelphia,2009:000141-000145
    [75] S. K. Srivastava, D. Kumar, P. K. Singh, et al. Siliocn nanowire arrays based “black silicon”solar cells[C]. Proceedings of the34th IEEE Photovoltaic Specialists Conference, Philadelphia,2009:001851-001856
    [76] S. Koynov, M. S. Brandt, M. Stutzmann. Black thin film silicon[J]. Journal of Applied Physics,2011,110:043537
    [77] Z. H. Huang, J. E. Carey, M. G. Liu, et al. Microstructured silicon photodetector[J]. AppliedPhysics Letters,2006,89:033506
    [78] R. A. Myers, R. Farrell, A. M. Karger, et al. Enhancing near-infrared avalanche photodiodeperformance by femtosecond laser microstructuring[J]. Applied Optics,2006,45(35):8825-8831
    [79] J. E. Carey, J. Sickler. Black silicon sees further into the IR[J]. Laser Focus World,2009,August:40-44
    [80] R. A. Myers, R. Farrell, F. Robertson, et al. Near-infrared enhanced position-sensitiveavalanche photodiodes[C]. Proceedings of SPIE, Infrared Systems and PhotoelectronicTechnology III, San Diego, CA,2008,7055(70550L):1-12
    [81] M. U. Pralle, J. E. Carey, H. Homayoon, et al. IR CMOS: ultrafast laser-enhanced silicondetection[C]. Proceedings of SPIE, Infrared Technology and Applications XXXVII, Orlando,Florida,2011,8012(801222):1-2
    [82] A. M. Moloney, L. Wall, A. Mathewson, et al. Novel black silicon PIN photodiodes[C].Proceedings of SPIE, Semiconductor Photodetectors III, San Jose, CA,2006,6119(61190B):1-8
    [83] S. K. Zhang, H. Ahmar, B. Chen, et al. Photocurrent spectrum measurements of doped blacksilicon[C]. Proceedings of SPIE, Optical Components and Materials VIII, San Francisco,California,2011,7934(79341A):1-5
    [84] K. Yamamoto, A. Sakamoto, T. Nagano, et al. NIR sensitivity enhancement by laser treatmentfor Si detectors[J]. Nuclear Instruments and Methods in Physics Research A,2010,624:520-523
    [85] Hamamatsu. IR-enhanced Si PIN photodiodes-S11499series[EB/OL]. http://jp.hamamatsu.com/resources/products/ssd/pdf/s11499_series_kpin1082e01.pdf, January,2011
    [86] J. Jiang, S. B. Li, Y. D. Jiang, et al. Mechanism of optical absorption enhancement of surfacetextured black silicon[J]. Journal of Materials Science: Materials in Electronics,2013,24:463-466
    [87]王涓,孙岳明,黄庆安等.单晶硅各向异性湿法腐蚀机理的研究进展[J].化工时刊,2004,18(6):1-4
    [88] M. Steinert, J. Acker, M. Krause, et al. Reactive species generated during wet chemicaletching of silicon in HF/HNO3mixtures[J]. Journal of physical chemistry B,2006,110:11377-11382
    [89] M. G. Spirin, S. B. Brichkin, V. F. Razumov. Synthesis and stabilization of gold nanoparticlesin reverse micelles of aerosol OT and triton X-100[J]. Colloid Journal,2005,67(4):485-490
    [90]郭正宇.黑硅材料的制备及特性研究[D].成都:电子科技大学.2010,41-42
    [91] Wikipedia. Integrating sphere[DB/OL]. http://en.wikipedia.org/wiki/Integrating_sphere,February,2013
    [92] R. B. Stephens, G. D. Cody. Optical reflectance and transmission of a textured surface[J]. ThinSolid Films,1977,45(1):19-29
    [93] Wikipedia. Kubelka-Munk-Theorie[DB/OL]. http://de.wikipedia.org/wiki/Kubelka-Munk-Theorie,March,2010
    [94] Shimadzu. Measurements of band gap in compound semiconductors–band gap determination fromdiffuse reflectance spectra[DB/OL] http://www2.shimadzu.com/applications/UV/VIS/A428.pdf
    [95] Lasurface. XPS database[DB/OL] http://www.lasurface.com/database/elementxps.php
    [96]王建祺,吴文辉,冯大明.电子能谱学(XPS/XAES/UPS)引论[M].北京:国防工业出版社,1992,93-96
    [97] H. J. Hrostowski, B. J. Alder. Evidence for internal rotation in the fine structure of the infraredabsorption of oxygen in silicon[J]. Journal of Chemical Physics,1960,33(4):980-990
    [98] M. D. McCluskey, E. E. Haller. Interstitial oxygen in silicon under hydrostatic pressure[J].Physical Review B,1997,56(15):9520-9523
    [99] M. H. Chan, S. K. So, K. W. Cheah. Optical absorption of free-standing porous silicon films[J].Journal of Applied Physics,1996,79(6):3273-3275
    [100] M. Cruz, C. Wang, M. R. Beltrán, et al. Morphological effects on the electronic bandstructure of porous silicon[J]. Physical Review B,1996,53(7):3827-3832
    [101] M. Cruz, M. R. Beltrán, C. Wang, et al. Supercell approach to the optical properties of poroussilicon[J]. Physical Review B,1999,59(23):15381-15387
    [102] C. Wang, M. Cruz, Y. G. Rubo, et al. Optical absorption in porous silicon[J]. Journal ofPorous Materials,2000,7:279-282
    [103] A. Mortezaali, S. Ramezanisani, F. Javanijooni. Correlation between porosity of poroussilicon and optoelectronic properties[J]. Journal of Non-Oxide Glasses,2009,1(3):293-299
    [104] J. Jiang, S. B. Li, Y. D. Jiang, et al. Transition of dominative conduction mechanism causedby nanostructures on silicon surface[J]. Materials Letters,2013,94:27-29
    [105] J. Jiang, S. B. Li, Z. F. Xiao, et al. Investigation of nanostructured silicon as a candidate forheat sensitive material[J]. Journal of Materials Science: Materials in Electronics,2012, doi:10.1007/s10854-012-1010-4
    [106]刘恩科,朱炳升,罗晋生等.半导体物理学[M].北京:电子工业出版社,2003,219-224
    [107] Wikipedia. Ohmic contact[DB/OL]. http://en.wikipedia.org/wiki/Ohmic_contact, February,2013
    [108]Wenku. Metal Interconnection [DB/OL]. http://wenku.baidu.com/view/372eaaa7b0717fd5360cdcd2.html
    [109] B. Sopori, V. Mehta, P. Rupnowski, et al. Studies on backside Al-contact formation in Si solarcells: fundamental mechanisms[C]. Proceedings of Materials Research Society (MRS) FallMeeting, Boston, Massachusetts,2008
    [110] E. Urrejola, K. Peter, H. Plagwitz, et al. Al-Si alloy formation in narrow p-type Si contactareas for rear passivated solar cells[J]. Journal of Applied Physics,2010,107:124516
    [111] Wikipedia. Hall effect[DB/OL] http://en.wikipedia.org/wiki/Hall_effect, February,2013
    [112] S. M. Sze, Physics of Semiconductor Devices[M]. New York: Wiley-Interscience,2nd ed.1981
    [113]付世,丁德宏,姚朋军等.多孔硅形成机理研究的新进展[J].辽宁大学学报自然科学版,2003,30(1):93-96
    [114] S. P. Zimin. Hopping conductivity in low-porosity mesoporous silicon formed on p+-Si:B [J].Semiconductors,2006,40(11):1350-1352
    [115] P. Norton, J. Brandt. Temperature coefficient of resistance for p-and n-type silicon[J].Solid-State Electronics,1978,21(7):969-974
    [116] I. Yu, I.-K. Park, C.-S. Cho, et al. Temperature dependence of porous silicon resistance[C].Proceedings of Electron Devices and Materials Symposium, Taiwan,1994:5-8-28–5-8-31
    [117] W. R. Thurber, R. L. Mattis, Y. M. Liu, et al. Resistivity-dopant density relationship forboron-doped silicon[J]. Journal of the Electrochemical Society,1980,127:2291-2294
    [118]刘恩科,朱炳升,罗晋生等.半导体物理学[M].北京:电子工业出版社,2003,82
    [119]蒋朝伦,陶明德,冯中华等.硅正电阻温度系数热敏电阻器[J].电子元件与材料,2004,23(5):32-34
    [120] N. F. Mott, E. A. Davis. Electronic Processes in Non-Crystalline Materials[M],2nd ed.(Clarendon, Oxford,1979; Mir, Moscow,1982), Vol.1, p.252.
    [121] E.-K. Badih. Silicon devices and process integration: deep submicron and nano-scaletechnologies[M]. Springer,2009, p.416
    [122] R. G. Mathur, Vivechana, R.M. Mehra, et al. Electron transport in porous silicon[J]. ThinSolid Films,1988,312:254-258
    [123] L. A. Balagurov, D. G. Yarkin, E. A. Petrova. Electronic transport in porous silicon of lowporosity made on a p+substrate[J]. Materials Science and Engineering B,2000,69–70:127-131
    [124]刘卫国,金娜.集成非制冷热成像探测阵列[M].北京:国防工业出版社,2004,19
    [125]王宏臣.氧化钒薄膜及非致冷红外探测器阵列研究[D].武汉:华中科技大学.2005
    [126] H. Jerominek, F. Picard, D. Vincent. Vanadium oxide films for optical switching anddetection[J]. Optical Engineering,1993,32(9):2092-2099
    [127]李敏娇,张述林,丁秀敏等.氢还原法制备低相变温度掺钨VO2薄膜[J].钢铁钒钛,2010,31(2):6-9
    [128]王银玲,李美成,赵连城.磁控溅射氧化钒薄膜的相成分及电阻—温度特性[J].稀有金属材料与工程,2005,34(7):1077-1080
    [129] J. Jiang, Z. M. Wu, Y. D. Jiang, et al. Investigations on titanium oxide film as an alternative heatsensitive material[C]. Proceedings of SPIE, International Conference on Optical Instruments andTechnology: Optoelectronic Imaging and Process Technology, Shanghai,2009,7513:751315
    [130] J. Jiang, Z. M. Wu, Y. L. Qiu, et al. Study on the dependence of properties of TiOx heat sensitivefilms on deposit oxygen flow rate[C]. Proceedings of SPIE,5th International Symposium onAdvanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devicesfor Detector, Imager, Display, and Energy Conversion Technology, Dalian,2010,7658:76583J
    [131] C. Vedel, J. L. Martin, J. L. Ouvrier Buffet. Amorphous silicon based uncooledmicrobolometer IRFPA[C]. Proceedings of SPIE, Infrared Technology and Applications XXV,Orlando, FL,1999,3698:276-283
    [132] J. L. Tissot, J. P. Chatard, E. Mottin. Technical trends in amorphous silicon based uncooledIR focal plane arrays[C]. Proceedings of SPIE, Infrared Technology and ApplicationsXXVIII, Seattle, WA,2002,4820(1):220-226
    [133]岳瑞峰,董良,刘理天.用于测辐射热计热敏材料的多晶锗硅薄膜的研究[J].电子器件,2006,29(4):
    [134] D. P. Butler, Z. Butler, A. Jahanzeb. Micromachined YBaCuO capacitor structures asuncooled pyroelectric infrared detectors[J]. Jornal of Applied Physics,1998,84:1680-1687
    [135] V. Yu. Zerov, V. G. Malyarov. Heat-sensitive materials for uncooled microbolometer arrays[J].Journal of Optical Technology,2001,68(12):939
    [136] S. M. Sze, D. J. Coleman Jr. A. Loya. Current transport in metal-semiconductor-metal (MSM)structures[J]. Solid-State Electronics,1971,14(12):1209-1218
    [137] T. Sugeta, T. Urisu, S. Sakata, et al. Metal-semiconductor-metal photodetector for high-speedoptoelectronic circuits[J]. Proceedings of the11thConference on Solid-State Device, Tokyo,1979
    [138]史常忻.金属-半导体-金属光电探测器[M].上海:上海交通大学出版社,2000,7-9
    [139]史常忻.金属-半导体-金属光电探测器[M].上海:上海交通大学出版社,2000,86-87
    [140]郭颖.负阻效应的原理与应用[J].西南科技大学学报,2006,21(1):67-71
    [141] Wikipedia. Tunnel diode [DB/OL]. http://en.wikipedia.org/wiki/Tunnel_diode, March,2013
    [142] W. C. Koscielniak, J. L. Pelouard, M. A. Littlejohn. Dynamic behavior of photocarriers in aGaAs metal–semiconductor–metal photodetector with sub-half-micron electrode pattern[J].Applied Physics Letter,1989,54:567–569.
    [143] S. Y. Chou, Y. Liu, W. Khahl, et al. Ultrafast nanoscale metal–semiconductor–metalphotodetectors on bulk and low-temperature grown GaAs[J]. Applied Physics Letter,1992,61:819–821
    [144] J. Chen, W. Wang, M. A. Reed, et al. Room-temperature negative differential resistance innanoscale molecular junctions[J]. Applied Physics Letter,2000,77:1223-1226
    [145] CATCO. Nanotechnology[DB/OL]. http://smu.edu/catco/research/nanotech.html
    [146] S. M. Banihashemian, H. Hajghassem, A. Erfanian, et al. Observation and measurement ofnegative differential resistance on PtSi schottky junction on porous silicon[J]. Sensors,2010,10:1012-1020
    [147]尹长松,李青松. MSM结构硅光探测器[J].半导体光电,1993,14(2):156-160
    [148]黄燕华,陈松岩,李成. U型凹槽电极硅MSM结构光电探测器的研制[J].光电子.激光,2008,19(7):869:871
    [149] E. Budianu, M. Purica, F. Iacomi, et al. Silicon metal-semiconductor-metal photodetector withzinc oxide transparent conducting electrodes[J]. Thin Solid Films,2008,516:1629-1633
    [150]郭红霞,陈雨生,周辉等. Medici程序简介及其在电离辐照效应研究中的应用[J].计算物理,2003,20(4):372-376
    [151] Avant!. Medici4.1user’s manual[DB/OL]. http://www.docin.com/p-52446013.html, July,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700