多根控制杆对细长柔性立管涡激振动抑制作用的实验及数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涡激振动是导致深海立管发生结构失稳以及疲劳破坏的重要原因之一,实际工程中为减小或者消除涡激振动的影响,增加深海立管的安全使用寿命,往往需要使用涡激振动抑制措施。我国涡激振动抑制措施的研究工作与国外相比还存在很大差距,尤其是针对大长细比柔性立管方面的研究仍非常有限。深海油气开发工程的快速发展,迫切需要开展细长柔性立管涡激振动抑制措施的创新性研究工作。
     本文依托国家863计划项目,提出了一种新型的多根控制杆涡激振动抑制措施,通过水池大尺度实验和数值模拟相结合的方法,以细长柔性立管作为主要研究对象,对多根控制杆抑制措施的抑制效果、抑制性能的影响因素和抑制机理进行了比较系统的研究,并就多根圆柱体涡激振动问题进行了一些基础理论研究探索。
     文中首先简要介绍了涡激振动的基本理论,主要包括圆柱体涡激振动基本概念,研究中涉及的主要无量纲参数,以及涡激振动的研究方法。
     第三章开展了水池大尺度实验,利用拖曳方法产生均匀流,综合考虑来流方向、间距和覆盖率对抑制性能和张力的影响,比较系统地研究了多根控制杆抑制措施对大长细比柔性立管涡激振动的抑制效果。实验结果表明多根控制杆对立管涡激振动响应有非常显著的抑制作用,能够同时消减立管CF和IL两个方向最高达90%的位移响应,使疲劳破坏减小2个数量级以上,并且由多根控制杆造成的张力增加不明显。抑制性能对来流方向具有较强的适应性,间距越小、覆盖率越高则抑制效果越好,文中给出了建议优化的间距和覆盖率。
     第四章利用二维数值模拟方法研究了多根圆柱体横向受迫振动问题。首先通过计算单根圆柱体固定绕流和横向受迫振动对数值模型进行了验证,然后利用该模型对多根圆柱体固定绕流和横向受迫振动进行了数值模拟。发现当结构振动频率接近于固定不动时的涡脱落频率时,流体-结构能量传递关系、结构位移和升力的相位关系以及涡脱落模式会都会发生显著的改变,从而造成了升力振幅和振荡模态的突变。通过分析单圆柱和不同来流角下多圆柱的涡脱落模式和流体压力分布,揭示了多根控制杆抑制措施对立管涡激振动的抑制机理。
     第五章基于切片法建立了准三维流固耦合数值模型,通过引入并行计算技术,显著提高了数值计算效率,实现了对大长细比柔性立管涡激振动问题的求解。选取长细比为1750的柔性立管实验模型和长细比为3691的工程实际深海立管作为研究对象,利用该模型分别对单根立管附加多根控制杆和串列双立管的横向涡激振动进行了数值模拟。数值计算结果表明附加多根控制杆以后立管的横向位移振幅显著减小,位移和流体力的振荡特性以及涡脱落模式都发生了显著变化。串列双立管上游立管的涡激振动响应特性与单根立管很相似,振动处于周期稳定的锁定状态。由于尾流干涉作用,下游立管的涡激振动响应特性与上游立管大不相同,其横向位移最大值明显比上游立管大,而位移标准差最大值却比上游立管小,整个立管上的涡激振动具有很强的随机性,处于非锁定的不稳定状态,涡脱落形态极不规则。
Vortex induced vibration (VIV) is one of the important reasons of the structural instability and fatigue damage of deepwater riser. Practically, it is necessary to use VIV suppression measures to reduce or eliminate the influence of VIV and increase the service life of deepwater riser. There is still a big gap in the research work of VIV suppression measures between China and developed countries, especially in the research of large slenderness ratio flexible riser, which is still very limited. The rapid development of the deep-sea oil and gas development projects urgently needs to carry out innovative research of VIV suppression measures of long flexible riser.
     In this paper, relying on the national863plan project, a new type of VIV suppression measures of multiple control rods is proposed. With long flexible riser as the main research object, the suppression effect, the influencing factors of suppression performance and the suppression mechanism are systematically studied by combining the methods of large scale tank experiment and numerical simulation. In addition, this paper also carried out some basic theoretical exploration on aspect of the multiple cylinders VIV.
     This paper first briefly introduces the basic theory of VIV, which mainly includes the basic concepts of cylinder VIV, main dimensionless parameters involved in the research and research methods of VIV.
     In the third chapter, a large scale tank experiment is conducted which using towing method to generate uniform flow. The suppression effect of multiple control rods on VIV of long flexible riser is systematically studied, by using UPVC and steel riser model with slenderness ratio of1750respectively, and with comprehensive consideration of the influence of flow direction, spacing and coverage rate on suppression performance and tension. The experimental results show that the multiple control rods have a significant suppression effect on VIV of long flexible riser, which can simultaneously reduce the displacement response of riser up to90%in both CF and IL direction, and decrease the fatigue damage more than2orders of magnitude, and meanwhile the increase of tension is not obvious. It has robust suppression performance irrespective of flow direction, and the smaller the spacing, the higher the coverage rate produce better suppression effect. The optimized spacing and coverage rate are suggested in this paper.
     In the fourth chapter, the2D numerical simulation method is used to study the lateral forced vibration of multiple cylinders. Firstly, the numerical model is verified by calculation of the flow around single fixed cylinder and the lateral forced vibration of single cylinder. Then the flow around multiple fixed cylinders and the lateral forced vibration of multiple cylinders are simulated. The numerical results show that fluid-structure energy transfer relationship, phase relationship between structural displacement and lift force, and vortex shedding pattern will significantly change when structural vibration frequency is close to the vortex shedding frequency of stationary body, which cause abrupt change of the amplitude and oscillating mode of lift force. The suppression mechanism of multiple control rods on riser VIV is revealed by analyzing vortex shedding pattern and fluid pressure distribution of single cylinder and multiple cylinders in different attack angle.
     In the fifth chapter, the quasi3D fluid-structure coupling numerical model is established based on strip theory. By introducing parallel computing technology, the efficiency of the numerical calculation is significantly improved, which enable us to solve the problem of long flexible riser VIV. By selecting the experimental flexible riser model with slenderness ratio of1750and the practical deepwater riser model with slenderness ratio of3691as research objects, this numerical model is used to simulate the lateral VIV of single riser with multiple control rods and tandem double risers. The numerical results show that the lateral displacement amplitude of the riser with multiple control rods is significantly reduced, compared to the bare riser, and the oscillating characteristic of displacement and fluid force and the vortex shedding mode are significantly changed. The VIV response characteristics of the upstream one of tandem double risers is similar to single riser, whose vibration is under periodic and stable lock-in state. Because of the wake interference effect, the VIV response characteristic of the downstream riser is quite different from the upstream one. The maximal lateral displacement of the downstream riser is significantly larger than the upstream one, while the maximal standard deviation of displacement of the downstream riser is smaller than the upstream one. The VIV response of the whole downstream riser shows strong randomness, under nonlocking unstable state, and its vortex shedding pattern is highly irregular.
引文
[1]Sarpkaya, T. Vortex-induced oscillations:A selective review [J]. Journal of Applied Mechanics,1979,46(2):241-258.
    [2]Sarpkaya, T. A critical review of the intrinsic nature of vortex-induced vibrations [J]. Journal of Fluids and Structures,2004,19(4):389-447.
    [3]Bearman, P. W. Vortex shedding from oscillating bluff-bodies [J]. Annual Review of Fluid Mechanics,1984,16:195-222.
    [4]Williamson, C. H. K. Vortex dynamics in the cylinder wake [J]. Annual Review of Fluid Mechanics,1996,28:477-539.
    [5]Williamson, C. H. K., Govardhan, R. Vortex-induced vibrations [J]. Annual Review of Fluid Mechanics,2004,36(1):413-455.
    [6]Blevins, R. D. Flow-induced vibration [M].2nd Edition. Malabar:Krieger Publishing Company,2001.
    [7]Zdravkovich, M. M. Flow around circular cylinders volume 1:Fundamentals [M]. Oxford:Oxford University Press,1997.
    [8]Zdravkovich, M. M. Flow around circular cylinders volume 2 applications [M]. Oxford:Oxford University Press,2002.
    [9]Naudascher, E., Rockwell, D. Flow-induced vibrations:An engineering guide [M]. New York:Dover Publications,2005.
    [10]Wu, X., Ge, F., Hong, Y. A review of recent studies on vortex-induced vibrations of long slender cylinders [J]. Journal of Fluids and Structures,2012,28:292-308.
    [11]Vandiver, J. K. Dimensionless parameters important to the prediction of vortex-induced vibration of long, flexible cylinders in ocean currents [J]. Journal of Fluids and Structures,1993,7(5):423-455.
    [12]Vandiver, J. K., Allen, D., Li, L. The occurrence of lock-in under highly sheared conditions [J]. Journal of Fluids and Structures,1996,10(5):555-561.
    [13]Kaasen, K. E., Lie, H., Solaas, F., et al. Norwegian deepwater program:Analysis of vortex-induced vibrations of marine risers based on full-scale measurements [C]. Offshore Technology Conference Houston, Texas, USA,2000:OTC-11997-MS.
    [14]Chaplin, J. R., Bearman, P. W., Huera Huarte, F. J., et al. Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current [J]. Journal of Fluids and Structures,2005,21(1):3-24.
    [15]Trim, A. D., Braaten, H., Lie, H., et al. Experimental investigation of vortex-induced vibration of long marine risers [J]. Journal of Fluids and Structures,2005, 21 (3):335-361.
    [16]Lie, H., Kaasen, K. E. Modal analysis of measurements from a large-scale viv model test of a riser in linearly sheared flow [J]. Journal of Fluids and Structures,2006, 22(4):557-575.
    [17]姚宗,陈刚,杨建民,等.流速分层流场中细长柔性立管涡激振动试验研究[J].上海交通大学学报,2009,(08):1273-1279+1283.
    [18]黄维平,曹静,张恩勇,等.大柔性圆柱体两自由度涡激振动试验研究[J].力学学报,2011,(02):436-440.
    [19]李琳,付世晓,杨建民.运用光纤光栅传感器的涡激振动测试技术[J].振动.测试与诊断,2011,(06):728-732+812.
    [20]张建侨,宋吉宁,吕林,等.柔性立管涡激振动实验的数据分析[J].中国海洋平台,2009,(04):26-32+37.
    [21]蔡杰,尤云祥,李巍,等.均匀来流中大长径比深海立管涡激振动特性[J].水动力学研究与进展A辑,2010,(01):50-58.
    [22]王成官,王嘉松,田中旭,等.海洋隔水管涡激振动的三维数值模拟研究[J].水动力学研究与进展A辑,2011,(04):437-443.
    [23]Park, D. S., Ladd, D. M., Hendricks, E. W. Feedback-control of vonkarman vortex shedding behind a circular-cylinder at low reynolds-numbers [J]. Physics of Fluids,1994, 6(7):2390-2405.
    [24]Li, Z. J., Navon, I. M., Hussaini, M. Y., et al. Optimal control of cylinder wakes via suction and blowing [J]. Computers & Fluids,2003,32(2):149-171.
    [25]Kang, S. M., Choi, H. C., Lee, S. Laminar flow past a rotating circular cylinder [J]. Physics of Fluids,1999,11(11):3312-3321.
    [26]Zdravkovich, M. M. Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding [J]. Journal of Wind Engineering and Industrial Aerodynamics,1981,7(2):145-189.
    [27]Naumann, A., Morsbach, M., Kramer, C. The conditions of separation and vortex formation past cylinders [C]. AGARD Conference Proceedings No.4 Separated Flows,1966:539-574.
    [28]Tanner, M. Method for reducing base drag of wings with blunt trailing edge [J]. Aeronautical Quarterly,1972,23:15-23.
    [29]Rodriguez,0. Base drag reduction by control of the three-dimensional unsteady vortical structures [J]. Experiments in Fluids,1991,11(4):218-226.
    [30]Petrusma, M. S., Gai, S. L. Effect of geometry on the base pressure recovery of segmented blunt trailing edges [J]. Aeronautical Journal,1994,98(977):267-274.
    [31]Tombazis, N., Bearman, P. W. A study of three-dimensional aspects of vortex shedding from a bluff body with a mild geometric disturbance [J]. Journal of Fluid Mechanics, 1997,330:85-112.
    [32]Bearman, P. W., Owen, J. C. Reduction of bluff-body drag and suppression of vortex shedding by the introduction of wavy separation lines [J]. Journal of Fluids and Structures,1998,12(1):123-130.
    [33]Owen, J. C., Szewczyk, A. A., Bearman, P. W. Suppressing kdrmdn vortex shedding by use of sinuous circular cylinders [J]. Bulletin of the American Physical Society,1999, 44:124.
    [34]Owen, J. C., Bearman, P. W., Szewczyk, A. A. Passive control of viv with drag reduction [J]. Journal of Fluids and Structures,2001,15(3-4):597-605.
    [35]刘晓春,郭海燕,张永波,等.月牙肋抑振装置对柔性立管涡激振动抑振作用的试验研究[J].中国海洋大学学报(自然科学版),2011,(04):116-120.
    [36]Allen, D. W., Henning, D. L. Partial shroud with perforating for viv suppression, and method of using [P]. USA,6685394. Feb 3,2004
    [37]Wong, H. Y., Kokkalis, A. Comparative study of three aerodynamic devices for suppressing vortex-induced oscillation [J]. Journal of Wind Engineering and Industrial Aerodynamics,1982,10(1):21-29.
    [38]Huang, S. Viv suppression of a two-degree-of-freedom circular cylinder and drag reduction of a fixed circular cylinder by the use of helical grooves [J]. Journal of Fluids and Structures,2011,27(7):1124-1133.
    [39]Kwon, S. H., Cho, J. W., Park, J. S., et al. The effects of drag reduction by ribbons attached to cylindrical pipes [J]. Ocean Engineering,2002,29(15):1945-1958.
    [40]Akilli, H., Sahin, B., Tumen, N. F. Suppression of vortex shedding of circular cylinder in shallow water by a splitter plate [J]. Flow Measurement and Instrumentation,2005, 16(4):211-219.
    [41]Hwang, J. Y., Yang, K. S., Sun, S. H. Reduction of flow-induced forces on a circular cylinder using a detached splitter plate [J]. Physics of Fluids,2003,15(8):2433-2436.
    [42]谭波,王嘉松,谷斐,等.利用分离盘控制隔水管涡激振动的数值模拟[J].水动力学研究与进展A辑,2009,(01):43-48.
    [43]张力,丁林,唐强.分隔板偏角对圆柱受力和脱涡频率的影响[J].工程热物理学报,2011,(10):1695-1698.
    [44]Stansby, P. K., Pinchbeck, J. N., Henderson, T. Spoilers for the suppression of vortex-induced oscillations [J]. Applied Ocean Research,1986,8(3):169-173.
    [45]Norwegian marine technology research institute. Marintek review no.1-april 2005: Systematic investigation of efficiency of helical strakes [R]. Trondheim:MARINTEK, 2005.
    [46]Skaugset, K., Baarholm, R. Effect of marine growth on an elastically mounted circular cylinder [C].27th International Conference on Offshore Mechanics and Arctic Engineering, OMAE 2008, June 15-20,2008, Estoril, Portugal,2008:855-861.
    [47]Larsen, C. M., Baarholm, G. S., Lie, H. Influence from helical strakes on vortex induced vibrations and static deflection of drilling risers [C].24th International Conference on Offshore Mechanics and Arctic Engineering,2005, June 12,2005-June 17,2005, Halkidiki, Greece,2005:477-483.
    [48]Baarholm, G. S., Larsen, C. M., Lie, H. Reduction of viv using suppression devices-an empirical approach [J]. Marine Structures,2005,18(7-8):489-510.
    [49]Vandiver, J. K., Swithenbank, S., Jaiswal, V. The effectiveness of helical strakes in the suppression of high-mode-number viv [C]. Offshore Technology Conference, Houston, Texas, USA,2006:OTC-18276-MS.
    [50]盛磊祥,陈国明.螺旋列板绕流流场cfd分析[J].中国造船,2010,(01):78-83.
    [51]鞠少栋,陈国明,盛磊祥,等.基于cfd的深水隔水管螺旋列板几何参数优选[J].中国石油大学学报(自然科学版),2010,(02):110-113.
    [52]苑健康,黄维平.二维立管helical strakes绕流场的ansys-cfd分析[J].船海工程,2010,(04):151-155.
    [53]郝志永,余恒旭,宓为建.柱状结构条纹列板对尾涡形态变化的影响机理[J].上海海事大学学报,2012,(02):55-60.
    [54]沙勇,曹静,张恩勇,等.抑制涡激振动的螺旋列板设计参数研究[J].海洋工程,2013,(01):43-48.
    [55]Allen, D. W. Performance characteristics of short fairings [C]. Offshore Technology Conference, Houston, Texas, USA,2003:OTC-15285-MS.
    [56]Lee, L., Allen, D. W., Henning, D. L., et al. Damping characteristics of fairings for suppressing vortex-induced vibrations [C].23rd International Conference on Offshore Mechanics and Arctic Engineering, June 20-25,2004, Vancouver, BC, Canada, 2004:433-438.
    [57]Allen, D. W., Henning, D. L., Lee, L. The effects of partial span coverage for deepwater marine risers and tendons with fairings [C]. Offshore Technology Conference, Houston, Texas, USA,2007:OTC-18594-MS.
    [58]Allen, D. W., Henning, D. L. Comparisons of various fairing geometries for vortex suppression at high reynolds numbers [C]. Offshore Technology Conference, Houston, Texas, USA,2008:OTC-19377-MS.
    [59]Allen, D. W., Lee, L., Henning, D. L. Fairings vs. Helical strakes for suppression of vortex-induced vibration:Technical comparisons [C]. Offshore Technology Conference, Houston, Texas, USA,2008:OTC-19373-MS.
    [60]Lee, L., Allen, D. W. The dynamic stability of short fairings [C]. Off shore Technology Conference, Houston, Texas, USA,2005:OTC-17125-MS.
    [61]Slocum, S. T., Ding, Z. J., Frank, W. R., et al. Flutter instability in riser fairings [C]. Offshore Technology Conference, Houston, Texas, USA,2004:OTC-16342-MS.
    [62]谷斐,王嘉松,赵卓茂,等.圆柱附加旋转整流罩表面压力分布及气动力特性[J].实验力学,2012,(03):368-376.
    [63]赵鹏良.隔水管及附属整流罩涡激振动的流固耦合模拟研究[D]:硕士学位论文.上海:上海交通大学,2011.
    [64]Lesage, F., Gartshore, I. A method of reducing drag and fluctuating side force on bluff bodies [J]. Journal of Wind Engineering and Industrial Aerodynamics,1987, 25(2):229-245.
    [65]Strykowski, P., Sreenivasan, K. On the formation and suppression of vortex 'shedding'at low reynolds numbers [J]. Journal of Fluid Mechanics,1990, 218(1):71-107.
    [66]Sakamoto, H., Haniu, H. Optimum suppression of fluid forces acting on a circular cylinder [J]. Journal of fluids engineering,1994,116(2):221-227.
    [67]Dalton, C., Xu, Y., Owen, J. The suppression of lift on a circular cylinder due to vortex shedding at moderate reynolds numbers [J]. Journal of Fluids and Structures, 2001,15(3):617-628.
    [68]Lee, S. J., Lee, S. I., Park, C. W. Reducing the drag on a circular cylinder by upstream installation of a small control rod [J]. Fluid dynamics research,2004,34(4):233-250.
    [69]Kuo, C. H., Chiou, L. C., Chen, C. C. Wake flow pattern modified by small control cylinders at low reynolds number [J]. Journal of Fluids and Structures,2007, 23(6):938-956.
    [70]Kuo, C. H., Chen, C. C. Passive control of wake flow by two small control cylinders at reynolds number 80 [J]. Journal of Fluids and Structures,2009,25(6):1021-1028.
    [71]宋吉宁,吕林,张建侨,等.三根附属控制杆对海洋立管涡激振动抑制作用实验研究[J].海洋工程,2009,(03):23-29.
    [72]赵瑞华.深海立管涡激振动抑制措施的实验研究[D]:硕士.大连理工大学,2009.
    [73]谷斐,王嘉松,赵卓茂,等.隔水管附属管控制流动的风洞和水洞实验研究[J].水动力学研究与进展A辑,2012,(03):293-302.
    [74]赵卓茂,王嘉松,谷斐.附属管对钻井隔水管涡激振动流动控制的研究[J].水动力学研究与进展A辑,2012,(04):401-408.
    [75]杨安梅,吕林,董国海,等.附属多圆柱绕流的数值模拟[J].中国海洋平台,2009,(06):7-12.
    [76]Tritton, D. J. Physical fluid dynamics [M].2nd Edition Oxford:Oxford University Press, 1988.
    [77]Sumer, B. M., Freds(?)e, J. Hydrodynamics around cylindrical structures [M]. Revised Edition. Singapore:World Scientific,2006.
    [78]Moe, G., Wu, Z. J. The lift force on a cylinder vibrating in a current [J]. Transactions of the ASME. Journal of Offshore Mechanics and Arctic,1990,112(4):297-303.
    [79]Yamamoto, C., Meneghini, J., Saltara, F., et al. Numerical simulations of vortex-induced vibration on flexible cylinders [J]. Journal of Fluids and Structures, 2004,19(4):467-489.
    [80]Khalak, A., Williamson, C. H. K. Investigation of relative effects of mass and damping in vortex-induced vibration of a circular cylinder [J]. Journal of Wind Engineering and Industrial Aerodynamics,1997,69-71(0):341-350.
    [81]Feng, C. C. The measurement of vortex induced effects in flow past stationary and oscillating circular and d-section cylinders [D]:Vancouver, B.C., Canada:University of British Columbia,1968.
    [82]Vickery, B., Watkins, R. Flow-induced vibrations of cylindrical structures [C]. Proc. 1st Australian Conference on Hydraulics and Fluid Mechanics,1962:213-241.
    [83]Scruton, C. On the wind-excited oscillations of towers, stacks and masts [C]. In Proceedings of the Symposium on Wind Effects on Buildings and Structures, London, 1965:798-836.
    [84]Skop, R., Griffin,O. An heuristic model for determining flow-induced vibration of offshore structure [C]. Offshore Technology Conference,1973.
    [85]Skop, R. A., Balasubramanian, S. A new twist on an old model for vortex-excited vibrations [J]. Journal of Fluids and Structures,1997,11(4):395-412.
    [86]Chung, T. Y. Vortex-induced vibration of flexible cylinders in shear flows [D]:Ph.D. dissertation. Cambridge, Mass., U. S. A.:Massachusetts Institute of Technology,1987.
    [87]Bishop, R., Hassan, A. The lift and drag forces on a circular cylinder in a flowing fluid [J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1964,277(1368):32-50.
    [88]Williamson, C. H. K., Roshko, A. Vortex formation in the wake of an oscillating cylinder [J]. Journal of Fluids and Structures,1988,2(4):355-381.
    [89]Gopalkrishnan, R. Vortex-induced forces on oscillating bluff cylinders [D]: Massachusetts Institute of Technology,1993.
    [90]Khalak, A., Williamson, C. H. K. Dynamics of a hydroelastic cylinder with very low mass and damping [J]. Journal of Fluids and Structures,1996,10(5):455-472.
    [91]Khalak, A., Williamson, C. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping [J]. Journal of Fluids and Structures,1999, 13(7):813-851.
    [92]Govardhan, R., Williamson, C. Modes of vortex formation and frequency response of a freely vibrating cylinder [J]. Journal of Fluid Mechanics,2000,420(85):130.
    [93]Morse, T. L., Williamson, C. H. K. Employing controlled vibrations to predict fluid forces on a cylinder undergoing vortex-induced vibration [J]. Journal of Fluids and Structures,2006,22(6-7):877-884.
    [94]Hover, F. S., Davis, J. T., Triantafyllou, M. S. Three-dimensionality of mode transition in vortex-induced vibrations of a circular cylinder [J]. European Journal of Mechanics-B/Fluids,2004,23(1):29-40.
    [95]Carberry, J., Govardhan, R., Sheridan, J., et al. Wake states and response branches of forced and freely oscillating cylinders [J]. European Journal of Mechanics-B/Fluids, 2004,23(1):89-97.
    [96]唐国强,吕林,滕斌,等.大长细比柔性杆件涡激振动实验[J].海洋工程,2011,(01):18-25.
    [97]Song, J. N., Lu, L., Teng, B., et al. Laboratory tests of vortex-induced vibrations of a long flexible riser pipe subjected to uniform flow [J]. Ocean Engineering,2011, 38(11-12):1308-1322.
    [98]Jaiswal, V., Vandiver, J. K. Viv response predictions for long risers with variable damping [C]. Proc.26th OMAE Conf,2007.
    [99]Hartlen, R. T., Currie, I. G. Lift-oscillator model of vortex-induced vibration [J]. Journal of the Engineering Mechanics Division,1970,96(5):577-591.
    [100]Skop, R., Griffin,O. On a theory for the vortex-excited oscillations of flexible cylindrical structures [J]. Journal of Sound and Vibration,1975,41(3):263-274.
    [101]Facchinetti, M. L., De Langre, E., Biolley, F. Vortex shedding modeling using diffusive van der pol oscillators [J]. Comptes Rendus Mecanique,2002,330(7):451-456.
    [102]郭海燕,傅强,娄敏.海洋输液立管涡激振动响应及其疲劳寿命研究[J].工程力学,2005,(04):220-224.
    [103]Vandiver, J., Li, L. Shear7 program theory manual [M]. Cambridge:Department of Ocean Engineering, Massachusetts Institute of Technology,1999.
    [104]Triantafyllou, M., Triantafyllou, G., Tein, Y., et al. Pragmatic riser viv analysis [C]. Offshore Technology Conference,1999.
    [105]Larsen, C., Vikestad, K., Yttervik, R., et al. Vivana theory manual, version 3.4 [M]. Norwegian Marine Technology Research Institute:SINTEF,2005.
    [106]Lyons, G., Patel, M. A prediction technique for vortex induced transverse response of marine risers and tethers [J]. Journal of Sound and Vibration,1986,111(3):467-487.
    [107]Furnes, G. On marine riser responses in time-and depth-dependent flows [J]. Journal of Fluids and Structures,2000,14(2):257-273.
    [108]Stansby, P., Slaouti, A. Simulation of vortex shedding including blockage by the random-vortex and other methods [J]. International journal for numerical methods in fluids,1993,17(11):1003-1013.
    [109]Meneghini, J., Bearman, P. Numerical simulation of high amplitude oscillatory flow about a circular cylinder [J]. Journal of Fluids and Structures,1995,9(4):435-455.
    [110]Zhou, C., So, R., Lam, K. Vortex-induced vibrations of an elastic circular cylinder [J]. Journal of Fluids and Structures,1999,13(2):165-189.
    [111]Blackburn, H. M., Govardhan, R., Williamson, C. A complementary numerical and physical investigation of vortex-induced vibration [J]. Journal of Fluids and Structures,2001, 15(3):481-488.
    [112]Guilmineau, E., Queutey, P. Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow [J]. Journal of Fluids and Structures,2004,19(4):449-466.
    [113]Pan, Z., Cui, W., Miao, Q. Numerical simulation of vortex-induced vibration of a circular cylinder at low mass-damping using rans code [J]. Journal of Fluids and Structures,2007,23(1):23-37.
    [114]Smagorinsky, J. General circulation experiments with the primitive equations:I. The basic experiment* [J]. Monthly weather review,1963,91(3):99-164.
    [115]Ferziger, J. H. Direct and large eddy simulation of turbulence [J]. Numerical methods in fluid mechanics,1998,16:53.
    [116]Moin, P. Advances in large eddy simulation methodology for complex flows [J]. International Journal of Heat and Fluid Flow,2002,23(5):710-720.
    [117]Tutar, M., Hold(?), A. E. Large eddy simulation of a smooth circular cylinder oscillating normal to a uniform flow [J]. Journal of fluids engineering,2000,122(4):694-702.
    [118]Pontaza, J. P., Chen, H. C. Three-dimensional numerical simulations of circular cylinders undergoing two degree-of-freedom vortex-induced vibrations [J]. Journal of offshore mechanics and Arctic engineering,2007,129(3):158-164.
    [119]Evangelinos, C., Karniadakis, G. E. Dynamics and flow structures in the turbulent wake of rigid and flexible cylinders subject to vortex-induced vibrations [J]. Journal of Fluid Mechanics,1999,400:91-124.
    [120]Evangelinos, C., Lucor, D., Karniadakis, G. E. Dns-derived force distribution on flexible cylinders subject to vortex-induced vibration [J]. Journal of Fluids and Structures,2000,14(3):429-440.
    [121]Lucor, D., Imas, L., Karniadakis, G. E. Vortex dislocations and force distribution of long flexible cylinders subjected to sheared flows [J]. Journal of Fluids and Structures,2001,15(3-4):641-650.
    [122]Willden, R. H. J., Graham, J. M. R. Multi-modal vortex-induced vibrations of a vertical riser pipe subject to a uniform current profile [J]. European Journal of Mechanics-B/Fluids,2004,23(1):209-218.
    [123]朱国林,徐庆新.计算流体力学并行计算技术研究综述[J].空气动力学学报,2002,(S1):1-6.
    [124]Larsen, C. M., Koushan, K. Empirical model for the analysis of vortex induced vibrations of free spanning pipelines [C]. Proceedings of the 6th European Conference on Structural Dynamics, EURODYN, Paris, France,2005.
    [125]张建侨.细长柔性立管涡激振动的实验研究[D]:大连:大连理工大学,2009.
    [126]Tognarelli, M., Slocum, S., Frank, W., et al. Viv response of a long flexible cylinder in uniform and linearly sheared currents [C]. Offshore Technology Conference,2004.
    [127]Baarholm, G. S., Larsen, C. M., Lie, H. On fatigue damage accumulation from in-line and cross-flow vortex-induced vibrations on risers [J]. Journal of Fluids and Structures,2006,22(1):109-127.
    [128]Zhao, M., Cheng, L., Teng, B., et al. Numerical simulation of viscous flow past two circular cylinders of different diameters [J]. Applied Ocean Research,2005, 27(1):39-55.
    [129]Gu, W., Chyu, C., Rockwell, D. Timing of vortex formation from an oscillating cylinder [J]. Physics of Fluids,1994,6:3677.
    [130]Lu, X., Dalton, C. Calculation of the timing of vortex formation from an oscillating cylinder [J]. Journal of Fluids and Structures,1996,10(5):527-541.
    [131]Guilmineau, E., Queutey, P. A numerical simulation of vortex shedding from an oscillating circular cylinder [J]. Journal of Fluids and Structures,2002, 16(6):773-794.
    [132]Blackburn, H. M., Henderson, R. D. A study of two-dimensional flow past an oscillating cylinder [J]. Journal of Fluid Mechanics,1999,385(1):255-286.
    [133]吕林.海洋工程中小尺度物体的相关水动力数值计算[D]:博士.大连理工大学,2006.
    [134]Texas A&M University. Cfd simulation of riser viv [R].0. T. R. Center,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700