用户名: 密码: 验证码:
等离子体聚丙烯酸薄膜表面纤维连接蛋白的固定及其内皮细胞粘附行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用低温等离子体聚合技术制备了含有羧基官能团的等离子体聚丙烯酸薄膜,并通过后续真空热处理以提高等离子体聚合薄膜的稳定性。在此基础上,利用聚丙烯酸薄膜表面的羧基为反应点,共价固定纤维连接蛋白(Fn)。本文采用漫反射傅立叶变换红外光谱仪(FTIR)、X射线光电子能谱(XPS)、甲苯胺蓝(TBO)法、原子力显微镜(AFM)、扫描电子显微镜(SEM)和接触角测量仪等测试手段和方法对各工艺薄膜的组成结构、表面物理化学性质进行了表征分析,并评价了等离子体聚丙烯酸薄膜在双蒸水中恒温动态浸泡的稳定性。通过人脐静脉内皮细胞(HUVEC)体外原代培养实验评价固定Fn前后等离子体聚丙烯酸薄膜表面的内皮细胞粘附和增殖行为。
     FTIR图谱显示等离子体聚丙烯酸薄膜上保留了丙烯酸单体中的部分羧基官能团。TBO法检测的薄膜表面羧基浓度结果表明:随着有效功率的增大,等离子体聚丙烯酸薄膜表面的羧基浓度减少。接触角测试结果表明表面亲水性随有效功率的增大而减小。同时,等离子体聚丙烯酸薄膜在双蒸水中动态浸泡不同时间后,SEM和AFM观察结果显示随着有效功率的增大,等离子体聚丙烯酸薄膜的稳定性增大。这是由于功率提高,反应能量增大而导致薄膜交联度提高,从而使薄膜更加致密,减少溶胀现象。
     为了进一步提高等离子体聚合薄膜的稳定性,本文对功率系列最大羧基浓度的等离子体聚丙烯酸薄膜在150℃和250℃下进行真空热处理,研究了不同真空热处理温度对等离子体聚丙烯酸薄膜性能的影响。结果显示150℃真空热处理对于等离子体聚丙烯酸薄膜稳定性的提高效果与200W下沉积的薄膜基本相同,而前者处理后的薄膜能够保留更多的羧基浓度。
     通过FTIR和XPS结果显示纤连蛋白成功地固定在等离子体聚丙烯酸薄膜表面,纤连蛋白修饰的表面能够促进内皮细胞的粘附和增殖,但采用不同纤连蛋白浓度的溶液所制备的纤连蛋白修饰的等离子体聚丙烯酸薄膜表面的内皮细胞增殖效果无显著差异。ELISA检测结果表明固定了纤连蛋白的等离子体聚丙烯酸薄膜表面RGD肽段的暴露情况基本相同,因此Fn蛋白的促内皮化作用主要取决于RGD肽段的量。
     综上所述,采用等离子体聚合技术,在医用不锈钢表面制备的等离子体聚丙烯酸薄膜能保留较大浓度的羧基基团。通过与增大射频功率来提高等离子体聚合薄膜的稳定性的途径相比,真空热处理能够同时提高薄膜交联度并有效地保留较高羧基浓度。固定纤连蛋白后的等离子体聚丙烯酸薄膜能够促进内皮细胞的粘附、铺展和增殖。内皮细胞的粘附与生长与样品表面RGD肽段的暴露情况密切相关。
Low temperature plasma polymerization technology was used to deposit plasma polymerized acrylic acid (PPAA) films which contained carboxyl group, and subsequently vacuum thermal treatment was used to improve the stability of PPAA films. Furthermore, reacted with-COOH of the PPAA film the the molecules of fibronectin (Fn) was covalently immobilized on the surface of PPAA. Fourier Transform Infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), toluidine blue-O(TBO) method and contact-angle measurement were used to investigate the component, structure and physiochemical property of PPAA films and Fn-immobilized PPAA films. The dynamical stability of PPAA films in distilled water was detected. Human umbilical vein endothelial cells (HUVECs) adhesion and proliferation testing in vitro were performed to evaluate the biological properties of Fn-immobilized PPAA films.
     FTIR spectra indicated the existence of -COOH and C=O, which suggested that effective retention of the carboxylic functional groups. The results of TBO demonstrated that the concentration of -COOH on PPAA decreased as the effective power increased. Meanwhile, the stability of PPAA increased as the effective power increased. This was because of the enhancement of cross linking degree.
     Different temperature of vacuum thermal treatment was used to improve the stability of PPAA films deposited at 50W. The results revealed that the stability of PPAA films after vacuum thermal treatment of 150℃was the same as the PPAA films deposited at 200W, but there was more -COOH concentration on the surface of PPAA films after vacuum thermal treatment of 150℃.
     The FTIR and XPS results proved that the molecules of Fn were successfully immobilized on the PPAA's surface. The Fn-immobilized PPAA could enhance the attachment and coverage of HUVECs. The proliferation of HUVECs on the different Fn-immobilized film prepared by three kinds of Fn's concentration were not different from each other in statistics. The results of ELISA showed that exposure of RGD peptide on different Fn-immobilized films were almost the same. Therefore, the exposure of RGD peptide was essential for adhesion and proliferation of the HUVECs on Fn-immobilized PPAA films.
     All these results illustrated that plasma polymerization is an effective way to deposit the functional films on stainless steel. Compared to the increase of effective power, vacuum thermal treatment either can enhance stability of the film or keep more functional groups on the film. The immobilization of Fn on the PPAA films can significantly improve adhesion and proliferation of the HUVECs. The exposure of RGD peptide may be related to the changes of configuration of Fn.
引文
[1]唐锋意,周正诚.生物医用材料及其应用前景.右江民族医学院学报。2009,5:893-894
    [2]C.W. Yang, T.S. Lui. Kinetics of hydrothermal crystallization under saturated steam pressure and the self-healing effect by nanocrystallite for hydroxyapatite coatings. Acta Biomaterialia.2009,5:2728-2737
    [3]X.L. Zhu, K.H. Kim, Y. Jeong. Anodic oxide films containing Ca and P of titanium biomaterial. Biomaterials.2001,22:2199-2206
    [4]H.I. Kim, S.S. Kim. Plasma treatment of polypropylene and polysulfone supports for thin film composite reverse osmosis membrane. Journal of Membrane Science.2006,286 (1-2):193-201
    [5]C. Riccardi, R. Barni, E. Selli, G. Mazzone, M.R. Massafra, B. Marcandalli, G. Poletti. Surface modification of poly(ethylene terephthalate) fibers induced by radio frequency air plasma treatment. Applied Surface Science.2003,211 (1-4):386-397
    [6]J. Ren, J. Wang, H. Sun, N. Huang. Surface modification of polyethylene terephthalate with albumin and gelatin for improvement of anticoagulation and endothelialization. Applied Surface Science.2008, 255:263-266
    [7]Y. Wen, R. Li, F. Cai, K. Fu, S. Peng, Q. Jiang, L. Yao, Y. Qiu. Influence of ethylene glycol pretreatment on effectiveness of atmospheric pressure plasma treatment of polyethylene fibers. Applied Surface Science.2010,256:3253-3258
    [8]K.K. Banerjee, S. Kumar, K.E. Bremmell, H.J. Griesser. Molecular-level removal of proteinaceous contamination from model surfaces and biomedical device materials by air plasma treatment. Journal of Hospital Infection.2010,76:234e-242
    [9]H. Shen, X. Hu, J. Bei, S. Wang. The immobilization of basic fibroblast growth factor on plasma-treated poly(lactide-co-glycolide). Biomaterials.2008,29:2388-2399
    [10]F.J. Jing, L. Wang, R.K.Y. Fu, Y.X. Leng, J.Y. Chen, N. Huang, P. K. Chu. Behavior of endothelial cells on micro-patterned titanium oxide fabricated by plasma immersion ion implantation and deposition and plasma etching. Surface & Coatings Technology.2007,201:6874-6877
    [11]Y.M. Jeong, J.K. Lee, S.C. Ha, S.H. Kim. Fabrication of cobalt-organic composite thin film via plasma-enhanced chemical vapor deposition for antibacterial applications. Thin Solid Films.2009,517: 2855-2858
    [12]K.S. Kim, C. Choi, S.H. Kim, K. Choi, J.M. Kim, H.J. Kim, S. Yeo, H. Park, D. Jung. Selective adhesion of intestinal epithelial cells on patterned films with amine functionalities formed by plasma enhanced chemical vapor deposition. Applied Surface Science.2010,257:398-403
    [13]C. Volcke, R.P. Gandhiramana, V. Gubalaa, J. Raj, T. Cumminsa, G. Fonder, R.I. Nooney, Z. Mekhali, G. Herzog, S. Daniels, D.W.M. Arrigan, A.A. Cafolla, D.E. Williams. Reactive amine surfaces for biosensor applications, prepared by plasma-enhanced chemical vapour modification of polyolefin materials. Biosensors and Bioelectronics.2010,25:1875-1880
    [14]S. Mutlu, D. Cokeliler, A. Shard, H. Goktas, B. Ozansoy, M. Mutlu. Preparation and characterization of ethylenediamine and cysteamine plasma polymerized films on piezoelectric quartz crystal surfaces for a biosensor. Thin Solid Films.2008,516:1249-1255
    [15]C.M. Chou, K.C. Hsieh, CJ. Chung, J.L. He. Preparation of plasma-polymerized para-xylene as an alternative to parylene coating for biomedical surface modification. Surface & Coatings Technology.2010, 204:1631-1636
    [16]A.M. Leclair, S.S.G. Ferguson, F.L. Labarthet. Surface patterning using plasma-deposited fluorocarbon thin films for single-cell positioning and neural circuit arrangement. Biomaterials.2011,32: 1351-1360
    [17]H. Atsunori, F. Kohta, M. Hitoshi. Amperometric Biosensor Based on Glucose Dehydrogenase and Plasma-polymerized Thin Films. Analytical Sciences.2008,24:483-486
    [18]A. Harsch, J. Calderon, R.B. Timmons, G.W. Gross. Pulsed plasma deposition of allylamine on polysiloxane:a stable surface for neuronal cell adhesion. Journal of Neuroscience Methods.2000,98: 135-144
    [19]J. Zhang, X. Feng, H. Xie, Y. Shi, T. Pu, Y. Guo. The characterization of structure-tailored plasma films deposited from the pulsed RF discharge. Thin Solid Films.2003,435:108-115
    [20]V. Ley, A. P. Kruzic, R. B. Timmons. Permeation rates of low molecular weight gases through a plasma synthesized allyl alcohol membrane. Journal of Membrane Science.2003,226:213-226
    [21]H. Aizawa, S. Kurosawa, K. Kobayashi, K. Kashima, T. Hirokawa, Y. Yoshimi, M. Yoshimoto, T. Hirotsu, J. Miyake, H. Tanaka. Turning of contact angle on glass plates coated with plasma-polymerized styrene, allylamine and acrylic acid. Materials Science and Engineering. C.2000,12:49-54
    [22]J.F. Friedrich, I. Retzko, G. Kuhn, W.E.S. Unger, A. Lippitz. Plasma polymers with chemically defined structures in contact with metals. Surface and Coatings Technology.2001,142-144:460-467
    [23]J.C. Lin, Y. F. Chen, C.Y. Chen. Surface characterization and platelet adhesion studies of plasma polymerized phosphite and its copolymers with dimethylsulfate. Biomaterials.1999,20:1439-1447
    [24]T. Hirotsu, C. Tagaki. Plasma copolymer membranes of acrylic acid and the adsorption of lysozyme on the surface. Thin Solid Films.2004,457:20-25
    [25]H. Mugurum, H. Takahash. Protein patterning on functionalized surface prepared by selective plasma polymerization. Surface & Coatings Technology.2010,205:2490-2494
    [26]Y. Sen, U. Bag, H.A. Gule, M. Mutlu. Modification of Food-Contacting Surfaces by Plasma Polymerization Technique:Reducing the Biofouling of Microorganisms on Stainless Steel Surface. Food Bioprocess Technol.2009,20:345-348
    [27]T.E. Andersen, Y. Palarasah, M.O. Skj(?)dt, R. Ogaki, M. Benter, M. Alei, H.J. Kolmos, C. Koch, P. Kingshot. Decreased material-activation of the complement system using low-energy plasma polymerized poly(vinyl pyrrolidone) coatings. Biomaterials.2011,32:4481-4488
    [28]L.Q. Chu, W. Knol, R. Forch. Plasma polymerized non-fouling thin films for DNA immobilization. Biosensors and Bioelectronics.2009,25:519-522
    [29]F.Bretagnol, H. Rauscher, M. Hasiwa, O. Kylian, G. Ceccone, L. Hazell, A.J. Paul, O. Lefranc, F. Rossi. The effect of sterilization processes on the bioadhesive properties and surface chemistry of a plasma-polymerized polyethylene glycol film:XPS characterization and L929 cell proliferation tests. Acta Biomaterialia.2008,4:1745-1751
    [30]S. Massey, E. Gallino, P. Cloutier, M. Tatoulian, L. Sanche, D. Mantovani, D. Roy. Low-energy electrons and X-ray irradiation effects on plasma-polymerized allylamine bioactive coatings for stents. Polymer Degradation and Stability.2010,95:153-163
    [31]S. Meng, Z. Liu, L. Shen, Z. Guo, L.L. Chou, W. Zhong, Q. Du, J. Ge. The effect of a layer-by-layer chitosan-heparin coating on the endothelialization and coagulation properties of a coronary stent system. Biomaterials.2009,30:2276-2283
    [32]Q. Lin, X. Ding, F. Qiu, X. Song, G. Fu, J. Ji. In situ endothelialization of intravascular stents coated with an anti-CD34 antibody functionalized heparin-collagen multilayer. Biomaterials.2010,31: 4017-4025
    [33]J.P. Chen, C.H. Su. Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomaterialia.2011,7:234-243
    [34]M.M. Bilek, D.R. McKenzie. Plasma modified surfaces for covalent immobilization of functional biomolecules in the absence of chemical linkers:towards better biosensors and a new generation of medical implants. Biophys Rev.2010,2:55-65
    [35]S. Kurosawa, N. Kamo, H. Aizawa, M. Muratsugu. Adsorption of 1251-labeled immunoglobulin G, its F(ab)2 and Fc fragments onto plasma-polymerized films. Biosensors and Bioelectronics.2007,22: 2598-2603
    [36]边杰芳,马中,姚青,等.纤维蛋白胶释放VEGF加速损伤动脉血管内皮化的实验研究[J].中华普通外科杂志.2005,20(10):663-665
    [37]邢玮.心血管支架与支架置入后的血管快速内皮化[J].中国组织工程研究与临床康复.2009,13(9):1731-1733
    [38]竺亚斌.胺解改性含酯基聚合物生物材料及其细胞相容性研究.浙江大学博士学位论文.2003:27-29
    [39]S. Bjokerud, G.Bonjers. Arterial repair and atherosclerosis after mechanical injury:part 5. Tissue response after introduction of a large superficial transverse injury [J]. Atherosclerosis.1973,18:235-255
    [40]C.C. Haudenschild, S.M. Schwartz. Endothelial regeneration:Ⅱ. Restitution of endothelial continuity [J]. Lab Invest.1979,41:407-418
    [41]吕旺春.涤纶薄膜材料表面改性及其抗菌性能的评价.西南交通大学硕士论学位文.2003:15
    [42]J.R. Potts, I.D. Campbell. Fibronectin structure and assembly. Current Opinion in Cell Biology.1994, 6(5):648-655
    [43]S.K. Seidlits, C.T. Drinnan, R.R. Petersen, J.B. Shear, L.J. Suggs, C.E. Schmidt. Fibronectin-hyaluronic acid composite hydrogels for three-dimensional endothelial cell culture. Acta Biomaterialia.2011,7:2401-2409
    [44]M. Pegueroles, C. Aparicio, M. Bosio, E. Engel, F.J. Gil. J.A. Planell, G. Altankov. Spatial organization of osteoblast fibronectin matrix on titanium surfaces:Effects of roughness, chemical heterogeneity and surface energy. Acta Biomaterialia.2010,6:291-301
    [45]Y.M. Chen, N. Shiraishi, H. Satokawa, A. Kakugo, T. Narita, J.P. Gong, Y. Osada, K. Yamamoto, J. Ando. Cultivation of endothelial cells on adhesive protein-free synthetic polymer gels. Biomaterials.2005, 26:4588-4596
    [46]C.J. Tang, G.X. Wang, Y. Shen, L.J. Wan, L. Xiao, Q. Zhang, Q.S. Yu, L.S. Liu, G.B. Wen. A study on surface endothelialization of plasma coated intravascular stents. Surface & Coatings Technology.2010, 204:1487-1492
    [47]D.L. Clapper, K.M. Hagen, N.M. Hupfer. In vitro and in vivo evaluations of 4mm vascular grafts with covalently coupled ECM proteins. Implant Retrieval Symposium of the Society for Biomaterials. St. Charles, Illinols, USA.1992
    [48]C. Jux, P. Wohlsein, M. Bruegrnann, et al. A new biological matrix for septal occlusion. J Interv Cardiol.2003,16(2):149-152
    [49]E. Ruoslahti, M.D. Piersehbacher. New perspectives in cell adhesion. RGD and integrins. Science. 1987,238 (4826):491
    [50]K.P. Walluscheck, G. Steinhoff, S. Kelm and A. Haverich. Improved Endothelial Cell Attachment on ePTFE Vascular Grafts Pretreated with Synthetic RGD-containing Peptides. Eur J Vasc Endovasc Surg. 1996,12:321-330
    [51]N. Gaku, J.F. Granada, C.L. Alviar, A. Tellez, G.L. Kaluza, M.Y. Guilhermier, S. Parker, et al. Anti-CD34 Antibodies Immobilized on the Surface of Sirolimus-Eluting Stents Enhance Stent Endothelialization. Tacc:Cardiovascular I nterventions.2010,3(1):68-75
    [52]A.H. Zisch, U. Schenk, J.C. Schense, S.E.S. Elbert, J.A. Hubbell. Covalently conjugated VEGF-fibrin matrices for endothelialization. Journal of Controlled Release.2001,72:101-113
    [53]F. Costa, I.F. Carvalho, R.C. Montelaro, P. Gomes, M. C.L. Martins. Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomaterialia.2011,7:1431-1440
    [54]E. Gallino, S. Massey, M. Tatoulian, D. Mantovani. Plasma polymerized allylamine films deposited on 316L stainless steel for cardiovascular stent coatings. Surface & Coatings Technology.2010,205: 2461-2468
    [55]G. Li, P. Yang, W. Qin, M.F. Maitz, S. Zhou, N. Huang. The effect of coimmobilizing heparin and fibronectin on titanium on hemo- compatibility and endothelialization. Biomaterials.2011, ⅹⅹⅹ:1-13
    [56]Y. Yang, K. H. Kim, J. L. Ong. A review on calcium phosphate coatings produced using a sputtering process—an alternative to plasma spraying. Biomaterials.2005,26:327-337
    [57]C.W. Yang, T.S. Lui. Kinetics of hydrothermal crystallization under saturated steam pressure and the self-healing effect by nanocrystallite for hydroxyapatite coatings. Acta Biomaterialia.2009,5:2728-2737
    [58]X. Zhu, K.H. Kim, Y. Jeong. Anodic oxide films containing Ca and P of titanium biomaterial. Biomaterials.2001,22:2199-2206
    [59]R.B. Heimann, R. Wirth. Formation and transformation of amorphous calcium phosphates on titanium alloy surfaces during atmospheric plasma spraying and their subsequent in vitro performance. Biomaterials.2006,27:823-831
    [60]X. Wang, J. Wang, Z. Yang, et al. Structural characterization and mechanical properties of functionalized pulsed-plasma polymerized allylamine film. Surface and Coating Technology.2010,204 (18-19):3047-3052
    [61]Z. Cheng, S.H. Teoh. Surface modification of ultra thin poly (e-caprolactone) films using acrylic acid and collagen. Biomaterials.2004,25:1991-2001
    [62]A. Kishida, Y. Ueno, I. Maruyama, M. Akashi. Immobilization of human thrombomodulin on biomaterials:evaluation of the activity of immobilized human thrombomodulin.Biomaterials.1994,15 (14):1170-1174
    [63]M.F. Gouzy, C. Sperling, K. Salchert, T. Pompe, U. Streller, P. Uhlmann, C. Rauwolf, F. Simon, F. Bohme, B. Voit, C. Werner. In vitro blood compatibility of polymeric biomaterials through covalent immobilization of an amidine derivative. Biomaterials.2004,25 (17):3493-3501
    [64]S.C. Freitas, M.A. Barbosa, M. Cristina, L. Martins. The effect of immobilization of thrombin inhibitors onto self-assembled monolayers on the adsorption and activity of thrombin. Biomaterials.2010, 31 (14):3772-3780
    [65]Z. Zhang, W. Knoll, R. Forch. Amino-functionalized plasma polymer films for DNA immobilization and hybridization. Surface & Coatings Technology.2005,200:993-995
    [66]L. Chu, W. Knoll, R. Forch. Biologically Multifunctional Surfaces Using Plasma Polymerization Methods. Plasma Process. Polym.2006,3:498-505
    [67]B.W. Muir, A. Tarasova, T.R. Gengenbach, D.J. Menzies, L. Meagher, F. Rovere, A. Fairbrother, K.M. McLean, P.G. Hartley. Characterization of Low-Fouling Ethylene Glycol Containing Plasma Polymer Films. Langmuir.2008,24:3828-3835
    [68]王晓娜.工作气压和负偏压对等离子体聚烯丙胺薄膜的结构组成与力学行为的影响.西南交通大学硕士毕业论文.2010:12
    [69]王海波.促内皮化等离子体聚合薄膜的制备及生物学评价.西南交通大学硕士毕业论文.2009:20-30
    [70]胡文娟,谢芬艳,付亚波等RF PECVD聚合类聚乙烯氧(PE021ike)薄膜及其对血小板吸附性研究.真空科学与技术学报.2009,29(1):85-89
    [71]潘长江,黄楠, 刘睿睿, 等.等离子体聚合工艺对聚合沉积速率的影响.真空科学与技术学.2004,24(6):455-458
    [72]J.C. Feng,W. Huang, G.D. Fu, E.T. Kang, K.G. Neoh. Deposition of Well-Dened Fluoropolymer Nanospheres on PET Substrate by Plasma Polymerization of Heptadecafluorodecyl Acrylate and Their Potential Application as a Protective Layer. Plasma Process. Polym.2005,2:127-135
    [73]A.J. Beck, R.D. Short, A. Matthews. Deposition of functional coatings from acrylic acid and octamethylcyclotetrasiloxane onto steel using an atmospheric pressure dielectric barrier discharge. Surface & Coatings Technology.2008,203:822-825
    [74]D. Loredana, G. Roberto, S.S. Giorgio, et al. Stable plasma-deposited acrylic acid surfaces for cell culture applications. Biomaterials.2005,26:3831-3841
    [75]I. Yoshihiro, J. Zheng,I. Yukio. Enhancement of cell growth on a porous membrane co-immobilized with cell-growth and cell adhesion factors. Biomaterials.1997,18:197-202
    [76]刘成龙.316L不锈钢表面类金刚石薄膜改性研究.大连理工大学硕士学位论文.2004:57-62
    [77]刘亚.聚乳酸/聚乙烯醇静电纺丝复合纳米纤维.江南大学硕士学位论文.2008:31
    [78]M. Touzin, P. Chevallier, F. Lewis, et al. Study on the stability of plasma-polymerized fiuorocarbon ultra-thin coatings on stainless steel in water. Surface & Coatings Technology.2008,202:4884-4891
    [79]R. Morenta. N.D. Geytera, S.V. Vlierbergheb, A. Beaurainc, P. Dubruelb, E. Payenc. Influence of operating parameters on plasma polymerization of acrylic acid in a mesh-to-plate dielectric barrier discharge. Progress in Organic Coatings.2011,70:336-341
    [80]万昌秀等.LGDP改性人工心瓣材料抗细菌粘附的研究.生物医学工程学杂志.1999:4
    [81]H.K. Yasuda. Some Important Aspects of Plasma Polymerization. Plasma Process and Polymers. 2005,2:293-304
    [82]I. Gancarz, J. Bryjak, M. Bryjak, W. Tylus, G. Pozniak. Poly (phenylene oxide) films modified with allylamine plasma as a support for invertase immobilization. European Polymer Journal.2006,42: 2430-2440
    [83]B. Finke, F. Luethen, K. Schroeder, P.D. Mueller, C. Bergemann, M. Frant, A. Ohl, B.J. Nebe.The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces.Biomaterials.2007,28:4521-4534
    [84]Z. Zhang, Q. Chen, W. Knoll, R. Forch. Effect of aqueous solution on functional plasma polymerized films. Surface and Coatings Technology.2003,174-175:588-590
    [85]J.G. Wang, K.G. Neoh, E.T. Kang. Comparative study of chemically synthesized and plasma polymerized pyrrole and thiophene thin films. Thin Solid Films.2004,446:205-217
    [86]杨志禄.抗凝血等离子体聚合薄膜的制备及性能研究.西南交通大学硕士毕业论文.2008:50
    [87]S.M. Kuo, S.W. Tsai, L.H. Huang, et al. Plasma-modified nylon meshes as supports for cell culturing [J]. Art Cell Blood Subs and Immob Biotech.1997,25:551-562
    [88]C.R. Wittmer, J.A. Phelps, W.M. Saltzman, P.R.V. Tassel. Fibronectin terminated multilayer films: Protein adsorption and cell attachment studies. Biomaterials.2007,28:851-860
    [89]H. Ai, H. Meng, I. Ichinose, S.A. Jones, D.K. Mills, Y.M. Lvov, X. Qiao. Biocompatibility of layer-by-layer self-assembled nano-film on silicone rubber for neurons. Journal of Neuroscience Methods. 2003,128:1-8
    [90]Z. Cheng, S.H. Teoh. Surface modification of ultra thin poly (e-caprolactone) films using acrylic acid and collagen. Biomaterials.2004,25:1991-2001
    [91]R.E. Unger, K. Peters, M. Wolf, A. Motta, C. Migliaresi. C.J. Kirkpatrick. Endothelialization of a non-woven silk fibroin net for use in tissue engineering:growth and gene regulation of human endothelial cells. Biomaterials.2004,25:5137-5146
    [92]梅馨.钛氧薄膜表面氨等离子体浸没离子注入以及生物化修饰.西南交通大学硕士毕业论文。2009:40
    [93]樊珊.钛氧薄膜材料表面层粘连蛋白与纤连蛋白联合固定以及内皮化研究.西南交通大学硕士毕业论文.2008:55-60
    [94]G. Menem, G. Sderelio, T.G. Hilal. Biomodification of non-woven polyester fabrics by insulin and RGD for use in serum-free cultivation of tissue cells. Biomaterials.2002,23:3927-3935
    [95]Y. Zhang, C. Chai, X.S. Jiang, S.H. Teoh, K.W. Leong. Fibronectin immobilized by covalent conjugation or physical adsorption shows different bioactivity on aminated-PET.Materials Science and Engineering C.2007,27:213-219
    [96]B.G. Keselowsk, A.W. Bridges, K.L. Burns, C.C. Tate, J.E. Babensee, M.C. LaPlaca, A.J. Garcia. Role of plasma fibronectin in the foreign body response to biomaterials. Biomaterials.2007,28: 3626-3631
    [97]N. H, P.S. Yuen, J.M. Papalia, J.E. Trevithick, T. Sakai. R. Fassler, et al. Plasma fibronectin promotes thrombus growth and stability in injured arterioles. Proc Natl Acad Sci USA.2003,100: 2415-2419.
    [98]A. Dekker. T. Beugeling, A. Poot, J. Spijkers, J.A. Mourik, J. Feijen, A. Bantijes, W.G. Aken, Clin. Mater.1993,13:101
    [99]I.F. Amaral, R.E. Unger, S. Fuchs, A.M. Mendon, S.R. Sousa. Fibronectin- mediated endothelialisation of chitosan porous matrices. Biomaterials.200930:5465-5475
    [100]S. Tugulu, P. Silacci, N. Stergiopulos, H. A. Klok. RGD—Functionalized polymer brushes as substrates for the integrin specific adhesion of human umbilical vein endothelial cells. Biomaterials.2007, 28:2536-2546
    [101]C. Chollet, C. Chanseau, M. Remy, A. Guignandon, R. Bareille, C. Labruge're, L. Bordenave, M.C. Durrieu. The effect of RGD density on osteoblast and endothelial cell behavior on RGD-grafted polyethylene terephthalate surfaces. Biomaterials.2009,30:711-720
    [102]薛小青.纯钛表面细胞外基质制备及其生物相容性研究.西南交通大学硕士毕业论文.2010:32-34
    [103]田仁来.Ti-O薄膜表面内皮细胞化研究.西南交通大学硕士论文.2004:40-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700