用户名: 密码: 验证码:
设置开级配大粒径沥青碎石裂缝缓解层的沥青路面抗裂机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解决半刚性基层沥青路面、旧水泥混凝土路面沥青加铺层结构以及刚性基层沥青路面共同存在的沥青面层反射裂缝问题,以及半刚性基层沥青路面的水损害问题,近年来我国部分学者提出开级配大粒径沥青碎石混合料(Open-graded Large StoneAsphalt Mixes, OLSM),并将其作为裂缝缓解层设置在沥青面层的下面层,铺筑在带有裂缝(或接缝)的半刚性基层、旧水泥混凝土路面板或贫混凝土刚性基层之上。针对OLSM缓解层沥青路面的研究仍处于室内试验及试验路铺筑阶段。本文在已有研究成果的基础上,继续对OLSM的材料组成设计、路用性能进行试验研究,对OLSM缓解层沥青路面的细观结构及其宏观力学响应进行系统、深入地理论分析,在理论计算的基础上,结合试验段修筑情况,提出OLSM缓解层沥青路面结构的设计步骤及流程。
     本文以国内外OLSM参考级配为基础,应用变I法原理设计OLSM-25级配,结合空隙率(15%~20%)要求,提出OLSM-25推荐级配范围,通过试验研究其力学特性、高温性能、低温性能及水稳定性,提出OLSM-25技术指标。采用离散元方法,对AC-16、AC-20、OLSM-25的间接拉伸(劈裂)试验进行数值模拟;结合试验段修筑情况,建立设置OLSM-25裂缝缓解层的沥青路面离散元模型,在车辆荷载偏载作用下,对不同类型裂缝缓解层、不同级配OLSM-25裂缝缓解层的细观结构进行对比分析。采用有限元方法,建立设置OLSM-25裂缝缓解层的沥青路面有限元模型,对不同类型裂缝缓解层、不同级配OLSM-25裂缝缓解层的沥青路面进行应力分析及疲劳分析。在分析国内外沥青路面设计方法的基础上,考虑我国沥青路面存在基层开裂早期破坏的实际情况,提出OLSM缓解层沥青路面结构的施工建议、设计步骤及流程,推荐基于抗裂性能的OLSM缓解层沥青路面合理结构。
     通过研究表明:(1)在峰值轴向力作用下,当沥青混合料圆柱体试件开裂破坏时,随着沥青混合料公称最大粒径的增大,试件内部的微裂缝数量逐渐减少。与AC-16、AC-20相比,OLSM-25的间接拉伸抗裂效果显著。(2)在车辆荷载偏载作用下,当裂缝缓解层厚度相同时,OLSM-25裂缝缓解层底部A点颗粒的竖向接触力、竖向运动速度及竖向位移量均小于普通AC-25裂缝缓解层的对应值,OLSM-25裂缝缓解层的抗裂效果优于普通AC-25裂缝缓解层。(3)OLSM裂缝缓解层的耦合应力小于其荷载应力或温度应力;对于设置OLSM裂缝缓解层的刚性基层沥青路面结构设计,以OLSM裂缝缓解层的荷载应力或温度应力不超过其自身材料的容许抗拉强度作为设计依据,计算确定OLSM裂缝缓解层的合理厚度。(4)与相同厚度的普通AC-25裂缝缓解层相比,OLSM-25裂缝缓解层具有较高的承载能力和良好的应力消减及缓解性能;采用OLSM-25裂缝缓解层可有效减缓基层裂缝的扩展速率,显著提高沥青路面结构的疲劳寿命。(5)在实际工程应用中,综合考虑应力缓解效果、变形能力、减缓基层裂缝扩展速率、延长沥青路面疲劳寿命及施工中的离析问题等因素,选择材料组成相对偏粗、空隙率适中的2#级配OLSM-25作为裂缝缓解层,既达到缓解应力、减缓基层裂缝扩展速率的目的,又满足其路用性能要求,同时具有一定程度的变形能力,有效延长了沥青路面结构的使用寿命。
In order to solve the problem of the reflective cracking in the semi-rigid base asphaltpavement, the asphalt overlay on old concrete pavement and the rigid base asphaltpavement, as well as the water damage problem of the semi-rigid base asphalt pavement,OLSM(Open-graded Large Stone Asphalt Mixes) relief layer has been put forward by someChinese scholars, it has been set below the asphalt surface layer and paved on the semi-rigidbase, the old concrete pavement, and the rigid base with cracks (or joints) in recent years inChina. The research on OLSM of asphalt pavement is still in the stage of the indoor test andthe test road construction. In this dissertation, on the basis of the existing research, thematerial composed design of OLSM and its road performance test have been continued, themesostructure and the macroscopic mechanical response of OLSM of asphalt pavementhave been thoroughly and systematically analyzed. On the basis of theoretical calculationsand combined with the test roads construction, the structure design steps and processes ofOLSM cracking relief layer of asphalt pavement have been proposed.
     In this dissertation, on the basis of the reference gradation of OLSM-25in the domesticand international, by using of the variable I principle, the gradation of OLSM-25has beendesigned. Combined with the requirements of the porosity (15%to20%), the recommendedgradation range of OLSM-25has been proposed. the mechanical property, the hightemperature performance, the low temperature performance and the water stability ofOLSM-25have been tested, and the technical specifications of OLSM-25have beenproposed. By using of the discrete element method, the numerical simulation of the indirecttensile (splitting) test of AC-16, AC-20and OLSM-25have been carried out. Combinedwith the test roads construction, the discrete element model of asphalt pavement structurewith OLSM-25cracking relief layer has been established. Under the action of theasymmetric traffic load, the comparative analysis of the mesostructure with two differenttypes of cracking relief layer, and the mesostructure with three different gradationsOLSM-25cracking relief layer have been carried out. By using of the finite element method,the finite element model of asphalt pavement structure with OLSM-25cracking relief layer has been established, the stress and fatigue analysis on asphalt pavement with two differenttypes of cracking relief layer, and three different gradations OLSM-25cracking relief layerhave been carried out. On the basis of the analysis of structural design method of asphaltpavement in the domestic and international, considering the actual situation ofearly-cracking destruction in the base of asphalt pavement in our country, the constructionrecommendations, the design steps and processes of OLSM of asphalt pavement structurehave been proposed. On the basis of the anti-cracking mechanism, the reasonable structureof OLSM of asphalt pavement have been recommended.
     The research indicates that as follows:(1) Under the action of the peak axial force,when the cylinder specimen of asphalt mixture is cracking, the number of micro-crackswithin the specimen reduces gradually. as compared with the AC-16and AC-20, theanti-cracking effect of the indirect tensile test of OLSM-25is significant.(2) Under theaction of the asymmetric traffic load, when two cracking relief layers have the samethickness, the vertical contact force, the speed of the vertical movement and the verticaldisplacement of A point particle in the bottom of OLSM-25cracking relief layer were lessthan the corresponding values of the ordinary AC-25cracking relief layer. The anti-crackingeffect of OLSM-25cracking relief layer is better than ordinary AC-25cracking relief layer.(3) The coupling stress is less than the traffic load stress and the temperature stress. For thestructural design of the rigid base asphalt pavement with OLSM cracking relief layer, itstraffic load stress or temperature stress should not exceed its own allowable anti-tensilestrength. On the above design basis, the reasonable thickness of OLSM cracking relief layerwill be calculated and determined.(4) Compared to the ordinary AC-25cracking relief layerwith the same thickness, OLSM-25cracking relief layer has higher carrying capacity andbetter stress relief performance. By using the cracking relief layer of OLSM-25, thepropagating speed of the reflective crack will slow down effectively, and the fatigue life ofthe asphalt pavement structure will be improved significantly.(5) In practical engineeringapplications, considering the stress relief effect, deformation capacity, slowing down thepropagating speed of the reflective crack, extending the fatigue life of asphalt pavement,and the mixture segregation problem in the construction, the2#gradation OLSM-25withrelative coarse aggregates and medium porosity should be taken as the cracking relief layer, not only the purpose of the stress relief effect, slowing down the propagating speed of thereflective crack should be achieved, its road performance requirements should be met and ithas a certain degree of deformation capacity, but also the life of the asphalt pavementstructure should be extended.
引文
[1]沙爱民.半刚性基层的材料特性[J].中国公路学报,2008,21(01):1-5.
    [2]孙立军.沥青路面结构行为理论[M].上海:同济大学出版社,2005.
    [3]杨斌.旧水泥混凝土路面沥青加铺层结构研究[D].西安:长安大学,2005.
    [4]彭翀.贫混凝土基层沥青路面抗反射裂缝结构研究[D].西安:长安大学,2007.
    [5]付其林,陈拴发,陈华鑫,等.开级配大粒径沥青碎石混合料的高温稳定性[J].长安大学学报:自然科学版,2010,30(2):20-24.
    [6]付其林,陈拴发,陈华鑫.开级配大粒径沥青混合料路用性能研究[J].武汉理工大学学报,2010,32(7):72-76.
    [7]付其林,陈拴发,邢明亮.开级配大粒径沥青混合料水稳定性试验研究[J].合肥工业大学学报:自然科学版,2010,31(3):717-721.
    [8]付其林,陈拴发,陈华鑫.级配对开级配大粒径沥青碎石路用性能的影响[J].郑州大学学报:工学版,2010,31(3):82-86.
    [9]付其林.开级配大粒径沥青碎石组成设计与路用性能研究[D].西安:长安大学,2008.
    [10]付其林,邓韵发,乔伟.大粒径沥青混合料在抗反射裂缝中的应用[J].平顶山工学院学报,2007,16(1):63-66.
    [11]顾强康,冷培义.水泥混凝土路面上沥青加铺层反射裂缝试验研究[J].中国公路学报,1999,1:35-40.
    [12] E. M. Kauffman. the Application of Fracture Mechanics Concept to Predict Cracking of FlexiblePavements. Ph. D. dissertation, Ohio State Univ.,1973.
    [13] Majidzadeh, K.C.,Buranarom.C.&Karakouzian,M..Application of Fracture Mechanics for ImprovedDesign of Bituminous concrete. Report No.FHWA-RD-76-91.Vol.1,June.1976.
    [14] N.F. Coetzee, C.L. Monismith. Analytical Study of Minimization of Reflection Cracking in AsphaltConcrete Overlays by Use of a Rubber-asphalt Interlayer. TRR700,1981,pp.101~108.
    [15] C.L. Monismith, N.F. Coetzee. Reflection Cracking: Analysis, Laboratory State and DesignConsiderations. Proceedings of AAPT,Vol.49,1980,pp.268~313.
    [16] S.B. Seeds, B.F. McCulloughm, F. Carmichael. Asphalt Concrete Overlay Design ProcedureResearch Report1007,Porland Cement Concrete Pavements Transportation, WashingtonD.C,1985,P26~36.
    [17]刘益河,张起森,李志勇.沥青路面温度应力的光弹性研究[J].中国公路学报,1991,2.
    [18]刘益河,张起森.用温度光弹法确定路面结构裂缝的应力强度因子.长沙交通学院学报,1991,7(1),pp.71~80.
    [19]吴赣昌,张淦生.沥青路面温缩裂缝的应力强度分析[J].中国公路学报,1996,(1)pp.38~44.
    [20] Majicdzadeh, K.&Ramsamooj, D.V..Development of Testing Procedures and a Method to PredictFatigue Failures of Asphalt Concrete Paving Systems. The Ohio State University ResearchFoundation. Final Report. Project RF2873.March,1971.
    [21] P.D. de Verteuil. Fatigue Properties of Asphaltic Concrete Field Specimens. Ohio State Univ. MSthesis,1973.
    [22] V.A. Karamians. Effect of Temperature on Fatigue Life of Asphalt Mixtures. Ohio State Univ. MSthesis,1973.
    [23]郑健龙,周志刚,张起森.沥青路面抗裂设计理论与方法[M].北京:人民交通出版社,2002.
    [24]郑健龙.沥青路面温度收缩开裂的热粘弹特性研究[D].西安:长安大学,2001.
    [25]周志刚.交通荷载下沥青类路面疲劳损伤开裂研究[D].长沙:中南大学,2003.
    [26]山东省交通厅公路局,东南大学交通学院,山东省交通科学研究所.大粒径沥青混合料柔性基层在老路补强中的应用研究[R],2004.
    [27]中交公路规划设计院,江苏省交通科学研究院,哈尔滨工业大学交通科学与工程学院,交通部公路科学研究所.大粒径沥青混合料试验研究及工程应用实践[R],2003.
    [28]王富玉.大粒径沥青混合料(LSM)的路用性能研究[D].西安:长安大学,2001.
    [29]陆长兵.大粒径沥青稳定碎石基层性能研究[D].南京:东南大学,2004.
    [30]冯俊领,张起森,高和生,等.大粒径沥青混合料力学性能试验研究[J].公路,2006,2:157-160.
    [31]张亮.大粒径沥青混合料抗裂性能试验研究[D].长沙:长沙理工大学,2006.
    [32]芮维勇.大粒径沥青混合料性能研究[D].长沙:长沙理工大学,2008.
    [33]周俊,刘定涛,张义朋,等.大粒径沥青碎石基层路面力学性能试验研究[J].武汉理工大学学报(交通科学与工程版),2010,34(6):1217-1220.
    [34]周海防.不同胶结料大粒径透水性沥青混合料性能评价[D].济南:山东大学,2010.
    [35]许爱丽.大粒径沥青稳定碎石基层沥青路面结构合理性分析[D].天津:河北工业大学,2007.
    [36]赵镇君.大粒径沥青混合料基层路面结构力学性能试验研究[D].武汉:武汉理工大学,2010.
    [37]白楷.大粒径沥青稳定碎石柔性基层沥青路面力学性能研究[D].武汉:武汉理工大学,2010.
    [38]汪海年.沥青混合料微细观结构及其数值仿真研究[D].西安:长安大学,2007.
    [39]魏星.云南高海拔地区沥青混合料性能仿真研究[D].重庆:重庆交通大学,2009.
    [40] Chang G K,Meegoda J N. Micro2mechanic model for temperature effects of hot mix asphaltconcrete [C]. Tran2portation Research Record. Washington D C: Tranportation Research Board,1999.
    [41] You Z P, ButtlarW G. Discrete element modeling to predict the modulus of asphalt concrete mixture[J]. Journal of Materials in Civil Engineering,2004(34):140-145.
    [42] AbbasA R. Simulation of the micromechanical behavior of asphaltmixtures using the discreteelementmethod [D]. PullmanW A:Department of Civil and Environmental Engineering,WashingtonState University,2004.
    [43]王端宜,张肖宁,王绍怀.用虚拟试验方法评价沥青混合料的级配类型[J].华南理工大学学报:自然科学版,2003,31(2):48-51.
    [44]王端宜,张肖宁,王绍怀.水泥混凝土路面沥青加铺层材料设计[J].华南理工大学学报:自然科学版,2005,33(12):78-83.
    [45]王端宜,张俊丽.沥青混合料集料颗粒间摩擦性能的直剪试验评价[J].中南公路工程,2005,30(3):1-4.
    [46]肖昭然,胡霞光,刘玉.沥青混合料细观结构离散元分析[J].公路,2007(4):145-148.
    [47]冯师蓉,胡霞光,刘玉.粘弹性材料的离散元数值分析[J].公路交通科技,2008(2):12-29.
    [48]黄晚清,陆阳,何昌轩,等.基于离散单元法的沥青混合料研究初探[J].中南公路工程,2007,32(2):19-23.
    [49]田莉.基于离散元方法的沥青混合料劲度模量虚拟试验研究[D].西安:长安大学,2008.
    [50]常明丰.多孔沥青路面微观力学特性与空隙衰变行为研究[D].西安:长安大学,2009.
    [51]车法,陈拴发,李增宏,等.荷载作用下沥青路面表面开裂的扩展[J].公路交通科技,2010,27(5):26-29.
    [52]姚祖康.路面[M].北京:人民交通出版社,1999.
    [53]黄仰贤.路面分析与设计[M].北京:人民交通出版社,1998.
    [54]王端宜.设计沥青路面及其方法研究[D].广州:华南理工大学,2003.
    [55] Youder, E. J. and M. W. Witczak, Principles of Pavement Design, John Wiley and Sons, N. Y.,1975.
    [56] S.Kose, M.Guler.Distribution of Strain within Asphalt Binders in HMA Using Imaging and FiniteElement Techniques[J]. Transportation Research Board,2000,(1):11-15.
    [57]吕伟民.沥青混合料设计方法与原理[M].上海:同济大学出版社,2001,1.
    [58] Standard Test Method for Determining the Permanent Shear Strain and Stiffness Of AsphaltMixtures Using the Superpave Shear Teste[R]. AASHTO Deisngation: TP7-01.
    [59] E.M.Kauffmann.The Application of Fracture Mechanics for Improved Design of BituminousConcrete[J]. Vol.l, Publication NO. FHWA-RD,1995:76-79.
    [60] Arif Chowdhury. Joe W.Button. Jose D.C.Grau. Effects of Superpave Restricted Zone on PermanentDeformation[J]. International Center for Aggregate Research,2001.4:28-32.
    [61]曹卫东,吕伟民,李晓军.编译.集料级配评估的贝雷法[J],中外公路,2005,25(1):84-87.
    [62]于洪兴,魏连雨.“贝雷法”级配设计方法简介[J],交通科技与经济,2005.3:20-21.
    [63] Smitn R.W., RiceJ.M.Design of Open-Graded Friction Courses[R]. FHWA, Synthesis of CurrentPractice on the Design, Construction, and Maintenance of Porous Friction Courses,1974.
    [64] Kandhal,P.S.Design, Construction, and Maintenance of Open-Graded Asphalt Friction Courses[R].National Asphalt Pavement Association, MD:2002.
    [65]林绣贤.沥青混凝土合理集料组成的计算公式[J],华东公路,2003.2:82-84.
    [66]付其林.开级配大粒径沥青碎石组成设计参数与方法研究[D].西安:长安大学,2011.
    [67]郝培文.沥青混合料配合比设计方法研究[D].西安:西安公路交通大学,1996.
    [68]张肖宁,郭祖辛,吴旷怀.按体积法设计沥青混合料[J].哈尔滨建筑大学学报,1995,28(2):28-36.
    [69] ACI Committee209. Prediction of creep, shrinkage and temperature effects in concrete structures. InSP-27: Design for effects of creep,shrinkage, in concrete temperature structures[C]. Detroit: ACI.1971:51-93.
    [70] HuberG.Performance Survey on Open-Graded Friction Course Mixes.NCHRP Synthesis284[M].Washington,D.C.: Transportation Research Board,2000.
    [71] Mallick R.B.et al.Design,Constuction and Performance of New-Generation Open-Graded FrictionCourse[J]. AAPT,2000.
    [72]傅志勇.沥青混合料高温性能研究[D].长沙:长沙理工大学,2005.
    [73] Jingna Zhang, L. Allen Cooley Jr, P.S. Kandhal. Comparison of fundamental and simulative testmethods for evaluating permanent deformation of hot mix asphalt [R].NCAT Report02-07, October2002.
    [74] Prithvis. Kandhal, L. Allen Cooley Jr. Evaluation of permanent deformation of asphalt mixturesusing loaded wheel tester [R]. NCAT Report02-08, October,2002.
    [75] L.M.France.Chemical.Physical and Thermodynamic Properties of Neat and Polymer ModifiedAsphalt Binder[J].M.S.thesis.Michigan State University,1997:23-25
    [76] J.A.Deacon.Temperature Considerations in Asphalt-aggregate Mixture Analysis and Design[J].Transportation Research Board,1994:97-112
    [77]张宏.沥青混合料低温抗裂性能评价方法[J].长安大学学报:自然科学版,2002,22(4):4~8.
    [78]刘涛,郝培文.沥青混合料低温抗裂性评价方法研究[J].同济大学学报:自然科学版,2002,30(12):1468~1471.
    [79]程箭,许志鸿,胡尚军.硬质沥青混合料低温性能研究[J].公路工程,2008,33(1):48~50.
    [80]王端宜,赵熙.沥青混合料单轴压缩试验的离散元仿真[J].华南理工大学学报(自然科学版),2009,37(07):37-41.
    [81] Cundal. P. A.. Strack, O. D. L.. A distcrete numerical model for granular semblies[J].Geotechnique,1979(10):47-65.
    [82] Cundall, P., M. Board and J. Tinucci.“Numerical Modeling Related to Rockburst Research,” inApplied Rockburst Research (Proceedings of the International Workshop, Santiago, May1994),pp.43-59. J. C. Cereceda and M. Van Sint Jan, Eds. Santiago: Editec Ltda.,1995.
    [83] Cundall, P. A.“A Computer Model for Simulating Progressive Large Scale Movements in BlockyRock Systems,” in Proceedings of the Symposium of the International Society for Rock Mechanics(Nancy, France,1971), Vol.1, Paper No. II-8(1971).
    [84] Cundall, P. A.“A Discontinuous Future for Numerical Modelling in Geomechanics” Geotech.Eng.,149(1), pp.41-47(2001).
    [85] Cundall, P. A., and O. D. L. Strack.“A Discrete Numerical Model for Granular Assemblies,”Géotechnique,29,47-65(1979).
    [86] Cundall, P. A., and O. D. L. Strack.“Modeling of Microscopic Mechanisms in GranularMaterial,” in Mechanics of Granular Materials: New Models and Constitutive Relations, pp.137-149. J. T. Jenkins and M. Satake, Eds. Amsterdam: Elsevier Scientific Publications, B.V.,1983.
    [87] Cundall P A. PFC2D user’s manual: Version3.1[R]. Minnesota: Itasca Consulting Group Inc,1999.
    [88] Cundall, P. A.“Computer Simulations of Dense Sphere Assemblies,” in Micromechanics ofGranular Materials, pp.113-123. M. Satake and J. T. Jenkins, Eds. Amsterdam: Elsevier SciencePublishers B. V.,1988.
    [89] Cundall, P. A.“Distinct Element Models of Rock and Soil Structure,” in Analytical andComputational Methods in Engineering Rock Mechanics, Chapter4, pp.129-163. E. T. Brown,Ed. London: George Allen and Unwin,1987.
    [90] Cundall, P. A., A. Drescher and O. D. L. Strack.“Numerical Experiments on GranularAssemblies,Measurements and Observations,” in Deformation and Failure of Granular Materials,pp.355-370. P. A. Vermeer and H. J. Luger, Eds. Rotterdam: A. A. Balkema,1982.
    [91] Cundall, P. A., and R. D. Hart.“Numerical Modeling of Discontinua,” EngineeringComputations,9(2),101-113(1992).
    [92] Cundall, P. A., J. T. Jenkins and I. Ishibashi.“Evolution of Elastic Moduli in a DeformingGranular Assembly,” in Powders and Grains, pp.319-322. J. Biarez and R. Gourvés, Eds.Rotterdam: A. A. Balkema,1989.
    [93] Cundall, P. A., H. Konietzky and D. O. Potyondy.“PFC Ein Neues Werkzeug für NumerischeModellierungen,” Bautechnik,73(8),492-498(1996).
    [94] Cundall, P. A.“Rock Stability and Long-term Damage Assessment in the Mine-by Tunnel at URL,Canada,” in Proceedings of the InternationalWorkshop on Reversibility: Scientific and TechnicalBases for the Reversibility of Geological Disposal (Paris, November1998),2nd Session, PaperNo.1. Chatenay-Malabry, France: ANDRA,1998.
    [95] Cundall, P. A., D. O. Potyondy and C. A. Lee.“Micromechanics-Based Models for Fracture andBreakout around the Mine-by Tunnel,” in Proceedings of the Excavation Disturbed Zone Workshopon Designing the Excavation Disturbed Zone for a Nuclear Repository in Hard Rock (Winnipeg,September1996), pp.113-122. J. B. Martino and C. D. Martin, Eds. Toronto:1996Int. Conf. onDeep Geological Disposal of Radioactive Waste,1996.
    [96] Cundall, P. A., and O. D. L. Strack.“The Development of Constitutive Laws for Soil Using theDistinct Element Method,” in Numerical Methods in Geomechanics, Vol.1, pp.289-317.Rotterdam: A. A. Balkema,1979.
    [97]裴建中,常明丰,陈拴发,王秉纲.沥青混合料间接拉伸试验的数值模拟[J].长安大学学报(自然科学版),2010,30(05):6-10.
    [98]郭红兵,陈拴发.沥青路面热-荷载耦合应力数值分析[J].长安大学学报,2010,32(02):15-19.
    [99]郭红兵,陈拴发. OLSM沥青路面反射裂缝扩展路径的数值模拟[J].武汉理工大学学报,2010,32(07):72-76.
    [100]杨斌.特粗粒径沥青碎石裂缝缓解层抗裂机理分析[J].公路,2005,(01):74-78.
    [101]邓增杰,周敬恩.工程材料的断裂与疲劳[M].北京:机械工业出版社,1995.
    [102]才华,张敏江.等.反射裂缝的断裂及疲劳分析和模拟计算[J].沈阳建筑工程学院学报,1997.7.
    [103]彭翀.贫混凝土基层沥青路面抗反射裂缝结构研究[D].西安:长安大学,2006.
    [104]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [105]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1998.
    [106]曾攀.有限元分析及其应用[M].北京:清华大学出版社,2004.
    [107]庄茁. ABAQUS有限元软件6.4版入门指南[M].北京:清华大学出版社,2004.
    [108]庄茁,张帆,岑松. ABAQUS非线性有限元分析与实例[M].北京:科学出版社,2005.
    [109]石亦平,周玉蓉. ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006.
    [110]王金昌,陈页开. ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社,2006.
    [111]廖公云,黄晓明. ABAQUS有限元软件在道路工程中的应用[M].南京:东南大学出版社,2008.
    [112]沈成康.断裂力学[M].上海:同济大学出版社,1996.
    [113]王宏畅.半刚性基层沥青路面两阶段设计方法研究[D].南京:东南大学,2005.
    [114]周庆华.高模量沥青混凝土性能与路面结构研究[D].西安:长安大学,2010.
    [115]陕西省公路局,陕西省交通建设集团公司,长安大学.沥青路面耐久抗裂技术研究[R],2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700