阿尔泰蒙库铁矿多期成矿作用及远景评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒙库铁矿床是我国新疆规模最大的铁矿床,构造位置处于晚古生代早期活动陆缘的麦兹火山沉积盆地内,其成因类型长期以来备受争议。本文通过细致的野外调查和室内综合研究,从研究矿床的成矿作用机制入手,在综合分析前人研究成矿背景的基础上,系统研究矿床的构造和变质岩地层之控矿规律,获得对矿床模式的认识、找矿的主要标志和勘查模型,并进行了区域找矿评价。应用的主要方法有矿物地球化学、年代学、爆裂法研究,流体包裹体显微测温、同步辐射X射线荧光微区分析(μ-SRXRF)及激光拉曼(LRM)分析。
     本文关于成矿作用方面的成果包括:1)明确提出蒙库铁矿床的主要富集成矿期为阿尔泰主碰撞造山-区域变质期,早泥盆世的古海底火山作用下只是形成了铁矿的初始矿源(浸染状贫矿),而造山后期的热液交代主要与铜矿化有关。2)综合应用多种分析手段,对矿石矿物特征、流体特征及成矿物质来源有了较全面的认识。研究结果显示,蒙库铁矿床的磁铁矿氧同位素δ~(18)O_SMOW=-2‰~+1.77‰,平均-0.15‰,与沉积变质型铁矿床特征较为接近,而与典型矽卡岩铁矿床有显著差别;磁铁矿稀土含量很低,ΣREE=0.94~4.46ppm,具有LREE富集的右倾配分模式特征,提示成矿物质来源可能与火山岩有密切联系;δCe值则提示成矿环境从早期到晚期由相对氧化环境转变为相对还原的环境;磁铁矿爆裂法提示有多期成矿作用叠加;激光拉曼研究显示流体成分以H_2O和CO_2为主;同步辐射X射线荧光(μ-SRXRF)微探针研究表明流体中铁族元素以及亲硫元素含量较高,提示流体对成矿的贡献;Sm-Nd同位素年代学研究显示成矿物质可能源自古老陆壳基底;Rb-Sr同位素示踪显示成矿流体具有壳源和幔源混合特征。3)综合成矿地质背景、控矿地质条件、多期成矿作用机制,本文给出了蒙库铁矿床的成矿模式。依据地球化学标志、矿区地球物理资料,结合控矿规律建立了勘查模型,并对矿床成矿远景进行了简要评价,认为矿体向西部随着标高的降低,在铁木下尔衮紧闭向斜的西部转折端深部及构造滑脱部位仍然可能有隐伏矿体赋存。4)首次在阿尔泰地区开展综合地质信息变量统计方法研究,提出该方法在本区开展资源远景评价和靶区优选的思路与工作方法。依据1:20万综合地质信息变量异常、1:20万区域化探资料等,提出了区域内7处有利的找矿远景区。
Mengku Iron deposit is the largest iron deposit in Xinjiang, west China,whose’s structural position is located in the Mazy volcanic sentiment basin whichformed in the late Paleozoic active continental margin, but the genesis of Mengkuiron deposit is a conflict for a long period of time. This thesis is mainly aboutstaging the structural and metamorphosed formation ore-controlling regularity andmetallogenic model systematically based on comprehensive analysis ofmetallogenic background, also with evaluation of the regional exploration. Themain analysing method implicated are mineral geochemistry, chronology,decrepitating method, fluid inclusion microthermometer, Synchrotron radiationX-ray fluorescence microanalysis (μ-SRXRF) and Laser Raman spectroscopy.
     Achievements of metallogenesis study in this thesis are:1) Clearly definingthat the main enrichment and metallogenic period of Mengku iron deposit areAltay main collision orogeny–reginal metamorphose period, the paleo submarinevolcanism of Early Devonian Epoch only formed the initial material resource ofiron (impregnated structural lean element). The postorogenic hydrothermalmetasomatism mainly related to the copper mineralization;2) Get a relativelycomprehensive consideration about a characteristic of ore mineral, hydrothermalfluid and ore forming material sources based on integrated application of variousanalytical methods. The study result shows that δ~(18)O_SMOWof magnetite fromMengku iron deposit varies from-2‰to+1.77‰with the average of-0.15‰thatsimilar to sedimentary-metamorphic iron deposits and clearly differs from that oftypical skarn type iron deposits. Content of Rare Earth Elements in magnetite isvery low, the range of ΣREE is0.94ppm to4.46ppm, with the characteristic ofrichen of LEE and right dip rare earth elements patterns which indicate thatsources of metallogenic materialism are closely bound up with volcanic rocks;Value of δCe shows that relatively oxidizing metallogenetic environment turned tobe reducing. Decrepitating of magnetite suggesting overlapping of multistagemetalloginesis. Laser Raman study shows the composition of fluid is mainly ofH_2O and CO_2; μ-SRXRF test shows constent of iron family elements andsulphophile elements in fluid are relativly high, which indicates the contributionof fluid to mineralization; Sm-Nd isotope chronology study indicates the sourceof ore-forming materials is from the ancient continental basement. Rb-Sr radioisotopic tracer study suggesting that charactristics of fluid is the mixed crustand mantle source.3) This thesis gives out a metallogenetic model of MengkuIron deposit based on analyzing the geological background, ore controllinggeological condition and mechanism of multi-stage mineralization, also build upan exploration model based on geochemical marks and geophysical data of theMengku orefield, still evaluated the mineralization prospecting of the Mengkuiron deposit briefly, concluding that blind ore deposit maybe occurs in the deephinge zone, and the detachment structure of Tiemuxiaergun enclosed syncline.4)This thesis applies the geological statistics method of geological variables toevaluate the resource prospecting of Altay area for the first time, raising a thoughtand working method of evaluating resource prospecting and optimizing targetingfor ore prospecting. This thesis also gives out seven prospecting area based ongeological variable's anomaly of regional geological data and regionalgeochemical data which’s scale is1:200,000.
引文
1底图据新疆地矿局第四地质大队《新疆富蕴县蒙库铁矿床西段浅部勘探地质报告》,2005
    2北京科技大学,《湖北大冶铁铜矿深部成矿规律及找矿方向研究》,科研报告,2006
    3据新疆地矿局第四地质大队《新疆富蕴县蒙库铁矿危机矿山项目物探报告》,2009
    4底图据北京矿产地质研究院,《阿尔泰成矿带整体研究与勘查技术集成》,2010
    [1]王京彬,王莉娟,王玉往,等.新疆东准噶尔野马泉构造蚀变脉岩型金矿床[J].岩石学报,2006,22(09):2349-2359.
    [2]万博,张连昌.新疆阿尔泰东南缘卡拉先格尔铜矿带含矿斑岩地球化学及其成矿意义[J].中国地质,2006,33(03):618-625.
    [3]丁汝福,吴保全.新疆萨热阔布金矿床特征及隐伏矿预测新途径的思路[J].矿产与地质,2002,16(05):262-265.
    [4]杨天南,李锦轶,孙桂华,等.中天山早泥盆世陆弧:来自花岗质糜棱岩地球化学及SHRIMP. U/Pb定年的证据[J].岩石学报,2006,22(1):41-48.
    [5]闫升好,滕荣丽,张招崇,等.新疆阿尔泰山南缘卡拉先格尔斑岩铜矿带成因再认识——来自哈腊苏铜矿硫-铅-氢-氧同位素和40Ar-39Ar年龄的约束[J].矿床地质,2006,25(03):292-301.
    [6]扎日木合塔尔,张旺生,塔依尔依码木,等.阿尔泰造山带南缘金矿流体及其动力学分析[J].地学前缘,2004,11(3):307-308.
    [7]韩春明,肖文交,赵国春,等.新疆喀拉通克铜镍硫化物矿床Re-Os同位素研究及其地质意义[J].岩石学报,2006,22(1):163-170.
    [8]万博,张连昌.新疆阿尔泰南缘泥盆纪多金属成矿带Sr-Nd-Pb同位素地球化学与构造背景探讨[J].岩石学报,2006,22(1):145-152.
    [9]申维,骆社周.新疆阿尔泰地区大型、超大型金矿床的定量预测研究[J].科技导报,2006,24(2):53-55.
    [10]王书来,王京彬,彭省临,等.新疆麦兹火山沉积盆地含矿建造及金矿找矿潜力分析[J].地质与勘探,2004,40(7):21-26.
    [11]程裕淇,赵一鸣,陆松年.中国主要几组铁矿类型[J].地质学报,1978,52(4):253-268.
    [12]徐林刚.新疆富蕴县蒙库铁矿地质地球化学特征及成因探讨[D].北京:中国地质大学,2007.
    [13] Meinert L D. Skarns and skarn deposits[J]. Geoscience Canada,1992,19:145-162.
    [14] Misra K C. Understanding mineral deposits[M]//London: Kluwer AcademicPublishers,2000:414-419.
    [15] Ray G E, Webster I C L. An overview of skarn deposits[D].1991.
    [16] Einaudi M T, Burt D M. Introduction; terminology, classification, andcomposition of skarn deposits[J]. Economic Geology,1982,77(4):745-754.
    [17] Shimazaki H. Characteristics of skarn deposits and related acid magmatismin Japan[J]. Economic Geology,1980,75:173-183.
    [18]赵斌.中国主要夕卡岩及夕卡岩型矿床[M].北京:科学出版社,1989:1-342.
    [19]赵一鸣,林文蔚,毕承思,等.中国夕卡岩矿床[M].北京:地质出版社,1990:1-351.
    [20] Xu G, Lin X. Geology and geochemistry of the Changlongshan skarn irondeposit,Anhui Province,China[J]. Ore Geology Reviews,2000,16:91-106.
    [21]徐林刚,毛景文,杨富全,等.新疆蒙库铁矿床矽卡岩矿物学特征及其意义[J].矿床地质,2007,26(04):455-463.
    [22]姚红,玛依拉,焦明富,等.新疆富蕴县蒙库铁矿矿床地质特征[J].新疆有色金属,2007,30(02):1-3.
    [23]张秀林.蒙库铁矿地质特征及成因探讨[J].新疆有色金属,2007(S1):3-6.
    [24]李嘉兴,姜俊,胡兴平,等.新疆富蕴县蒙库铁矿床地质特征及成因分析[J].新疆地质,2003,21(03):307-311.
    [25]张建中,冯秉寰,金浩甲,等.新疆阿勒泰阿巴宫——蒙库海相火山岩与铁矿的成生关系及成矿地质特征[J].西北地质科学,1987,20(06):89-180.
    [26] Wang Y W, Wang J B, Wang S L, et al. Geology of the Mengku irondeposit,Xinjiang,China—a metamorphosed VMS?[M]//MAO J W,GOLDFARB R J, SELTMANN R, et al. Tectonic evolution and metallogeny ofthe Chinese Altay and Tianshan. Longdon: Centre for Russian and CentralAsian Mineral Studies,Natural History Museum,2003:181-200.
    [27]仇仲学.新疆富蕴县蒙库铁矿床地质特征与成因分析[J].地质找矿论丛,2003,18(增刊):110-114.
    [28]胡兴平.新疆富蕴县蒙库铁矿区地质特征及成因浅析[J].新疆有色金属,2004,27(01):2-8.
    [29]王京彬,李博泉,张积斌.额尔齐斯聚矿带金铜成矿条件及找矿预测
    [M].北京:冶金工业出版社,1999:178.
    [30]王京彬,秦克章,吴志亮,等.阿尔泰山南缘火山喷流沉积型铅锌矿床
    [M].北京:地质出版社,1998:1-210.
    [31]叶庆同,傅旭杰,王宝良.新疆阿尔泰山南缘多金属成矿带的成矿规律[J].地质学报,1998,72(6):349-357.
    [32]祁志明,李天德.中国和哈萨克斯坦阿尔泰有色金属成矿带的划分和对比[J].有色金属矿产与勘查,1996,5(5):206-271.
    [33]郭正林,康吉昌,仇银江,等.新疆阿尔泰山南缘蒙库盆地火山沉积构造演化与成矿[J].矿产与地质,2006,20(4-5):348-352.
    [34]陈永良,李学斌.基于核最小二乘模型的矿产靶区预测[J].吉林大学学报(地球科学版),2011,41(03):937-944.
    [35]张洪涛,陈仁义,韩芳林.重新认识中国斑岩铜矿的成矿地质条件[J].矿床地质,2004,23(2):150-163.
    [36]王永新,田培仁.浅论新疆海相火山热水沉积矿床的分带及其找矿意义[J].地质与勘探,2003,39(04):6-11.
    [37]杨炳滨.新疆阿勒泰蒙库铁矿钙铁榴石-次透辉石与磁铁矿成矿作用的讨论[J].地质地球化学,1981(8):45-47.
    [38]郭正林,康吉昌,仇银江,等.新疆阿尔泰山南缘蒙库盆地火山沉积构造演化与成矿[J].矿产与地质,2006(Z1).
    [39]杨富全,毛景文,闫升好,等.新疆阿尔泰蒙库同造山斜长花岗岩年代学、地球化学及其地质意义[J].地质学报,2008,82(04):485-499.
    [40]郭正林,郭旭吉,王书来,等.阿尔泰南缘麦兹泥盆纪火山-沉积盆地成矿特点及其铅锌、铁、金找矿潜力分析[J].矿床地质,2007(01):128-138.
    [41]陈兰桂.北疆蒙库铁矿床的成因类型和矿床构造的初步认识[J].中南大学学报(自然科学版),1979(S1):12-23.
    [42]刘斌.新疆阿勒泰海相火山岩铁矿带中流体包裹体特征和成矿作用的热力学条件[J].地质找矿论丛,1991,6(2):71-82.
    [43]杨良哲,赵永鑫,赖富光,等.蒙库铁矿床与镜铁山铁矿床的对比研究[J].地质找矿论丛,2007,22(01):31-34.
    [44]闫升好,张招崇,王义天,等.新疆阿尔泰山南缘乔夏哈拉式铁铜矿床稀土元素地球化学特征及其地质意义[J].矿床地质,2005,24(01):25-33.
    [45]王登红,陈毓川.与海相火山作用有关的铁-铜-铅-锌矿床成矿系列类型及成因初探[J].矿床地质,2001,20(02):112-118.
    [46]李志纯.阿尔泰山构造成矿域的形成机制研究:第三届海峡两岸三地及世界华人地质科学研讨会,香港,2001[C].香港地质学会与香港大学地球科学系.
    [47]刘顺生,李志纯,谭凯旋,等.中国阿尔泰造山带的变形变质及流体作用[M].北京:地质出版社,2003:233.
    [48]何国琦,韩宝福,岳永君,等.中国阿尔泰造山带的构造分区和地壳演化[M]//新疆地质科学(第2辑).北京:地质出版社,1990:9-20.
    [49]张湘炳.阿尔泰地区大地构造演化体质及其形成机理[M]//新疆北部固体地球科学新进展.北京:科学出版社,1993:173-184.
    [50]杨新岳,李志纯,谢国源.新疆阿尔泰造山带南缘萨勒巴斯推覆体的变形和变质作用[J].地球科学——中国地质大学学报,1994,19(4):461-470.
    [51]杨新岳.北疆阿巴宫-库尔提断裂带显微组构的运动学和动力学分析[J].大地构造与成矿学,1990,4(1):29-42.
    [52]曲国胜,崇美英.阿尔泰造山带的铅同位素地质及其构造意义[J].现代地质,1991,5(1):100-110.
    [53]曲国胜,何国琦.阿尔泰造山带的构造运动[J].地质学报,1992,66(03):193-205.
    [54]曲国胜.剪切带金矿成因——阿尔泰造山带中剪切带型金矿预测[J].大地构造与成矿学,1991,15(03):225-232.
    [55]李志纯.阿尔泰造山带构造演化研究中的几个关键问题剖析[J].大地构造与成矿学,1996:16-28.
    [56]李志纯.阿尔泰山前铜——多金属构造成矿系列的构造成矿分析[M]//涂光炽.新疆北部固体地球科学新进展.北京:科学出版社,1993:339-352.
    [57]李志纯.阿尔泰铜多金属构造成矿带中矿床的矿石矿物特征及成因分析[J].中南工业大学学报,1996,27(增2):146-151.
    [58]李志纯.阿尔泰左型雁列式火山——沉积盆地形成、演化及成矿活动追踪[J].大地构造与成矿学,1996:189-200.
    [59]李志纯.成矿学发展的回顾和展望[J].中南工业大学学报,1997,28(增1):98-102.
    [60]李志纯.阿尔泰山南缘两类构造成矿类型金矿床及其成矿模式[J].大地构造与成矿学,1999,23(01):16-28.
    [61]陈汉林,厉子龙,杨树锋,等.中国阿尔泰造山带基性麻粒岩的发现及其成因机制探讨:2004年全国岩石学与地球动力学研讨会,海口,2004.
    [62]王涛,洪大卫,童英,等.中国阿尔泰造山带后造山喇嘛昭花岗岩体锆石SHRIMP年龄、成因及陆壳垂向生长意义[J].岩石学报,2005,21(03):640-650.
    [63]郑常青,徐学纯,Kato Takenori,等.新疆阿尔泰造山带变质岩系独居石CHIME法二叠纪、泥盆纪变质年龄及其地质意义:2006年全国岩石学与地球动力学研讨会,南京,2006[C].南京大学.
    [64] Windley B F, Alfred K, Jinghui G, et al. Neoproterozoic to PaleozoicGeology of the Altai Orogen, NW China:New Zircon Age Data andTectonic Evlution[J]. Jorunal of Geology,2002,110:719-737.
    [65]赵志忠.阿尔泰山南缘东部岩石构造变形与金的构造成矿机理[J].大地构造与成矿学,2001,25(03):302-312.
    [66]赵志忠,曾乔松,李志纯.阿尔泰山南缘两个构造变形域的岩石变形特征和形成机理[J].地质科学,2002(04).
    [67]何国琦,韩宝福,岳永君,等.中国阿尔泰造山带的构造分区[G].北京:地质出版社,1990.
    [68]隋静霞.新疆北部额尔齐斯构造带变质作用分析[A].见:涂光炽,新疆北部固体地球科学新进展[M].北京:科学出版社,1993:281-291.
    [69]张翠光,魏春景,侯荣玖,等.新疆阿尔泰造山带低压变质作用相平衡研究[J].中国地质,2007,34(01):34-41.
    [70]臧文栓,陈柏林,吴淦国,等.阿尔泰富蕴——青河一带东段变形岩石X光组构分析[J].地质通报,2007,26(09):1189-1197.
    [71]王京彬,张进红,丁汝福,等.中国阿尔泰造山带构造—成矿系统:第31届国际地质大会,北京,2000.
    [72]龙晓平,袁超,孙敏,等.北疆阿尔泰南缘泥盆系浅变质碎屑沉积岩地球化学特征及其形成环境[J].岩石学报,2008,24(04):718-732.
    [73]吴志亮.新疆阿尔泰山南缘早泥盆世火山——沉积建造及其穿时性[J].昆明理工大学学报(理工版),1992,17(06):1-10.
    [74]周刚,张招崇,罗世宾,等.新疆阿尔泰山南缘玛因鄂博高温型强过铝花岗岩:年龄、地球化学特征及其地质意义[J].岩石学报,2007,23(08):1909-1920.
    [75]庄育勋.中国阿尔泰造山带热动力时空演化和造山过程[M].长春:吉林科学技术出版社,2010:402.
    [76]陈汉林,杨树锋,厉子龙,等.阿尔泰造山带富蕴基性麻粒岩锆石SHRIMPU-Pb年代学及其构造意义[J].岩石学报,2006,22(05):1351-1358.
    [77]童英,洪大卫,王涛,等.阿尔泰造山带南缘富蕴后造山线形花岗岩体锆石U-Pb年龄及其地质意义[J].岩石矿物学杂志,2006,25(02):85-89.
    [78]刘锋,李延河,毛景文,等.阿尔泰造山带阿巴宫花岗岩体锆石SHRIMP年龄及其地质意义[J].地球学报,2008,29(06):795-804.
    [79]张进红,王京彬,丁汝福.阿尔泰造山带康布铁堡组变质火山岩锆石特征和铀—铅年龄[J].中国区域地质,2000,19(03):281-287.
    [80] Chai F, Mao J, Dong L, et al. Geochronology of metarhyolites from theKangbutiebao Formation in the Kelang basin, Altay Mountains, Xinjiang:Implications for the tectonic evolution and metallogeny [J]. GondwanaResearch,2009,In Press, Corrected Proof.
    [81]郑常青,徐学纯,Kato Takenori,等.阿尔泰造山带递增变质带的独居石(CHIME法)年龄及其地质意义[J].矿物岩石地球化学通报,2005,24(增刊):188.
    [82]徐学纯,郑常青,赵庆英.阿尔泰海西造山带区域变质作用类型与地壳演化[J].吉林大学学报(地球科学版),2005,35(1):7-11.
    [83]庄育勋.递增变质作用中变斑晶形成的时间标志——兼论阿尔泰地区变质带形成顺序[J].长春地质学院学报,1991,21(1):17-23.
    [84]张翠光,魏春景,邱林.新疆阿尔泰造山带变质作用演化及其地质意义[J].新疆地质,2004,22(01):16-18.
    [85]杨富全,毛景文,柴凤梅,等.新疆阿尔泰蒙库铁矿床的成矿流体及成矿作用[J].矿床地质,2008,27(06):659-680.
    [86] Xu J, Ding R, Xie Y, et al. The source of hydrothermal fluids for theSarekoubu gold deposit in the southern Altai, Xinjiang, China: Evidencefrom fluid inclusions and geochemistry[J]. Journal of Asian Earth Sciences,2008,32(2-4):247-258.
    [87]王书来.新疆麦兹火山—沉积盆地Fe、PbZn成矿与定位预测研究[D].长沙:中南大学地学与环境工程学院,2005.
    [88]刘秀明,吴志亮,李峰.铁木尔特多金属矿床烃碱流体——热水成矿作用[J].昆明理工大学学报,1999,24(01):145-149.
    [89]徐九华,张国瑞,谢玉玲,等.阿尔泰山南缘赛都金矿床的构造-成矿流体及其演化[J].岩石矿物学杂志,2009,28(02):141-151.
    [90]徐九华,谢玉玲,丁汝福,等.CO2-CH4流体与金成矿作用:以阿尔泰山南缘和穆龙套金矿为例[J].岩石学报,2007,23(08):2026-2032.
    [91]徐九华,丁汝福,林龙华,等.成矿环境中的高密度碳质流体:以阿尔泰南缘为例[J].地学前缘,2010,17(01):202-211.
    [92]徐九华,阴元军,刘泽群,等.阿尔泰南缘下泥盆统地层中的脉状铜金矿化和流体特征[J].矿物学报,2009(S1):264-265.
    [93]徐九华,林龙华,王琳琳,等.阿尔泰克兰盆地VMS矿床的变形变质与碳质流体特征[J].矿床地质,2009,28(05):585-598.
    [94]褚海霞,徐九华,林龙华,等.阿尔泰大东沟铅锌矿的碳质流体及其成因[J].岩石矿物学杂志,2010,29(02):175-188.
    [95]刘敏,张作衡,王永强,等.新疆阿尔泰大东沟铅锌矿床流体包裹体特征及成矿作用[J].矿床地质,2009(03):282-296.
    [96]耿新霞,杨富全,杨建民,等.新疆阿尔泰铁木尔特铅锌矿床流体包裹体研究及地质意义[J].岩石学报,2010,26(3):695-706.
    [97]李红阳.阿尔泰矿床富集区成矿规律与地壳演化[D].北京:中国地质科学院矿床学,1998.
    [98]杨富全,毛景文,柴凤梅,等.新疆阿尔泰蒙库铁矿床的成矿流体及成矿作用[J].矿床地质,2008,27(06):659-680.
    [99]董永观,张传林,芮行健,等.哈巴河-布尔津河流域金、铜成矿作用研究[M].北京:地质出版社,2002:135.
    [100]肖文交,舒良树,高俊,等.中亚造山带大陆动力学过程与成矿作用[J].新疆地质,2008(01):4-8.
    [101]肖文交,韩春明,袁超,等.新疆北部石炭纪-二叠纪独特的构造-成矿作用:对古亚洲洋构造域南部大地构造演化的制约[J].岩石学报,2006(05):1062-1076.
    [102]朱永峰.中亚成矿域地质矿产研究的若干重要问题[J].岩石学报,2009(06):1297-1302.
    [103] Seng r A M C, Natal'In B A, Burtman V S. Evolution of the Altaid tectoniccollage and Palaeozoic crustal growth in Eurasia[J]. Nature,1993,364(22):299-307.
    [104] de Boorder H. Tectonic Evolution and Metallogeny of the Chinese Altayand Tien Shan by Mao, J., Goldfarb, R.J., Seltmann, R., Wang, D., Xiao, W.,Hart, C.(Eds), International Association on the Genesis of Ore Deposits(IAGOD), Guidebook Series,10. Centre for Russian and Central AsianMineral Studies (CERCAMS), Natural History Museum, London, UK,2003,282p.[J].2005,26(1-2):181-183.
    [105] Chikov B M, Zinoviev S V, Deyev E V. Mesozoic and Cenozoic collisionalstructures of the southern Great Altai[J].2008,49(5):323-331.
    [106] Babichev A V, Novikov I S, Polyansky O P, et al. Modeling Cenozoiccrustal deformation in Gorny Altai[J].2009,50(2):104-114.
    [107] Dehandschutter B, Vysotsky E, Delvaux D, et al. Structural evolution of theTeletsk graben (Russian Altai)[J].2002,351(1-2):139-167.
    [108] Thomas J C, Lanza R, Kazansky A, et al. Paleomagnetic study of Cenozoicsediments from the Zaisan basin (SE Kazakhstan) and the Chuya depression(Siberian Altai): tectonic implications for central Asia[J].2002,351(1-2):119-137.
    [109] Buslov M M, Watanabe T, Fujiwara Y, et al. Late Paleozoic faults of theAltai region, Central Asia: tectonic pattern and model of formation[J].Journal of Asian Earth Sciences,2004,23(5):655-671.
    [110] Cunningham D. Active intracontinental transpressional mountain building inthe Mongolian Altai: Defining a new class of orogen[J].2005,240(2):436-444.
    [111]肖序常.试论新疆北部大地构造演化[M]//新疆地质科学(第1辑).北京:地质出版社,1990:47-68.
    [112]何国琦,李茂松,刘德权,等.中国新疆古生代地壳演化及成矿[M].疆乌鲁木齐:新疆人民出版社、香港文化教育出版社,1994:437.
    [113]涂光炽.新疆北部地质演化与成岩成矿的若干特点[M]//新疆北部固体地球科学新进展.北京:科学出版社,1993:3-10.
    [114]肖序常,汤耀庆.古中亚复合巨型缝合带南缘构造演化[M].北京:北京科学技术出版社,1991:150.
    [115]肖序常,汤耀庆,冯益民,等.新疆北部及其邻区大地构造[M].北京:地质出版社,1992:169.
    [116]陈哲夫,梁云海.新疆多旋回构造与板块运动[J].新疆地质,1991,9(2):95-107.
    [117]李天德,波里扬斯基B. H..中国和哈萨克斯坦阿尔泰大地构造及地壳演化[J].新疆地质,2001,19(1):27-32.
    [118]李天德,祁志明,肖世禄,等.中国和哈萨克斯坦阿尔泰地质及成矿研究的新进展:献给三十界国际地质大会“八五”地质科技重要成果学术交流会议论文选集,北京,1996[C].冶金工业出版社,.
    [119] Gas kov I V, Distanov E G, Kalugin I A, et al. Metallogeny andpetrochemical features of Devonian volcanism in Rudny Altai and GornyAltai[J]. Russian Geology and Geophysics,1999,40(5):686-699.
    [120]李志纯,赵志忠.阿尔泰造山带和阿尔泰山构造成矿域的形成[J].地质科学,2002,37(04):483-490.
    [121]徐九华,丁汝福,谢玉玲,等.阿尔泰山南缘萨热阔布金矿床的纯CO2流体[J].科学通报,2005,50(04):380-386.
    [122]胡霭琴,张国新,李启新,等.新疆北部铅同位素地球化学与地壳演化
    [M]//北京:科学出版社,1993:27-38.
    [123]何国琦,韩宝福,岳永君,等.中国阿尔泰造山带的构造分区和地壳演化[A].见:新疆地质科学第2辑[M].北京:地质出版社,1990:9-20.
    [124]叶庆同,傅旭杰,王保良.新疆阿尔泰山南缘多金属成矿带的成矿规律[J].地质学报,1998(04).
    [125]廖启林,戴塔根,邓吉牛,等.新疆北部主要金矿床的成矿地球化学特征[J].矿床地质,2000,19(4):297-310.
    [126] de Boorder H. Magmatism and Metallogeny of the Altai and Adjacent LargeIgneous Provinces with an Introductory Essay on the Altaids, Seltmann, R.,Borisenko, A., Fedoseev, G.(Eds.), International Association on the Genesisof Ore Deposits (IAGOD), Guidebook Series16, Centre for Russian andCentral EurAsian Mineral Studies (CERCAMS), Natural History Museum,London, U.K.,2007, ISBN:5-91220-008-6,294pp.[J].2008,34(4):610-611.
    [127]吴志亮.阿尔泰南缘泥盆纪火山——沉积盆地形成机制探讨[J].有色金属矿产与勘查,1996,5(05):272-277.
    [128]郭正林,康吉昌,仇银江,等.新疆阿尔泰山南缘蒙库盆地火山沉积构造演化与成矿[J].矿产与地质,2006,20(4-5):348-352.
    [129]党延霞,游军,徐九华,等.新疆阿尔泰蒙库铁矿成矿作用特征[J].新疆地质,2010,28(03):280-284.
    [130]郑常青,徐学纯,ENAMI Masaki,等.新疆阿勒泰红柱石——矽线石型递增变质带特征及其PT条件研究[J].矿物岩石,2005,25(4):45-51.
    [131]牟保磊.元素地球化学[M].北京:北京大学出版社,1999:227.
    [132] Rollinson H R. Using Geochemical Data: Evaluation, Presentation,Interpretation: Harlow (Longman)[M]. New York: Longman Scientific&Technical,1993:352.
    [133]李万亨,杨昌明.冀东滦县地这前震旦纪海底火山沉积变质铁矿的古构造及地球化学环境[J].地球科学,1983,22(3):117-126.
    [134] Thorne W, Hagemann S, Vennemann T, et al. Oxygen IsotopeCompositions of Iron Oxides from High-Grade BIF-Hosted Iron OreDeposits of the Central Hamersley Province, Western Australia: Constraintson the Evolution of Hydrothermal Fluids[J]. Economic Geology,2009,104(7):1019-1035.
    [135]刘军,靳淑韵.辽宁弓长岭铁矿磁铁富矿的成因研究[J].现代地质,2010,24(1):80-88.
    [136] Perry E C, Tan F C, Morey G B. Geology and stable isotope geochemistryof the Biwabik Iron Formation, northern Minnesota[J]. Economic Geology,1973,68(07):1110-1125.
    [137]薛春纪,姬金生,张连昌,等.北祁连镜铁山海底喷流沉积铁铜矿床[J].矿床地质,1997,16(1):21-30.
    [138] Rose A W, Herrick D C, Deines P. An oxygen and sulfur isotope study ofskarn-type magnetite deposits of the Cornwall type, southeasternPennsylvania[J]. Economic Geology,1985,80(4):418-443.
    [139]陈运轩.同位素地球化学在确定大冶铁矿成矿物质来源中的应用[J].武汉工程职业技术学院学报,1997(02):11-17.
    [140]孙静,杜维河,王德忠,等.河北承德大庙黑山钒钛磁体矿床地质特征与成因探讨[J].地质学报,2009,83(09):1344-1364.
    [141]赵斌,赵劲松.长江中下游地区若干铁铜(金)矿床中块状及脉状钙质夕卡岩的氧锶同位素地球化学研究[J].地球化学,1997,26(5):34-53.
    [142]徐林刚,杨富全,李建国,等.新疆富蕴县蒙库铁矿地质地球化学特征[J].岩石学报,2007,23(10):2653-2664.
    [143] Henderson P. Rare earth element geochemistry[M]. Amsterdam: ElsevierScience,1983:510.
    [144]王中刚,于学元,赵振华.稀土元素地球化学[M].北京:科学出版社,1989:535.
    [145] Hugh R R. Using Geochemical Data: Evaluation, Presentation,Interpretation[M]. New York: Longman Scientific&Technical,1993:352.
    [146]林龙华,徐九华,单立华,等.新疆蒙库铁矿床的变形变质及其成矿作用[J].岩石学报,2010,26(8):2399-2412.
    [147]胡云中,邓坚,袁宁,等.桂北地区地层及锡矿带地球化学[M].北京:北京科学技术出版社,1990:122.
    [148] Lottermoser B G. Rare earth elements and hydrothermal ore formationprocesses[J]. Ore Geology Reviews,1992,7(1):25-41.
    [149]杨富全,毛景文,徐林刚,等.新疆蒙库铁矿床稀土元素地球化学及对铁成矿作用的指示[J].岩石学报,2007,23(10):2443-2456.
    [150]毛光周,华仁民,高剑峰,等.江西金山含金黄铁矿的稀土元素赋存状态研究[J].矿物学报,2006,26(04):409-418.
    [151]刘锋.新疆阿尔泰阿巴宫——蒙库一带铁矿床成矿作用与成矿规律研究[D].北京:中国地质科学院,2009.
    [152] Frietsch R, Perdahl J A. Rare earth elements in apatite and magnetite inKiruna-type iron ores and some other iron ore types[J]. Ore GeologyReviews,1995,9(6):489-510.
    [153] Mills R A, Elderfield H. Rare earth element geochemistry of hydrothermaldeposits from the active TAG Mound,26N Mid-Atlantic Ridge[J].Geochimica et cosmochimica acta,1995,59(17):3511-3524.
    [154]陈福坤,李秋立,李潮峰,等.高精度质谱计在同位素地球化学的应用前景[J].地球科学,2005(06):639-645.
    [155] Yang J H, Zhou X H. Rb-Sr, Sm-Nd, and Pb isotope systematics of pyrite:Implications for the age and genesis of lode gold deposits[J]. Geology,2001,29(08):711-719.
    [156] Nakai S, Halliday A N, Kesler S E, et al. Rb-Sr dating of sphalerites fromMississippi Valley-type (MVT) ore deposits[J]. Geochimica etCosmochimica Acta,1993,57(2):417-427.
    [157]王彦斌,唐索寒,王进辉,等.安徽铜陵新桥铜金矿床黄铁矿Rb/Sr同位素年龄数据——燕山晚期成矿作用的证据[J].地质论评,2004,50(05):538-542.
    [158]姚军明,华仁民,林锦富.湘南宝山矿床REE, Pb-S同位素地球化学及黄铁矿Rb-Sr同位素定年[J].地质学报,2006,80(07):1045-1054.
    [159]韩以贵,李向辉,张世红,等.豫西祁雨沟金矿单颗粒和碎裂状黄铁矿Rb-Sr等时线定年[J].科学通报,2007,52(11):1307-1311.
    [160] Yang J, Zhou X. The Rb-Sr isochron of ore and pyrite sub-samples fromLinglong gold deposit, Jiaodong Peninsula, eastern China and theirgeological significance[J]. Chinese Science Bulletin,2000,45(24):2272-2277.
    [161] Li Q L, Chen F, Yang J H, et al. Single grain pyrite Rb-Sr dating of theLinglong gold deposit, eastern China[J]. Ore Geology Reviews,2008,34(3):263-270.
    [162]刘玉龙,杨刚,陈江峰,等.白云鄂博超大型稀土—铌—铁矿床黄铁矿Re-Os定年[J].科学通报,2005,50(002):172-175.
    [163]陈懋弘,毛景文,屈文俊,等.贵州贞丰烂泥沟卡林型金矿床含砷黄铁矿Re-Os同位素测年及地质意义[J].地质论评,2007,53(003):371-382.
    [164] Wolfgang M, Mancktelow N S, Meier M. Rb–Sr microchrons ofsynkinematic mica in mylonites: an example from the DAV fault of theEastern Alps[J]. Earth and Planetary Science Letters,2000,180(3-4):385-397.
    [165] Wolfgang M. Strengthening the link between geochronology, textures andpetrology[J]. Earth and Planetary Science Letters,2003,206(3-4):237-251.
    [166] Ludwig K R. User's manual for Isoplot3.70: a geochronological toolkit forMicrosoft Excel[M]. Special Publication No.4. Berkeley GeochronologyCenter,2008:76.
    [167] Brooks C, Hart S R, Wendt I. Realistic use of two-error regressiontreatments as applied to rubidium-strontium data[J]. Reviews of Geophysics,1972,10(2):551-577.
    [168] Craig J R, Vokes F M, Solberg T N. Pyrite: physical and chemicaltextures[J]. Mineralium Deposita,1998,34(1):82-101.
    [169] Faure G. Principles of Isotope Geology (Second Edition)[M]. New York:John Wiley and Sons,1986:608.
    [170]杨富全,张志欣,屈文俊,等.新疆阿尔泰蒙库铁矿床的辉钼矿Re-Os年龄及意义[J].地质学报,2011(03):396-404.
    [171] DePaolo D J. Crustal growth and mantle evolution: inferences from modelsof element transport and Nd and Sr isotopes[J]. Geochimica etCosmochimica Acta,1980,44(8):1185-1196.
    [172] Hamilton P J, O'NIONS R K, Evensen N M, et al. Sm–Nd isotopicinvestigations of Isua supracrustals and implications for mantle evolution[J].Nature,1978,272(02):41-43.
    [173]张宏飞,赵志丹.从岩石Sm—Nd同位素模式年龄论北秦岭地壳增生和地壳深部性质[J].岩石学报,1995,11(002):160-170.
    [174]韩吟文,马振东,张宏飞,等.地球化学[M].北京:地质出版社,2003:370.
    [175]刘伟,刘丽娟,刘秀金,等.阿尔泰南缘早泥盆世康布铁堡组的SIMS锆石U-Pb年龄及其向东向北延伸的范围[J].岩石学报,2010(02):387-400.
    [176] DePaolo D J, Wasserburg G J. Nd isotopic variations and petrogeneticmodels[J]. Geophysical Research Letters,1976,3(5):249-252.
    [177] McCulloch M T, Wasserburg G J. Sm-Nd and Rb-Sr chronology ofcontinental crust formation[J]. Science,1978,200(4345):1003-1011.
    [178] Nelson B K, DePaolo D J. Rapid production of continental crust1.7to1.9by ago: Nd isotopic evidence from the basement of the North Americanmid-continent[J]. Bulletin of the Geological Society of America,1985,96(6):746-754.
    [179] DePaolo D J. Age dependence of the composition of continental crust:evidence from Nd isotopic variations in granitic rocks[J]. Earth andplanetary science letters,1988,90(3):263-271.
    [180] DePaolo D J, Linn A M, Schubert G. The continental crustal agedistribution: methods of determining mantle separation ages from Sm-Ndisotopic data and application to the Southwestern United States[J]. Journalof Geophysical Research,1991,96(B2):2071-2088.
    [181] Taylor S R, McLennan S M. The continental crust: Its composition andevolution: An examination of the geochemical record preserved insedimentary rocks[M]. Blackwell scientific publications,1985:312.
    [182] Miller R G, O'Nions R K. Source of Precambrian chemical and clasticsediments[J]. Nature,1985,314:325-330.
    [183]胡霭琴,张国新,陈义兵,等.新疆大陆基底分区模式和主要地质事件的划分[J].新疆地质,2001(01):12-19.
    [184] McCulloch M T, Bennett V C. Progressive growth of the Earth's continentalcrust and depleted mantle: geochemical constraints[J]. Geochimica etCosmochimica Acta,1994,58(21):4717-4738.
    [185] Condie K C. Episodic continental growth and supercontinents: a mantleavalanche connection?[J]. Earth and Planetary Science Letters,1998,163(1-4):97-108.
    [186] Brown P E. FLINCOR: a microcomputer program for the reduction andinvestigation of fluid-inclusion data[J]. American Mineralogist,1989,74(11-12):1390-1393.
    [187] Roedder E. Fluid inclusions[M]. Mineralogical Society of America,1984:1-644.
    [188] Crerar D A, Susak N J, Borcsik M, et al. Solubility of the buffer assemblagepyrite+pyrrhotite+magnetite in NaCl solutions from200to350°C[J].Geochimica et Cosmochimica Acta,1978,42(9):1427-1437.
    [189] Wood S A, Crerar D A, Borcsik M P. Solubility of the assemblagepyrite-pyrrhotite-magnetite-sphalerite-galena-gold-stibnite-bismuthinite-argen-tite-molybdenite in H2O-NaCl-CO2solutions from200degrees to350degrees C degrees[J]. Economic Geology,1987,82(7):1864-1887.
    [190] Chou I, Eugster H P. Solubility of magnetite in supercritical chloridesolutions[J]. American Journal of Science,1977,277(10):1296-1314.
    [191] Kramar U, Harting M, Rickers K, et al. μ-Synchrotron radiation excitedX-ray fluorescence microprobe trace element studies on spherules of theCretaceous/Tertiary boundary transitions of NE-Mexico and Haitisamples[J].2007,62(8):824-835.
    [192] Uzonyi I, Sz R G, Rózsa P, et al. Characterization of impact materialsaround Barringer Meteor Crater by micro-PIXE and micro-SRXRFtechniques[J]. Nuclear Instruments and Methods in Physics ResearchSection B: Beam Interactions with Materials and Atoms,2004,219:555-560.
    [193] Mavrogenes J A, Bodnar R J, Anderson A J, et al. Assessment of theuncertainties and limitations of quantitative elemental analysis of individualfluid inclusions using synchrotron X-ray fluorescence (SXRF)[J].Geochimica et Cosmochimica Acta,1995,59(19):3987-3995.
    [194] Sz R G, Rózsa P, Vekemans B, et al. Characterization of cosmicmicro-objects by SEM-EDS, DIGE, MICRO-PIXE and SRXRFtechniques[J]. Acta Geologica Hungarica,2005,48(4):419-434.
    [195]邬春学,黄宇营,杨春,等.基于SRXRF的单个流体包裹体无损分析及其在石油地质中的应用[J].核技术,2002,25(10):793-798.
    [196]于福生,袁万明,韩松,等.吉林龙岗晚更新世玄武岩的铀系组分法年龄证据[J].高能物理与核物理,2003,27(11):1039-1043.
    [197]连玉,徐文艺,杨丹,等.西藏冈底斯甲马和南木矿床流体包裹体SR-XRF研究[J].岩石矿物学杂志,2008,27(3):185-198.
    [198]李建康,王登红,刘善宝,等.川西伟晶岩型矿床中流体包裹体的SRXRF分析[J].大地构造与成矿学,2008,32(3):332-337.
    [199] Robb L. Introduction to ore-forming processes[M]. Blackwell PublishingCompany,2005:373.
    [200]魏俊浩,张德会,王思源,等.剪切带中矿化与非矿化地段流体——岩石相互作用差异性研究[J].地质科学,1999(04):473-484.
    [201]张瑞华,张绍宗.北京密云地区构造变形特征及其对铁矿的控制[J].冶金地质动态,1991(5):18-22.
    [202]顾德林,李志忠,李龙,等.冀东迁安铁矿区早前寒武纪硅铁岩矿层褶皱变形序列[J].现代地质,1990,3(4):60-69.
    [203] Cox D P, Singer D A. Mineral deposit models[M]. Washington: UnitedStates Government Printing Office,1986.
    [204]杨富全,张志欣,屈文俊,等.新疆阿尔泰蒙库铁矿床的辉钼矿Re-Os年龄及意义[J].地质学报,2011,85(03):396-404.
    [205] Wan B, Zhang L, Xiao W. Geological and geochemical characteristics andore genesis of the Keketale VMS Pb-Zn deposit, Southern AltaiMetallogenic Belt, NW China[J]. Ore Geology Reviews,2010,37(2):114-126.
    [206]欧阳玉飞,刘继顺,韩海涛,等.新疆阿尔泰地区蒙库-可可塔勒铁矿带C7磁异常地面查证效果及铁矿远景[J].物探与化探,2009,33(03):266-269.
    [207]贾长顺,徐九华,曾庆栋,等.好力宝铜铁矿隐伏矿体定位预测[J].矿业快报,2007(04):72-75.
    [208]申萍,沈远超,刘铁兵,等.EH4连续电导率成像仪在隐伏矿体定位预测中的应用研究[J].矿床地质,2007,26(001):70-78.
    [209]孙兴国,刘建明,刘洪涛,等.综合物探方法在好力宝铜矿床的应用[J].地球物理学进展,2007,22(6):1910-1915.
    [210]史保连.甚低频电磁法[M].北京:地质出版社,1986:148.
    [211]白大明,聂凤军.甚低频电磁法对脉状矿床勘查评价的意义——以金、铅锌(银)和萤石矿为例[J].矿床地质,2002,21(04):408-413.
    [212]张作伦,曾庆栋,叶杰,等.甚低频电磁法在矿体勘查中的应用[J].地质与勘探,2008,44(001):67-69.
    [213]赵国泽,陈小斌,汤吉.中国地球电磁法新进展和发展趋势[J].地球物理学进展,2007,22(4):1171-1180.
    [214]张寿庭,徐旃章.甚低频电磁法在矿体空间定位预测中的应用[J].地质科技情报,1999,18(004):85-88.
    [215]肖克炎,刘冬林.应用GIS技术研制矿产资源评价系统[J].地球科学:中国地质大学学报,1999,24(5):525-528.
    [216]肖克炎,张晓华,地质,等.矿产资源GIS评价系统[M].北京:地质出版社,2000:140.
    [217]娄德波,肖克炎,丁建华,等.矿产资源评价系统(MRAS)在全国矿产资源潜力评价中的应用[J].地质通报,2010(11):1677-1684.
    [218]陈郑辉,陈毓川,王登红.矿产资源潜力评价示范研究——以南岭东段钨矿资源潜力评价为例[M].北京:地质出版社,2009:195.
    [219]陈芳,陈凌瑾,姚孝德,等.MRAS技术在安徽庐枞地区铁矿预测中的应用[J].国土资源信息化,2010(02):41-44.
    [220]黄照强,黄树峰,付勇,等.基于GIS的冈底斯东段铜多金属矿多元信息成矿预测与潜力评价[J].地质与勘探,2011(01):113-120.
    [221]薛顺荣,肖克炎,丁建华.基于MRAS的证据权重法在香格里拉地区的综合信息成矿预测[J].吉林大学学报(地球科学版),2008(05):738-744.
    [222]周文博.基于MRAS的衡山地区铀矿预测[J].科技经济市场,2011(03):9-10.
    [223]胡光道,陈建国.金属矿产资源评价分析系统设计[J].地质科技情报,1998,17(01):45-49.
    [224]陈金声,吴现兴.基于MORPAS的证据权重法在百顺地区铀成矿预测中的应用[J].铀矿地质,2011(05):302-308.
    [225]吴现兴,李冬玉,陈金声,等.基于MORPAS空间分析分模块的铀矿找矿有利度分析——以百顺地区为例[J].化工矿产地质,2010(04):226-231.
    [226]王小平,侯岚,王满仓.基于GIS证据权重法的陕西旬阳地区铅锌成矿远景区定量预测[J].陕西地质,2010(01):98-103.
    [227]胡鹏,张均,石凯,等.基于MORPAS证据权法的凤太Pb-Zn矿床远景区预测[J].地质找矿论丛,2009(03):205-210.
    [228]矫东风,郭忠,吕新彪,等.MORPAS支持下的甘肃临潭—宕昌地区铅锌矿床多源信息预测[J].矿床地质,2005(02):185-192.
    [229]刘星,胡光道.应用MORPAS系统证据权重法进行多源信息成矿预测——以澜沧江南段地区为例[J].地质与勘探,2003(04):65-68.
    [230]武汉地质学院勘探教研室数学地质组.矿床统计预测简介②地质变量的选择、取值和变换[J].地质与勘探,1980(02):30-35.
    [231]王世称,陈永良,夏立显.综合信息矿产预测理论与方法[M].北京:科学出版社,2002:343.
    [232]宋暖和,潘志刚,毛先成.地质变量的多级分解及其应用[J].地质与勘探,2005,41(003):71-74.
    [233]李景朝,刘少华,严光生.大型超大型金属矿床综合信息成矿预测方法研究[J].地球物理学进展,2002(04):736-744.
    [234]陈永良,伍伟,刘大有,等.基于MapInfo的地质变量自动化选择与赋值[J].长春科技大学学报,2000(03):289-292.
    [235]金友渔.定性地质变量分维数估计与显微地质异常[J].地球科学:中国地质大学学报,1998,23(02):153-157.
    [236]秦克章,张进红,王京彬,等.阿尔泰可可塔勒多金属矿带大型矿床的找矿评价标志[J].岩土工程界,1998,7(3):136-141.
    [237]徐九华,单立华,丁汝福,等.阿尔泰铁木尔特铅锌矿床的碳质流体组合及其地质意义[J].岩石学报,2008,24(09):2094-2104.
    [238]郝广成,常和平.成矿有利度分析方法在山东平邑铜石南部地区金矿综合信息成矿预测中的应用[J].山东地质,2002(02):16-19.
    [239] Bonham-Carter G F, Agterberg F P, Wright D F. Weights of evidencemodelling: a new approach to mapping mineral potential[J]. StatisticalApplications in Earth Sciences,1989,89(9):171-183.
    [240] Botbol J M. An application of characteristic analysis to mineral exploration:Proc.9th Int[J]. Sym. on Techniques for Decision-Making in the MineralIndustry, Special,1971,12:92-99.
    [241]何国琦,韩宝福,岳永君,等.中国阿尔泰造山带的构造划分和地壳演化[M].北京:地质出版社,1990:
    [242]陈衍景,富士谷.新疆北部金矿化与碰撞造山作用的耦合及金等矿床的分布规律[J].黄金地质,1995,01(03):8-16.
    [243]李志纯.阿尔泰山南缘两类构造成矿类型金矿床及其成矿模式[J].大地构造与成矿学,1999(01):16-28.
    [244]刘悟辉,廖启林.阿尔泰南缘与韧性剪切带有关金矿床成矿特征浅析[J].地质找矿论丛,1999,14(003):42-49.
    [245]郭正林,郭旭吉,王书来,等.阿尔泰南缘麦兹泥盆纪火山-沉积盆地成矿特点及其铅锌、铁、金找矿潜力分析[J].矿床地质,2007,26(01):128-138.
    [246]陈大经,尹意求,胡兴坪,等.新疆沙尔布尔海底火山喷流沉积磁铁矿床成因[J].矿产与地质,2002(05):257-261.
    [247]杨荣兴.再论细碧-角斑岩系及成因[J].矿产与地质,2000,14(2):109-113.
    [248]王日伦,孙忠和,任富根,等.中国海相火山——沉积成矿理论及相关地质问题[M].地质出版社,1988:231.
    [249]李智明,薛春纪,王剑辉,等.中国新疆及周边国家和地区典型矿床特征对比研究[J].中国地质,2006,33(01):160-168.
    [250]何国琦,朱永峰.中国新疆及其邻区地质矿产对比研究[J].中国地质,2006,33(03):451-460.
    [251] Graupner T, Kempe U, Dombon E, et al. Fluid regime and ore formation inthe tungsten(-yttrium) deposits of Kyzyltau (Mongolian Altai): evidence forfluid variability in tungsten-tin ore systems[J].1999,154(1-4):21-58.
    [252] Wang T, Tong Y, Jahn B, et al. SHRIMP U-Pb Zircon geochronology of theAltai No.3Pegmatite, NW China, and its implications for the origin andtectonic setting of the pegmatite[J]. Ore Geology Reviews,2007,32(1-2):325-336.
    [253] Theunissen K, Smirnova L, Dehandschutter B. Pseudotachylytes in thesouthern border fault of the Cenozoic intracontinental Teletsk basin (Altai,Russia)[J]. Tectonophysics,2002,351(1-2):169-180.
    [254] Sun M, Yuan C, Xiao W, et al. Zircon U-Pb and Hf isotopic study ofgneissic rocks from the Chinese Altai: Progressive accretionary history inthe early to middle Palaeozoic[J].2008,247(Chemical Geology):352-383.
    [255] Sennikov N V, Obut O T, Iwata K, et al. Lithological Markers andBio-indicators of Deep-water Environments During Paleozoic SiliceousSedimentation (Gorny Altai Segment of the Paleo-Asian Ocean)[J].2004,7(3):843-852.
    [256] Carl W. BRAUHART, David L. HUSTON, David I. GROVES, et al.Geochemical Mass-Transfer Patterns as Indicators of the Architecture of aComplete Volcanic-Hosted Massive Sulfide Hydrothermal AlterationSystem, Panorama District, Pilbara, Western Australia[J]. EconomicGeology,2001,96:1263-1278.
    [257] Fernando Tornos, Michael Solomon, Carmen Conde, et al. Formation of theTharsis Massive Sulfide Deposit, Iberian Pyrite Belt: Geological,Lithogeochemical, and Stable Isotope Evidence for Deposition in a BrinePool[J]. Economic Geology,2008,103:185-214.
    [258] Michael M. Gustin, Christopher J. Eastoe. Geology and Ore Petrography ofPermian Kuroko-Type Volcanogenic Massive Sulfide Deposits of the BullyHill Area, East Shasta District, California[J]. Economic Geology,2000,95:343-360.
    [259] Damien Gaboury, Vital Pearson. Rhyolite Geochemical Signatures andAssociation with Volcanogenic Massive Sulfide Deposits: Examples fromthe Abitibi Belt, Canada[J]. Economic Geology,2008,103:1531-1562.
    [260] S. M. Hamilton, E. M. Cameron, M. B. McClenaghan, et al. Redox, pH andSP variation over mineralization in thick glacial overburden. Part II: feldinvestigation at Cross Lake VMS property[J]. Geochemistry: Exploration,Environment, Analysis,2004,4:45-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700