连续流变挤压铝合金导电材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合国家高技术研究863计划项目(资助号2007AA03Z11)根据铝合金导电材料的生产和研究现状,提出了采用连续流变挤压成形工艺制备高性能6201铝合金导电材料,利用DZJ-350型连续流变挤压机,SANSI电子拉伸试验机、QJ36型两用直流电桥、OLYMPUS金相显微镜等方法和手段,研究了6201合金线材材的连续流变挤压成形、冷拔加工、热处理,以及扩展成形技术制备该合金管材的理论与工艺。主要工作及获得的研究成果如下:
     1、揭示了工艺参数对连续流变挤压成形6201铝合金导电线材组织与性能的影响规律。连续流变挤压成形在线固溶合金线材微观组织为细等轴晶,提高合金的浇注温度,合金线材的晶粒增大,合金线材的抗拉强度和延伸率降低、导电率升高;T8时效热处理提高了合金线材的综合力学性能和导电性能。升高时效温度,合金的时效速度和导电性能提高,力学性能下降,在150℃的低温时效热处理时,6201合金线材具有较高的抗拉强度和导电率。
     2、建立了Φ6mm6201铝合金线材连续流变挤压成形的最佳工艺。浇注温度为720~740℃;冷却水流量为15-20L/min;在线固溶温度为520℃;时效温度为150℃,时效时间为10-14h;T6热处理6201合金线材抗拉强度为320MPa,延伸率为7.8%,电阻率为31.5nΩm。比我国铝合金架空导线(LHA2型)的抗拉强度,延伸率和等效导电率分别提高11.1%、17%和0.1%。
     3、制定了6201合金线材的低温形变热处理工艺。T6处理线材的抗拉强度320MPa、延伸率7.8%和电阻率31.5nΩm,T8处理线材抗拉强度327MPa、延伸率14%和电阻率33.4nΩm,T9处理线材抗拉强度336MPa、延伸率7.5%和电阻率31.3nΩm。6201合金线材T8状态抗拉强度和等效导电率分别比在线固溶时效连铸连轧工艺制备合金线材的强度提高5.6%,等效导电率提高1.43%;6201合金线材T9工艺拉伸强度和等效导电率分别比在线固溶时效连铸连轧工艺提高6.2%,导电率提高1.1%。
     4、设计了管材连续扩展成形的模具及工艺,确定了连续扩展成形Φ80×10mm管材的最佳工艺参数,成功制备了6201铝合金导电管材。浇注温度为760~780℃,模具预热温度为500~550℃;
     5、研究了连续扩展成形过程中管材的缺陷形成机理,制定了有效的预防措施。
Based on the production and the current condition of alloy conduction, high-quality 6201 conductive material was prepared by utilizing continuously rheologic extrusion in the paper; The process and theory of alloy pipe by the method of formation of continuously rheologic extrusion, cold drawing treatment, heat processing and formation techonology were studied by using DZJ-350 continuously rheologic extrusion machine、SANSI electrical tensile testing machine、dural purpose electrical bridge of QJ36、OLYMPUS metalloscope analytical methods and so on. Main work and results were as follows:
     (1) It disclosed that processing parameter had effect on the lawof texture(microstructure) and performance by continuously rheologic extruding; Tiny equiaxed grain could be gained by continuously rheologic extruding on line and solid solution, crystal grain was rough, strength of tension and elongation percent reduced, specific conductance lifted with the rise of the point of pouring; The synthetical mechanical property and conductive property were improved by T8 aging treatment; The alloy aging velocity and conductive property improved, while mechanical property reduced with the aging temperature higher; The 6201 alloy had high strength and specific conductance with thermomechanical treatmentat at 150℃.
     (2) The optimal techonology of 06mm 6201 alloy wire was designed by continuously rheologic extrusion in the paper. The point of pouring arranged from 720℃to 740℃, cold water flux arranged from 15 to 20L/min, the temperature of on line solid solution was 520℃, cooling rate was 30℃/s, aging temperature was 150℃, aging time arranged from 10 to 14h, the 6201 alloy wire of T6 treatment tensile strength was 320MPa, elongation was 7.8%, electrical resistivity was 31.5 nΩ.m; The tensile strength, elongation and electrical resistivity increases by 11.1%,17% and 0.2% according to standard of our country.
     (3) The low temperature thermomechanical treatment was designed; the tensile strength, elongation and conductance of T8 and T9 is 327MPa,14% and 33.4nQm;336MPa,7.5% and 31.3 nΩm.The tensile strength and specific conductance of the 6201 alloy wire of T8 treatment increased by 5.6% and 1.43% respectively compared to continuous metal cast and tandem rolling of solid solution on line. The tensile strength and specific conductance of the 6201 alloy wire of T9 treatment increased by 6.2% and 1.1% respectively compared to the continuous metal cast and tandem rolling on line.
     (4) Craft and programme of continuous rheologic extrusion forming was designed in the paper; The optimal craft parameter ofΦ80×10mm pipes was determines and the pipes of 6201 alloy was prepared successfully. The point of pouring arranged from 760℃to 780℃, the preheating temperature arranged from 450℃to 500℃.
     (5) The deficiency formatting mechanism of 6201 alloy's continuous rheologic extrusion was explored in the paper and the effective precautionary measures was designed.
引文
1.张金玉.500KV输电线路用架空导线的制造[J],电线电缆,2003,5:18-19.
    2.张愈祖,张辉,彭大暑,刘育英.6201铝合金热连轧的实验模拟[J],中国有色金属学报,2000,10(4):525-528.
    3. F.Class, M.Follon, Casting, rolling and drawing 6201 alloy for overhead conductor[J], Wire journal international,1983,6:64-69.
    4.曹汉民,兰慧琴,那兴杰,史致远,温景林.连续铸挤成形技术及其发展[J],有色矿冶,1998,5:37-38.
    5.周天国,温景林,王顺成.6201电工铝合金线材连续铸挤工艺研究[J],轻合金加工技术,2004,32(6):9-11.
    6.史志远,温景林,白光润.架空导线(Overhead Line)发展[J],轻合金加工技术,1996,24(8):5-8.
    7.刘岩,高淑阁.铝-镁-硅合金管母线在高压配电装置中的应用[J],轻合金加工技术,2001,29(12):35-36.
    8. J.R.Dawson,孙泽强,黄克武译.全铝合金导线的制造[J], Wire Journal International, 1991,4:41-44.
    9.陈彦博,铝材连续铸挤的实验研究与数值模拟[D],东北大学博士论文,2002,30(2):27-28.
    10. Green D. Continous. Extrusion Forming of Wire[J], Journal of the Institute ofMetals, 1972,10(10):295-300.
    11.陈彦博,温景林.铝材连续铸挤动态凝固过程有限元分析[J].中国有色金属学报,2001,11(1):16-17.
    12.陈彦博,温景林.连续铸挤生产铝管的力学计算与分析研究[J],轻合金加工技术,2002,30(2):27-29.
    13.曹汉民,兰慧琴,那兴杰,史志远,温景林.连续铸挤成形技术及其发展[J],有色矿冶,1998,5:37-40.
    14.雷毅.新一代铝包钢芯铝绞线的特点与应用[J],山西电力技术,2000,1:44-45.
    15.温景林,管仁国,石路,李英龙,曹富荣.连续铸挤技术的发展及应用[J],轻合金加工技术,2005,33(4):12-15.
    16.温景林.铝材连续铸挤工艺的研究[J].东北工学院学报,1992,13(5):84-88.
    17. Renguo Guan, Jinglin Wen, Yinglong Li, Xianghua Liu. Continuous Extending Forming of semisolid A2017 Alloy Manufactured by SRS Process[J], RARE METAL,2002,12: 15-18.
    18.钟毅.连续挤压技术及其应用[M],北京:冶金工业出版社,2004,14-14.
    19.张新宇,宋保韫.连续挤压产品的质量控制[J],大连铁道学院学报,1998,19(1):33-38.
    20.李国强.铝盘条生产工艺对连续挤压铝管质量的影响[J],轻金属,1995,11:59-64.
    21.彭大署.英国Conform连续挤压技术近期的发展[J],轻合金加工技术,1990,4(1):33-36.
    22.温景林,管仁国,陈彦博,刘相华.半固态扩展挤压A2017合金工艺过程的模拟与实验研究,东北大学学报,2003,14(8):774-778.
    23.温景林,管仁国,李英龙,刘相华.SRS技术制备半固态合金及半固态扩展成形的研究[J],材料研究学报,2003,23(7):679-682.23(7):680-682.
    24.管仁国,陈彦博,刘相华,温景林.单辊搅拌技术A2017合金的半固态扩展成形[J],东北大学学报,2002,24(1):83-86.
    25.陈彦博,朱丽颖,温景林.连续扩展挤压的试验研究[J],轻合金加工技术,2002,30(3):26-30.
    26. ZhaoHong Liang, Wen JingLin. FEM Analysis ofPhysical Field in the Level RollingProcess of Inversion byANSYS, Program[J], Journal of Iron and Steel Research, 2000,7(1):73-76.
    27.庞压东,白秀娟.220KV铝管母线配电装置安装方式的技术经济分析[J],2001,19(3):34-35.
    28.王树森.管型母线在户外配电装置中的应用[J],山西电力技术,1997,17(2):38-40.
    29.鲍凌.大型机组铝母线TIG与MIG焊接工艺[J],电力建设,1995,12:20-23.
    30.李守新,郭文生,张德成等.大跨度四分裂铝管母线的制作工艺[J],东北电力技术1998,11:50-53.
    31.周天国,温景林,王顺成.6201电工铝合金线材连续铸挤工艺研究[J],轻合金加工技术,2004,(6):9-11.
    32.王顺成,陈彦博,温景林.连续铸挤生产Al-Sr中间合金线材工艺研究[J],轻合金 加工技术,2003,31(3):19-22.
    33.轻金属材料加工手册[M],上册,冶金工业出版社,1979,1367-1369.
    34. Zhen L, Fei W D. Precipitation behaviour of Al-Mg-Si alloys with high silicon content[J], Journal of Materials Science,1997,32:1896-1901.
    35. Vasudevan A K, Doherty R D. Treatise on Materials science and technology[J], Aluminum alloys conemporary research and applications, New York:Academic Press Inc,1989.
    36.王顺成,陈彦博,温景林.连续铸挤生产Al-Sr中间合金线材工艺研究[J],轻合金加工技术,2003,31(3):19-22.
    37.张辉,彭大暑.铝材连续挤压过程稳定性的研究[J],铝加工,1997,20(4):33-35.
    38. Guan Renguo. Microstructure behavior and metal flow during continuously extending-extrusion forming of semisolid A2017 alloy, Science press:2006,382-386.
    38.周天国.6201导电材料连续铸挤成形与性能的研究[D],沈阳:东北大学,2005.
    39. A.Pardoe.. CONFORM continuous extrusion process-its contribution to energy conservation[J], Metals Technology,1984,11 (8):26-31.
    40.温景林.连续铸挤成形技术的发展及应用[J],轻合金加工技术,2005,12(4):15-18.
    41. Wang Shun-Cheng, Chen Yan-Bo, Wen Jing-Lin.. Study on the continuous cast extrusion process for producing Al-Sr master alloy rod[J], Light Alloy Fabrication Technology, 2003(3):19-22.
    42.温景林,吴庆令,李体彬.Al-Ti-B线材连续铸挤工艺的研究[J],轻金属,1992,(4):56-58.
    43. Jung H K, Kang C G. Reheating process of cast and wrought aluminum alloys for thixoforging and their globularization mechanism [J], Journal of Materials ProcessingTechnology,2000,104(3):244-253.
    44.胡汉起,沈宁福,姚山.金属凝固原理[M],北京:机械工业出版社,2000.
    45.温景林.金属挤压与拉拔工艺学[M],沈阳:东北大学出版社,1996,153-155.
    46.陈宝盛.铝合金导线的拉制工艺,光纤与电缆及其应用技术[M],1997,4:55-58.
    47.孙康宁,王昕,刘援朝等.拉拔力与模具结构的关系分析[M],金属制品,2000,22:18-22.
    48.刘静安.Al-Mg-Si系合金的自然时效和人工时效特性[J],中国有色金属学报,1998, 8(1):252-255.
    49.韦绿梅.双重时效的低温形变热处理对Al-Mg-Si-RE合金力学性能的影响[J],中国有色金属学报,1998,8(1):256-260.
    50.柏振海,黎文.Al-Mg-Si合金的形变热处理研究[J],轻合金加工技术,2003,31(8):39-41.
    51.李普超,汪明朴,孙孝华,徐国富.Al-Mg-Si合金的时效研究[J],中南工业大学学报,1998(3):262-264.
    54.管野干宏,铃木寿,白石泰久.けぃ素遇剩のAl-Mg2Si系合金の时效硬化性.轻金属[J],1978,28(11):553—558.
    55.田家凯.合金及显微结构设计[M],北京:冶金工业出版社,1985,6-15.
    56.P.哈森,肖纪美,物理金属学[M],科学出版社,1984,299-320.
    57.李超.金属学原理[M],哈尔滨:哈尔滨工业大学出版社,1989,303.
    58.胡赓祥.金属学[M],上海科技出版社,1980,290.
    59. J.D. Embury. Strengthening mechanisms in Al alloys-an overview of natural limits and engineering possibilities[J], Materials Science Forum,1996,217-222:57-62.
    60. J.Lendvai. Precipitation and strengthening in aluminium alloys.Materials Science Forum[J],1996,217-222:43-47.
    61. Marioara C D, Andersen S J, Jansen S J. The influence of temperature and storage time at RT on nucleation of the β" phase in a 6082 Al-Mg-Si alloy[J],Acta materialia,2003,51: 789-796.
    62. Matsuda K, Naoi T, Uetani Y, et al. High resolution energy-filtering transmission electron microscope for equilibrium Pphase in an Al-Mg-Si alloy[J], Scripta Materials,1999, 41(4):379-383.
    63. Maruyama N, Uemori R, Hashimoto N, etai, Effect of silicon addition on the composition and structure of fine-scale precipitates in Al-Mg-Si alloy[J], Scripta Matreialia,1997, 36(1):89-93.
    64. Kerr A, Watson L M, Szasz A, et al,. On the electronic stability of the Al-Mg-Si age-hardened alloys[J], Phys.Chem.solids,1996,57(8):1285-1292.
    65. Murayama M, Hono K, Saga M, et al. Atom probe studies on the early stage of precipitation in Al-Mg-Si alloys, Materials science and engineering[J],1998, A250: 127-132.
    66. Jiang D, Wang C. Influence of microstructure on deformation behavior and fracture mode in Al-Mg-Si alloys, Materials science and engineering[J],2003, A352:29-33.
    67. Edwards G A, Stiller K, Dunlop G L, et al. The precipitation sequence in Al-Mg-Si alloy[J], Acta maer,1998,46(11):3893-3904.
    68.谢建新,刘静安.金属挤压理论与技术,北京:冶金工业出版社,2002,37-39.
    69. Mulazimoglu M H, Zaluska A, Paray F, et al. The effect of strontium on the Mg2Si precipitation process in 6201 aluminum alloy[J], Metallurgical and materials transactions A,1996,28A:1289-1295.
    70. Mulazimoglu M H, Gruzleski J E, Closset B, et al. Effects of strontium on the properties of 6201 electric conductor alloy[J], Aluminum,1996,172-176.
    71. Xie J X, Ikeda K, Murakami T. UBA analysis of the process of pipe extrusion through a porthole die[J], Journal of materials process technology,1995,49:371-385.
    72.王祝堂.铝合金的铸造与性能[M],北京冶金工业出版社,1986,230-235.
    73.航铝.俄罗斯的高强高韧铝合金航空制造工程[J],1996,7(5),19-21.
    74.刘静安,付启明.世界当代铝加工最新技术[M],长沙中南工业大学出版社,1991,357-359.
    75.刘静安,赵云路.铝材生产关键技术[M].重庆重庆大学出版社,1997,23-25.
    76.谢水生,黄声宏.半固态金属加工技术[M],北京冶金工业出版社,1999,19-22.
    77.李贺军.金属液体凝固过程中直接挤压的研究[D],哈尔滨:哈尔滨工业大学,2005.
    78.胡建国,彭大署.左铁镛径向式CONFORM连续挤压成形的研究[J],轻合金加工技术,1991,19(8):33-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700