结构色纤维/面料的制备及其光学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是纺织工业大国,每年的贸易额约占全球的25%,然而,巨大的经济效益并不能掩盖纺织印染行业对环境造成的严重破坏。目前,传统的纺织印染行业已经成为我国高污染、高能耗和高排放的危害型行业。为了响应国家节能减排的政策要求,迫切需要发展一种不同于传统化学染料着色的纺织品显色技术。因此采用结构色这一绿色环保的显色方法对纺织品进行着色,降低传统印染工艺对环境造成的污染,开发出一种全新的纺织品显色方法,具有十分重要的意义。
     本论文从纤维和面料这两个纺织品的基本构成单元出发,深入探讨了结构色纤维及面料的制备方法,微观结构,光学性质及力学强度等,拟开发出一种具有实际应用价值及工业化生产前景的结构色纤维及面料的制备方法,主要研究内容及结果如下:
     (1)毛细管中胶体微球自组装法制备光子晶体结构色纤维:以类似纤维状的毛细管为模板,通过胶体微球自组装来验证制备结构色纤维的可行性。研究结果发现,通过PS微球自组装能够制备得到胶体晶体结构色纤维;并且通过改变微球的尺寸,能轻易调控结构色纤维的颜色;纤维沿径向不具有角度依赖性,沿轴向具有虹彩效应。毛细管中胶体微球自组装的方法验证了制备结构色纤维的可行性,为后续制备出具有较好力学性质,颜色可控的结构色纤维提供了理论基础。
     (2)胶体静电纺丝法制备结构色纤维膜:通过胶体静电纺丝法,发展了胶体晶体纤维的快速、大批量的制备方法。研究发现,聚乙烯醇(PVA)包在胶体微球表面,起到粘结剂的作用,将胶体微球粘起来形成胶体晶体纤维;胶体晶体纤维中微球与微球空隙之间被PVA所填充,导致折射率差异非常小,从而使得制备得到的胶体晶体纤维膜呈现白色;通过水溶解去除掉部分PVA后,纤维膜呈现出明显的颜色,并且结构没有破坏,仍然保持纤维形貌;纤维膜的反射光谱和散射光谱都不具有角度依赖性,颜色没有虹彩效应,符合人眼的色彩感应习惯。
     (3)纤维表面涂覆技术制备结构色纤维:采用类似光纤表面涂覆技术,开发出在纤维表面涂覆一层结构色涂层来制备结构色纤维的方法。研究发现,纤维表面微球堆积层数与纤维提拉速度呈现负相关,与乳液浓度、纤维尺寸呈现正相关;当纤维表面微球堆积层数超过10层的时候,其光学性质基本稳定而不发生变化;单根纤维沿径向不具有角度依赖性,沿轴向具有虹彩效应;通过调控微球的软硬度,及纤维表面的亲疏水性,在普通涤纶纤维表面涂覆一层无裂痕且力学性质非常好的结构色涂层,从而使得涤纶纤维具有颜色。这种基于普通纤维的结构色涂覆技术具有很好的实际应用意义及工业化前景。
     (4)聚合物相分离方法制备类非晶结构色纤维:通过静电纺丝相分离技术,开发出制备多孔类非晶结构色纤维的方法。研究表明,纤维的颜色来源于结构色;SEM观察发现,纤维内部呈现无序多孔结构,通过二维傅里叶变换表明这种无序多孔结构具有径向的短程有序但长程无序性;制备得到的结构色纤维呈现明显的蓝色,颜色柔和不刺眼,并且通过显微角分辨光谱仪进行变角度反射光谱测量说明其颜色不具有虹彩效应。
     (5)普通织物表面涂覆制备结构色面料:通过在普通织物表面直接浇铸的方法,深入研究了快速并且大量的制备结构色面料的可行性。研究发现,软聚合物微球乳液中无机纳米SiO2/CB颗粒的添加,形成具有折射率差异的周期性结构,得到高饱和度高亮度的结构色涂层;纳米复合胶体乳液在织物表面进行浇铸干燥过程中由于咖啡环效应,导致边缘和中间颜色出现偏差;结构色面料具有很好的与水与油颜色稳定性;较好的力学性质,完全满足实际应用中的服用性能;具有大面积制备的可行性,并且通过不同的筛网印花模具能够较容易的制备出具有不同形状不同颜色的结构色印花涂层。这种织物表面结构色涂层具有非常好的实际应用价值和工业化前景。
China has a significant influence on the textile industry, with an annual tradevolume that occupies25%of the world market. However, the economic benefits of thetextile dyeing and fishing industries do not cover the serious damages they cause to theenvironment. At present, the general Chinese public has become more aware of thehazards posed by the traditional dyeing and fishing industries, including drawbackssuch as high pollution, high energy consumption and high emissions. As a response tonational policies on energy-saving and emission-reduction, the textile coloring industryis required to develop a novel technology that is different from traditional chemicaldyeing processes. Therefore, we presented an idea that colors textiles based on physicalmethods that do not require the assistance of chemical dyes. We believe that thisenvironmentally conscious textile coloration strategy can reduce the pollution caused bythe traditional dyeing and finishing process.
     In this dissertation, we studied the preparation methods, optical properties, andmechanical strength of structurally-colored fibers and fabrics. The goal was to develop apreparation method of structurally-colored fibers and fabrics with actual applicationvalues and industrial production prospects. The following several aspects were mainlydiscussed:
     (1) Preparation of photonic crystal structurally-colored fibers through colloidalself-assemble in capillary: Structurally–colored fibers can be fabricated by soaking thecapillary tubes into PS microsphere dispersion through colloidal self-assembly. PSmicrospheres in the capillary tube formed a cylindrical colloidal crystal fiber as waterwas slowly evaporated. The colors of colloidal crystal fibers can be easily tuned byaltering the size of the PS microspheres. The reflective spectra in the radial direction were independent of the incident angle, while the spectra in the longitudinal directionnotably blue-shifted. The preparation method of colloidal self-assembly in capillary is atestament to the feasibility of preparing structurally-colored fibers, thus providing atheoretical basis for the subsequent studies.
     (2) Preparation of structurally-colored fibrous membrane via colloidalelectrospinning technology: Colloidal crystal fibers were fabricated rapidly on a largescale, using the electrospinning process. PVA clung to the surface of colloidalmicrospheres and worked as an adhesive agent to adhere PS microspheres, forminguniform colloidal crystal fibers. The obtained fibrous membrane was white due to thelow refractive index contrast between PVA and PS. Interestingly, the membraneappeared in colors as it was immersed in water. The membrane preserved the fibrousshape after water treatment. A large amount of PVA was dissolved in water and removedfrom the structure, increasing the reflective index contrast. The fibrous membraneexhibited isotropic color properties, which is independent of incident and observingangles. Therefore, the coloration of the membrane is similar to the color property indyes, which adapt to certain shades based on interpretations made by human vision.
     (3) Preparation of structurally-colored fibers through surface coatingtechnology: Inspired by the surface coating technology of optical fibers, we developeda new fabrication method for obtaining structurally-colored fibers by coating polymerfiber surfaces with colloidal crystal. The layers of colloidal microspheres showed anegative correlation with fiber lifting speed, and a positive correlation with the emulsionconcentration and fiber size. Interestingly, if number of colloidal layers reached10,further increasing the layers did not affect the color and reflective peaks of thestructurally-colored fiber. The fabricated structurally-colored PET fiber displayedexcellent mechanical property, which was possible via controlling the hardness ofmicrospheres and hydrophilicity of PET fiber.
     (4) Preparation of structurally-colored fibers with porous quasi-amorphousstructure through polymer phase separation: The structurally-colored fibers werefabricated rapidly and on a large scale, via electrospinning technology. During the process, the quasi-amorphous structure formed inside the fibers as a result of phaseseparation, as confirmed by SEM observation. The results of Fourier transform revealeda disordered bicontinuous porous structure with radial short-range order and long-rangedisorder. The obtained fibers exhibited isotropic color properties, which is independentto the incident and observing angles.
     (5) Preparation of structurally-colored fabrics through surface coatingtechnology: We fabricated structurally-colored fabrics on a large scale, though surfacecoating technology. The colorful fabric presented high brightness and saturation byadding inorganic nano SiO2/CB particles into soft polymer microsphere emulsion. Aperiodic structure with refractive index contrast was formed during the drying process.Due to the coffee-ring effect during the drying process of colloid emulsion, the color inlead edge was different from the middle portions. Colors of the obtained fabrics havegood stability when they were treated with water or oil. Excellent mechanical propertyof the structurally-colored fabric ensured the possibility of practical application.Coatings with different colors and shapes can be produced easily though screen-printingmode. This type of structurally-colored fabric has good practical value and prospect ofindustrialization.
引文
[1] Nassau k., The physics and chemistry of color [M], John Wiley&Sons, Inc.,1983.
    [2]牛顿,光学-关于光的反射、折射、拐射和颜色的论文[M],北京:科学普及出版社,1988.
    [3]滕秀金,邱伽易,曾晓栋,颜色测量技术[M],北京:中国计量出版社,2007.
    [4]刘峰,《甲虫的结构色与结构变色研究》,复旦大学,2008年博士论文。
    [5] Tayeb G., Gralak B., Enoch S., Structural colors in nature and butterfly-wingmodeling [N], Optics&Photonic News,2003, Feb,40.
    [6] Kinoshita S., Yoshioka S., Structural colors in nature: the role of regularity andirregularity in the structure [J], ChemPhysChem,2005,6,1442.
    [7] Billmeyer F. W., Saltzman, M., Principles of color technology [M], Wiley, NewYork,1981.
    [8]董必勤,《自然光子结构研究及其仿生人工制备与应用》,复旦大学,2011年博士论文。
    [9] Srinivasarao M., Nano-optics in the biological world: beetles, butterflies, birds, andmoths [J], Chem. Rev.,1999,99,1935.
    [10]Commission internationale de l'Eclairage proceedings1931[M], CambridgeUniversity Press, Cambridge,1932.
    [11]Welham A., The theory of dyeing (and the secret of life)[J], J. Soc. Dyers Col.,2000,116(5-6),140.
    [12]Welham A., The dyeing theory [J], Textile Res. J,1997,67(10),720.
    [13]Johnson A., The theory of coloration of textiles [M], The society of dyers andcolorists,1989.
    [14]Zollinger H., Dyeing theories [J], Textilveredlung,1989,24(4),133.
    [15]路艳华,张峰,染料化学[M],中国纺织出版社,2009.
    [16]赵涛,染整工艺学教程-第二分册[M],中国纺织出版社,2005.
    [17]Perkins W. S., A review of textile dyeing processes [J], Textile Chemist and Colorist,1993,23(8),23.
    [18]何瑾馨,染料化学[M],中国纺织出版社,2009.
    [19]宋心远,沈煜如,活性染料的染色理论与实践[M],纺织工业出版社,1991.
    [20]Etters J. N., Kinetics of dye sorption: effect of dyebath flow on dyeing uniformity[J], American Dyestuff Reporter,1995,84(1),38.
    [21]耿国彪,中国纺织业需要绿色选择[J],绿色中国,2012,8,46.
    [22]Hori T., Zollinger H., Role of water in the dyeing process [J], Textile Chemist andColorist,1986,18(10),19.
    [23]孙瑞哲,王曾敬,依靠技术进步解决印染行业水污染问题[J],环境保护,2007,10A,33.
    [24]马春燕,《印染废水深度处理及回用技术研究》,东华大学,2007年博士论文。
    [25]纪惠军,范雪荣,新型活性染料及染色技术[J],针织工业,2009,3,47.
    [26]宋心远,结构生色和染整加工(一)[J],印染,2005,31(17),46.
    [27]张骜,袁伟,周宁,张克勤,结构生色及其染整应用前景(一),(二),(三),(四),(五),印染,2012,38(13),44.
    [28]Zhao Y. J., Xie Z. Y., Gu H. C., Zhu C., Gu Z. Z., Bio-inspired variable structuralcolor materials [J], Chem. Soc. Rev.,2012,41,3297.
    [29]Kinoshita S., Yoshioka S., Miyazaki J., Physics of structural colors [J], Rep. Prog.Phys.,2008,71,076401.
    [30]Parker A. R., Mckenzie D. R., Large M. C. J., Multilayer reflectors in animals usinggreen and gold beetles as contrasting examples [J], J. Exp. Biol.,1998,201,1307.
    [31]Vigneron J. P., Colomer J-F., Vigneron N., Lousse V., Natural layer-by-layerphotonic structure in the squamae of Hoplia coerulea (Coleoptera)[J], Phys. Rev. E,2005,72,061904.
    [32]Schultz T. D., Rankin M. A., The ultrastructure of the epicuticular interferencereflectors of tiger beetles (Cicindela)[J], J. Exp. Biol.,1985,117,87.
    [33]Schultz T. D., Bernard G. D., Pointillistic mixing of interference colours in cryptictiger beetles [J], Nature,1989,337,72.
    [34]Vukusic P., Sambles J. R., Lawrence C. R., Colour mixing in wing scales of abutterfly [J], Nature,2000,404,457.
    [35]Vukusic P., Sambles R., Lawrence C., Sculpted-multilayer optical effects in twospecies of Papilio butterfly [J], Applied Optics,2000,40(7),1116.
    [36]Parker A. R., Mckenzie D. R., Ahyong S. T., A unique form of light reflector andthe evolution of signalling in Ovalipes (Crustacea: Decapoda: Portunidae)[J], Proc.R. Soc. Lond. B,1998,265,861.
    [37]Caveney S., Cuticle reflectivity and optical activity in scarab beetles: the role ofuric acid [J], Proc. R. Soc. Lond. B,1971,178,205.
    [38]Neville C., Caveney S., Scarabaeid beetle exocuticle as an optical analogue ofcholesteric liguid crystals [J], Biol, Rev.,1969,44,531.
    [39]Kattawar G. W., A search for circular polarization in nature [J], Optics&PhotonicNews,1994,9,42.
    [40]Lowrey S., Silva L. De., Hodgkinson I., Leader J., Observation and modeling ofpolarized light from scarab beetles [J], J. Opt. Soc. Am. A,2007,24(8),2418.
    [41]Jewell S. A., Vukusic P., Roberts N. W., Circularly polarized colour reflection fromhelicoidal structures in the beetle plusiotis boucardi [J], New Journal of Physics,2007,9,99.
    [42]Kinoshita S., Yoshioka S., Fujii Y., Okamoto N., Photophysics of structural color inthe morpho butterflies [J], Forma,2002,17(2),103.
    [43]Nassau K.,颜色的物理与化学-颜色的15种起源[M],北京:科学出版社,1991.
    [44]Parker A. R., Discovery of Functional Iridescence and Its Coevolution with Eyes inthe Phylogeny of Ostracoda (Crustacea)[J], Proceedings of the Royal Society:Biological Sciences,1995,262,349.
    [45]Vigneron J. P., Rassart M., Vértesy Z., Kertész K., Sarrazin M., BiróL. P., Ertz D.,Lousse V., Optical structure and function of the white filamentary hair covering theedelweiss bracts [J], Phys. Rev. E.,2005,71,011906.
    [46]Parker A. R., Hegedus Z., Diffractive optics in spiders [J], J. Opt. A: Pure Appl.Opt.,2003,5, S116.
    [47]Yablonovitch E., Inhibited spontaneous emission in solid-state physics andelectronics [J], Phys. Rev. Lett.,1987,58,2059.
    [48]John S., Strong localization of photons in certain disordered dielectric superlattices[J], Phys. Rev. Lett.,1987,58,2486.
    [49]Joannopoulos J. D., Meade R. D., Winn J. N., Meade R. D., Photonic crystals:molding the flow of light (second edition)[M], NJ: Princeton Univ. Press,1995.
    [50]Wang H., Zhang K. Q., Photonic crystal structures with tunable structure color ascolorimetric sensors [J], Sensors,2013,13,4129.
    [51]Choi S.Y., Mamak M., Freymann G. V., Chopra, N., Ozin G. A, Mesoporous braggstack color tunable sensors [J], Nano Lett.,2006,6,2456.
    [52]Colodrero S., Oca a M., Míguez H., Nanoparticle-based one-dimensional photoniccrystals [J], Langmuir,2008,24,4430.
    [53]M nch W., Dehnert J., Prucker O., Rühe J., Zappe H., Tunable Bragg filters basedon polymer swelling [J], Appl. Opt.,2006,45,4284.
    [54]Li H., Chang L., Wang J., Yang L., Song Y., A colorful oil-sensitive carbon inverseopal [J], J. Mater. Chem.,2008,18,5098.
    [55]Hawkeye M.M., Brett M.J., Optimized colorimetric photonic-crystal humiditysensor fabricated using glancing angle deposition [J], Adv. Funct. Mater.,2011,21,3652.
    [56]Tian E., Wang J., Zheng Y., Song Y., Jiang L., Zhu D., Colorful humidity sensitivephotonic crystal hydrogel [J], J. Mater. Chem.,2008,18,1116.
    [57]Wang Z., Zhang J., Xie J., Li C., Li Y., Liang S., Tian Z., Wang T., Zhang H., Li H.;Bioinspired water-vapor-responsive organic/inorganic hybrid one-dimensionalphotonic crystals with tunable full-color stop band [J], Adv. Funct. Mater.,2010,20,3784.
    [58]Kim E., Kim S., Jo G., Kim S., Park M., Colorimetric and resistive polymerelectrolyte thin films for real-time humidity sensors [J], ACS Appl. Mater.Interfaces,2012,4,5179.
    [59]Reese C.E., Mikhonin A.V., Kamenjicki M., Tikhonov A., Asher S.; Nanogelnanosecond photonic crystal optical switching [J], J. Am. Chem. Soc.,2004,126,1493.
    [60]Chiappelli M.C., Hayward R.C., Photonic multilayer sensors fromphoto-crosslinkable polymer films [J], Adv. Mater.,2012,24,6100.
    [61]Hu Y., Wang J., Wang H., Wang Q., Zhu J., Yang Y., Microfluidic fabrication andthermoreversible response of core/shell photonic crystalline microspheres based ondeformable nanogels [J], Langmuir,2012,28,17186.
    [62]Kubo S., Gu Z. Z., Takahashi K., Fujishima A., Segawa H., Sato O., Tunablephotonic band gap crystals based on a liquid crystal-infiltrated inverse opalstructure [J], J. Am. Chem. Soc.,2004,126,8314.
    [63]Holtz J., Asher S., Polymerized colloidal crystal hydrogel films as intelligentchemical sensing materials [J], Nature,1997,389,829.
    [64]Nakayama D., Takeoka Y., Watanabe M., Kataoka K., Simple and precisepreparation of a porous gel for a colorimetric glucose sensor by a templatingtechnique [J], Angew. Chem. Int. Ed.,2003,42,4197.
    [65]Zhang X., Ma X., Dou F., Zhao P., Liu H., A biosensor based on metallic photoniccrystals for the detection of specific bioreactions [J], Adv. Funct. Mater.,2011,21,4219.
    [66]Joannopoulis J. D., Villeneuve P. R., Fan S., Photonic crystals: putting a new twiston light [J]. Nature,1997,386,143.
    [67]Lin S. Y., Chow E., Hietala V., Villeneuve P. R., Joannopoulos J. D., Experimentaldemonstration of guiding and bending of electromagnetic waves in a photoniccrystal [J], Science,1998,282,274.
    [68]Pendry J. B., Negative refraction makes a perfect lens [J], Phys. Rev. Lett.,2000,85,3966.
    [69]Shelby R. A., Smith D. R., Schultz S., Experimental verification of a negative indexof refraction [J], Science,2001,292,77.
    [70]Yu X., Fan S., Anomalous reflections at photonic crystal surfaces [J], Phys. Rev. E.,2004,70,055601.
    [71]Parker A. R., McPhedran R. C., McKenzie D. R., Botten L. C., Nicorovici N.-A. P.,Photonic engineering-Aphrodite’iridescence [J], Nature,2001,409,36.
    [72]Zi J., Yu, X., Li Y., Hu X., Xu C., Wang X., Liu X., Fu R., Coloration strategies inpeacock feathers [J], PNAS,2003,100,12576.
    [73]Parker A. R., Welch V. L., Driver D., Martini N., Structural colour: Opal analoguediscovered in a weevil [J], Nature,2003,426,786.
    [74]Yin H., Dong B., Liu X., Zhan T., Shi L., Zi J., Yablonovitch E., Amorphousdiamond-structured photonic crystal in the feather barbs of the scarlet macaw [J],PNAS,2012,109,10798.
    [75]Dufresne E. R., Noh H., Saranathan V., Mochrie S. G. J., Cao H., Prum R. O.,Self-assembly of amorphous biophotonic nanostructures by phase separation [J],Soft Matter,2009,5,1792.
    [76]Prum R. O., Torres R., Kovach C., Williamson S., Goodman S. M., Coherent lightscattering by nanostructured collagen arrays in the caruncles of the malagasy asities(eurylaimidae: aves)[J], J. Exp. Biol.,1999,202,3507.
    [77]Dong B. Q., Liu X. H., Zhan T. R., Jiang L. P., Yin H. W., Liu F., Zi J., Structuralcoloration and photonic pseudogap in natural random close-packing photonicstructures [J]. Opt. Express,2010,18,14430.
    [78]Prum R. O., Torres R. H., Structural colouration of mammalian skin: convergentevolution of coherently scattering dermal collagen arrays [J], J. Exp. Biol.,2004,207,2157.
    [79]Parker A. R.,515million years of structural colour [J], J. Opt. A: Pure Appl. Opt.,2000,2, R15.
    [80]Vukusic P., Hallam B., Noyes J., Brilliant whiteness in ultrathin beetle scales [J],Science,2007,315,348.
    [81]Asano M., et al. Fiber structure and textile using same. American Patent,US006326094B1, Dec.4,2001.
    [82]Gauvreau B., Guo N., Schicker K., Stoeffler K., Boismenu F., Ajji A., Wingfield R.,Dubois C., Skorobogatiy M., Color-changing and color-tunable photonic bandgapfiber textiles [J], Opt. Express,2008,16,15677.
    [83]Kolle M., Lethbridge A., Kreysing M., Baumberg J. J., Aizenberg J., Vukusic P.,Bio-inspired band-gap tunable elastic optical multilayer fibers [J], Adv. Mater.,2013,25:2239.
    [84]Finlayson C. E., Goddard C., Papachristodoulou E., Snoswell D. R. E.,Kontogeorgos A., Spahn P., Hellmann G. P., Hess O., Baumberg J. J., Ordering instretch-tunable polymeric opal fibers [J], Opt. Express,2011,19,3144.
    [85]Liu Z., Zhang Q., Wang H., Li Y., Structural colored fiber fabricated by a facilecolloid self-assembly method in micro-space [J], Chem. Commun.,2011,47,12801.
    [86]Liu Z., Zhang Q., Wang H., Li Y., Magnetic field induced formation of visuallystructural colored fiber in micro-space [J], J. Colloid Interf. Sci.,2013,406,18.
    [87]Liu Z., Zhang Q., Wang H., Li Y., Structurally colored carbon fibers with controlledoptical properties prepared by a fast and continuous electrophoretic depositionmethod [J], Nanoscale,2013,5,6917.
    [88]Zhou N., Zhang A., Shi L., Zhang K. Q., Fabrication of structurally-colored fiberswith axial core shell structure via electrophoretic deposition and their opticalproperties [J], ACS Macro. Lett.,2012,2,116.
    [89]付国栋,刘国金,黄江峰,周岚,邵建中,具有光子晶体结构色的蚕丝织物制备及性能表征[J],蚕业科学,2013,39(3),0557.
    [90]Diao Y. Y., Liu X. Y., Toh G. W., Shi L., Zi J., Multiple structural coloring ofsilk-fibroin photonic crystals and humidity-responsive color sensing [J], Adv. Funct.Mater.,2013,23,5373.
    [91]Ha S. T., Park O. O., Im S. H., Size control of highly monodisperse polystyreneparticles by modified dispersion polymerization [J], Macromol. Res.,2010,18(10),935.
    [92]Moon J. H., Kim S., Yi G. R., Lee Y.-H., Yang S.-M., Fabrication of orderedmacroporous cylinders by colloidal templating in microcapillaries [J], Langmuir,2004,20,2033.
    [93]韦中超,戴峤峰,汪河洲,毛细管中柱对称类面心结构胶体晶体的光谱特性[J],物理学报,2006,55(2),733.
    [94]Miyai E., Sakoda K., Quality factor for localized defect modes in a photonic crystalslab upon a low-index dielectric substrate [J], Opt. Lett.,2001,26,740.
    [95]Qiu M., Azizi K., Karlsson A., Swillo M., Jaskorzynska B., Numerical studies ofmode gaps and coupling efficiency for line-defect waveguides in two-dimensionalphotonic crystals [J], Phys. Rev. B,2001,64,155113.
    [96]Loncar M., Doll T., Vuckovic J., Scherer A., Design and fabrication of siliconphotonic crystal optical waveguides [J], J. Lightwave Technol.,2000,18,1402.
    [97]Yoon J. W., Lee G., Song S. H., Oh C. H., Kim P. S. J., Surface-plasmon photonicband gaps in dielectric gratings on a flat metal surface [J], J. Appl. Phys.,2003,94,123.
    [98]Li D., Xia Y., Electrospinning of nanofibers: Reinventing the wheel?[J], Adv.Mater.,2004,16,1151.
    [99]Greiner A., Wendorff J. H., Electrospinning: A fascinating method for thepreparation of ultrathin fibers [J], Angew. Chem., Int. Ed.,2007,46,5670.
    [100] Thavasi V., Singh G., Ramakrishna S., Electrospun nanofibers inenergy andenvironmental applications [J], Energy Environ. Sci.,2008,1,205.
    [101] Ding B., Wang M., Wang X., Yu J., Sun G., Electrospun nanomaterials forultrasensitive sensors [J], Mater. Today,2010,13,16.
    [102] Bhardwaj N., Kundu S. C., Electrospinning: A fascinating fiber fabricationtechnique [J], Biotechnol. Adv.,2010,28,325.
    [103] Rutledge G. C., Fridrikh S. V., Formation of fibers by electrospinning [J], Adv.Drug Delivery Rev.,2007,59,1384.
    [104] Reneker D. H., Chun I., Nanometer diameter fibers of polymer, produced byelectrospinning [J], Nanotechnology,1996,7,216.
    [105] Hohman M. M., Shin M., Rutledge G., Brenner M. P., Electrospinning andelectrically forced jets. I. Stability theory [J], Phys. Fluids,2001,13(8),2201.
    [106] Wang J., Wen Y., Feng X., Song Y., Jiang L., Control over the Wettability ofColloidal Crystal Films by Assembly Temperature [J], Macromol. Rapid Commun.,2006,27,188.
    [107] Wang J., Wen Y., Ge H., Sun Z., Zhen Y., Song Y., Jiang L., Simple Fabricationof Full Color Colloidal Crystal Films with Tough Mechanical Strengtha [J],Macromol. Chem. Phys.,2006,207,596.
    [108] Ding B., Kimura E., Sato T., Fujita S., Shiratori S., Fabrication of blendbiodegradable nanofibrous nonwoven mats via multi-jet electrospinning [J],Polymer,2004,45,1895.
    [109] Jabbari E., Peppas N. A., Use of ATR-FTIR to Study Interdiffusion inPolystyrene and Poly (vinyl methyl ether)[J], Macromolecules,1993,26,2175.
    [110] Moon J. H., Yi G. R., Yang S. M., Pine D. J., Park S. B., Electrospary-AssistedFabrication of Uniform Photonic Balls [J], Adv. Mater.,2004,16(7),605.
    [111] Hong S. H., Moon J. H., Lim J. M., Kim S. H., Yang S. M., Fabrication ofSpherical Colloidal Crystals Using Electrospray [J], Langmuir,2005,21,10416.
    [112] Shen Z., Zhu Y., Wu L., You B., Zi J., Fabrication of Robust Crystal Balls fromthe Electrospray of Soft Polymer Spheres/Silica Dispersion [J], Langmuir,2010,26(9),6604.
    [113] Kanehata M., Ding B., Shiratori S., Nanoporous ultra-high specific surfaceinorganic fibers [J], Nanotechnology,2007,18,315602.
    [114] Jo E., Lee S., Kim K. T., Won Y. S., Kim H. S., Cho E. C., Jeong U.,Core-Sheath Nanofibers Containing Colloidal Arrays in the Core for ProgrammableMulti-Agent Delivery [J], Adv. Mater.,2009,21,968.
    [115] Lim J. M., Moon J. H., Yi G. R., Heo C. J., Yang S. M., Fabrication ofOne-Dimensional Colloidal Assemblies from Electrospun Nanofibers [J], Langmuir,2006,22(8),3445.
    [116] Stoiljkovic A., Ishaque M., Justus U., Hamel L., Klimov E., Heckmann W.,Eckhardt B., Wendorff J. H., Greiner A., Preparation of water-stable submicronfibers from aqueous latex dispersion of water-insoluble polymers byelectrospinning [J], Polymer,2007,48,3974.
    [117] Stoiljkovic A., Venkatesh R., Klimov E., Raman V., Wendorff J. H., Greiner A.,Poly(styrene-co-n-butyl acrylate) Nanofibers with Excellent Stability against Waterby Electrospinning from Aqueous Colloidal Dispersions [J], Macromolecules,2009,42,6147.
    [118] Jin Y., Yang D., Kang D., Jiang X., Fabrication of Necklace-like Structures viaElectrospinning [J], Langmuir,2010,26(2),1186.
    [119] Friedemann K., Turshatov A., Landfester K., Crespy D., Characterization viaTwo-Color STED Microscopy of Nanostructured Materials Synthesized by ColloidElectrospinning [J], Langmuir,2011,27,7132.
    [120] Friedemann K., Corrales T., Kappl M., Landfester K., Crespy D., Facile andLarge-Scale Fabrication of Anisometric Particles from Fibers Synthesized byColloid-Electrospinning [J], Small,2012,8(1),144.
    [121] Brettmann B. K., Tsang S., Forward K. M., Rutledge G. C., Myerson A. S.,Trout B. L., Free Surface Electrospinning of Fibers Containing Microparticles [J],Langmuir,2012,28,9714.
    [122] Herrmann C., Turshatov A., Crespy D., Fabrication of Polymer Ellipsoids bythe Electrospinning of Swollen Nanoparticles [J], ACS Macro Lett.,2012,1,907.
    [123] Yuan W., Zhang K. Q., Structural Evolution of Electrospun Composite Fibersfrom the Blend of Polyvinyl Alcohol and Polymer Nanoparticles [J], Langmuir,2012,28,15418.
    [124] Spahn P., Finlayson C. E., Etah W. M., Snoswell D. R.E., Baumberg, J. J.,Hellmann G. P., Modification of the refractive-index contrast in polymer opal films[J], J. Mater. Chem.,2011,21,8893.
    [125] Van de Hulst H. C., Light Scattering by Small Particles [M], Dover, New York,1981.
    [126] Sapienza R., García P. D., Bertolotti J., Martín M. D., Blanco á., Vi a L.,López C., Wiersma D. S., Observation of resonant behavior in the energy velocityof diffused light [J], Phys. Rev. Lett.,2007,99,233902.
    [127] García P. D., Sapienza R., López C., Photonic glasses: A step beyond whitepaint [J], Adv. Mater.,2010,22,12.
    [128] You B., Wen N., Shi L., Wu L., Zi J., Facile fabrication of a three-dimensionalcolloidal crystal film with large-area and robust mechanical properties [J], J. Mater.Chem.,2009,19,3594.
    [129] Moon J. H., Yi G. R., Yang S. M., Fabrication of hollow colloidal crystalcylinders and their inverted polymeric replicas [J], J. Colloid Interf. Sci.,2005,287,173.
    [130] Dimitrov A. S., Nagayama K., Continuous Convective Assembling of FineParticles into Two-Dimensional Arrays on Solid Surfaces [J], Langmuir,1996,12,1303.
    [131] Gu Z. Z., Fujishima A., Sato O., Fabrication of High-Quality Opal Films withControllable Thickness [J], Chem. Mater.,2002,14,760.
    [132] Mohammad H. U. R., Abu B. I., Takahiro S., Masahiko I., Hiroshi N., YukikazuT., Angle-independent structural color in colloidal amorphous arrays [J],ChemPhysChem,2010,11,579.
    [133] Ma X., Xia Y., Chen E.-Q., Mi Y., Wang X., Shi A.-C., Crust Effect onMultiscale Pattern Formations in Drying Micelle Solution Drops on SolidSubstrates [J], Langmuir,2004,20,9520.
    [134] Ma J., Jing G., Possible origin of the crack pattern in deposition films formedfrom a drying colloidal suspension [J], Phys. Rev. E,2012,86,061406.
    [135] Yan H., Wang M., Ge Y., Yu P., Colloidal crystals self-assembled on the endface of fiber: Fabrication and characterizations [J], Opt. Fiber Technol.,2009,15,324.
    [136] Li J., Herman P. R., Valdivia C. E., Kitaev V., Ozin G., A., Colloidal photoniccrystal cladded optical fibers: Towards a new type of photonic band gap fiber [J],Opt. Express,2005,13(17),6454.
    [137] Lai C.-H., Huang Y.-J., Wu P.-W., Chen L.-Y., Rapid fabrication ofcylindrical colloidal crystal and their inverse opals [J], J. Electrochem. Soc.,2010,157(3),23.
    [138] Yu P., Ou H.-Y., Self-Assembled Colloidal Crystals in Capillary with Its FiberJunction [J], Chin. Phys. Lett.,2009,26(10),107802.
    [139] Tymczenko M., Marsal L. F., Trifonov T., Rodriguez I., Ramiro-Manzano F.,Pallares J., Rodriguez A., Alcubilla R., Meseguer F., Colloidal crystal wires [J], Adv.Mater.,2008,20,2315.
    [140] Dong B. Q., Zhan T. R., Liu X. H., Jiang L. P., Liu F., Hu X. H., Zi J.,()Optical response of a disordered bicontinuous macroporous structure in thelonghorn beetle Sphingnotus mirabilis. Phys. Rev. E,2011,84,011915.
    [141] Lee I Kim. D., Kal J., Baek H., Kwak D., Go D., Kim E., Kanf C., Chung J.,Jang Y., Ji S., Joo J., Kang Y., Quasi-amorphous colloidal structures for electricallytunable full-color photonic pixels with angle-independency [J], Adv. Mater.,2010,22(44),4973.
    [142] Takeoka Y., Honda M., Seki T., Ishii M., Nakamura H., Structural coloredliquid membrane without angle dependence [J], ACS Appl. Mater. Inter.,2009,1,982.
    [143] Ueno K., Sano Y., Inaba A., Kondoh M., Watanabe M., Soft glassy colloidalarrays in an ionic liquid: colloidal glass transition, ionic transport, and structuralcolor in relation to microstructure [J], J. Phys. Chem. B,2010,114,13095.
    [144] Forster J. D., Noh H., Liew S. F., Saranathan V., Schreck C. F., Yang L., Park J.G., Prum R. O., Mochrie S. G. J., Hern C. S. O., Cao H., Dufresne E. R.Biomimetic isotropic nanostructures for structural coloration [J], Adv. Mater.,2010,22,2939.
    [145] Shi L.,Yin H., Zhang R., Liu X., Zi J., Zhao D., Macroporous oxide structureswith short-range order and bright structural coloration: a replication from parrotfeather barbs [J], J. Mater. Chem.,2010,20,90.
    [146] Noh H., Liew S. F., Saranathan V., Mochrie S. G. J., Prum R. O., Dufresne E.R., Cao H., How Noniridescent Colors Are Generated by Quasi-ordered Structuresof Bird Feathers [J], Adv. Mater.,2010,22,2871.
    [147] Blin J. L., Leonard A., Yuan Z.-Y., Gigot L., Vantomme A., Cheetham A. K.,Su B.-L., Hierarchically Mesoporous/Macroporous Metal Oxides Templated fromPolyethylene Oxide Surfactant Assemblies [J], Angew. Chem. Int. Ed.,2003,42,2872.
    [148] Kumano N., Seki T., Ishii M., Nakamura Hiroshi., Takeoka Y., TunableAngle-Independent Structural Color from a Phase-Separated Porous Gel [J], Angew.Chem. Int. Ed.,2011,50,4012.
    [149] Lin J., Ding B., Yang J., Yu J., Sun G., Subtle regulation of the micro-andnanostructures of electrospun polystyrene fibers and their application in oilabsorption [J], Nanoscale,2012,4,176.
    [150] Lin J., Tian F., Shang Y., Wang F., Ding B., Yu J., Facile control of intra-fiberporosity and inter-fiber voids in electrospun fibers for selective adsorption [J],Nanoscale,2012,4,5316.
    [151] Dayal P., Kyu T., Dynamics and morphology development in electrospun fibersdriven by concentration sweeps [J], Phys. Fluids,2007,19,107106.
    [152] Dayal P., Liu J., Kumar S., Kyu T., Experimental and Theoretical Investigationsof Porous Structure Formation in Electrospun Fibers [J], Macromolecules,2007,40,7689.
    [153] Flory P., Principles of polymer chemistry [M], Cornell University Press, Ithaca,New York,1953.
    [154] Reneker D. H., Yarin A. L., Electrospinning jets and polymer nanofibers [J],Polymer,2008,49(10),2387.
    [155] Van de Witte P., Dijkstra P. J., Van den Berg J. W. A., Feijen J., Phaseseparation processes in polymer soultions in relation to membrance formation [J], J.Membr. Sci.,1996,117(1-2),1.
    [156] Zhang S., Chen L., Zhou S., Zhao D., W L., Facile Synthesis of HierarchicallyOrdered Porous Carbon via in Situ Self-Assembly of Colloidal Polymer and SilicaSpheres and Its Use as a Catalyst Support [J], Chem. Mater.,2010,22,3433.
    [157] Duan L., You B., Wu L., Chen M., Facile fabrication ofmechanochromic-responsive colloidal crystal films [J], J. Colloid Interf. Sci.,2011,353,163.
    [158] Xia Y., Gates B., Yin Y., Lu Y., Monodispersed colloidal spheres: old materialswith new applications [J], Adv. Mater.,2000,12(10),693.
    [159] Norris D. J., Arlinghaus E. G., Meng L., Heiny R., Scriven L. E., Opalinephotonic crystals: how does self-assembly work?[J], Adv. Mater.,2004,16(16),1393.
    [160] Baumberg J. J., Pursiainen O. L., Spahn P., Resonant optical scattering innanoparticle-doped polymer photonic crystals [J], Phys. Rev. B,2009,80,201103(R).
    [161] Pursiainen O. L. J., Baumberg J. J., Winkler H., Viel B., Spahn P., Ruhl T.,Shear-Induced Organization in Flexible Polymer Opals [J], Adv. Mater.,2008,20,1484.
    [162] Finlayson C. E., Spahn P., Snoswell D. R. E., Yates G., Kontogeorgos A.,Haines A. I., Hellmann G. P., Baumberg J. J.,3D Bulk Ordering in MacroscopicSolid Opaline Films by Edge-Induced Rotational Shearing [J], Adv. Mater.,2011,23,1540.
    [163] Gu Z. Z., Uetsuka H., Takahshi K., Nakajima R., Onishi H., Fujishima A., SatoO., Structural Color and the Lotus Effect [J], Angew. Chem. Int. Ed.,2003,42(8),894.
    [164] You B., Shi L., Wen N., Liu X., W L., Zi J., A Facile Method for Fabrication ofOrdered Porous Polymer Films [J], Macromolecules,2008,41,6624.
    [165] You B., Wen N., Zhou S., Wu L., Zhao D., Facile Method for Fabrication ofNanocomposite Films with an Ordered Porous Surface [J], J. Phys. Chem. B,2008,112,7706.
    [166] Mukhopadhyay R., Al-Hanbali O., Pillai S., Hemmersam A. G., Meyer L. R.,Hunter A. C., Rutt K. J., Besenbacher F., Moghimi S. M., Kingshott P., Ordering ofBinary Polymeric Nanoparticles on Hydrophobic Surfaces Assembled from LowVolume Fraction Dispersions [J], J. Am. Chem. Soc.,2007,129,13390.
    [167] Shen Z., Shi L., You B., Wu L., Zhao D., Large-scale fabrication ofthree-dimensional ordered polymer films with strong structure colors and robustmechanical properties [J], J. Mater. Chem.,2012,22,8069.
    [168] Yunker P J., Still T., Lohr M. A., Yodh A. G., Suppression of the coffee-ringeffect by shape-dependent capillary interactions [J], Nature,2011,476,308.
    [169] Deegan R. D., Pattern formation in drying drops [J], Phys. Rev. E,2000,61(1),475.
    [170] Deegan R. D., Bakajin O., Dupont T. F., Huber G., Nagel S. R., Witten T. A.,Contact line deposits in an evaporating drop [J], Phys. Rev. E,2000,62(1),756.
    [171] Kuhlmann M., Feldkamp J. M., Patommel J., Roth S. V., Timmann A., GehrkeR., Muller-Buschbaum P., Schroer C. G., Grazing Incidence Small-Angle X-rayScattering Microtomography Demonstrated on a Self-Ordered Dried Drop ofNanoparticles [J], Langmuir,2009,25(13),7241.
    [172] Monteux C., Lequeux F., Packing and Sorting Colloids at the Contact Line of aDrying Drop [J], Langmuir,2011,27,2917.
    [173] Duan L., You B., Zhou S., Wu L., Self-assembly of polymer colloids and theirsolvatochromic-responsive properties [J], J. Mater. Chem.,2011,21,687.
    [174] Pursiainen O. L. J., Baumberg J. J., Winkler H., Viel B., Spahn P., Ruhl T.,Nanoparticle-tuned structural color from polymer opals [J], Opt. Express,2007,15(15),9553.
    [175] Ruhl T., Spahn P., Winkler H., Hellmann G. P., Large Area Monodomain Orderin Colloidal Crystals [J], Macromol. Chem. Phys.,2004,205,1385.
    [176] Ruhl T., Hellmann G. P., Colloidal Crystals in Latex Films: Rubbery Opals [J],Macromol. Chem. Phys.,2001,202(18),3502.
    [177] Snoswell D. R. E., Kontogeorgos A., Baumberg J. J., Lord T. D., Mackley M.R., Spahn P., Hellmann G. P., Shear ordering in polymer photonic crystals [J], Phys.Rev. E,2010,81,020401(R).
    [178] Khan M. K., Giese M., Yu M., Kelly J. A., Hamad W. Y., MacLachlan M. J.,Flexible Mesoporous Photonic Resins with Tunable Chiral Nematic Structures [J],Angew. Chem. Int. Ed.,2013,52,8921.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700