高面板堆石坝稳定性分析及断面分区优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土面板堆石坝以其安全性好、适应性广、施工方便、投资省、工期短等优点,近几十年来得到了广泛应用。随着面板堆石坝技术的发展和新技术的不断应用,面板堆石坝正逐渐成为一种极具竞争力的土石坝坝型,其高度也在不断增高,已经建成的水布垭混凝土面板堆石坝坝高233m,国内外正在研究建设300m级的面板堆石坝。
     坝高的不断增加,对高面板坝的设计提出了更为严格的坝体安全性要求,我们需要对以往适用于百米级面板坝的研究方法进行检验,同时对300m级高面板坝的工程特性及关键技术问题进行深入的分析和研究。其中,超高面板坝的坝体边坡稳定问题和断面分区优化设计是极为关键的技术问题。长期以来设计者认为面板坝由于堆石料的非冲蚀性和地质适应性,具有良好的稳定性,当筑坝材料为硬岩堆石料时,上、下游坝坡坡比大多采用1:1.3或1:1.4,但是以往适用于百米级面板坝的坝坡坡比不一定适合于高面板堆石坝,坝体稳定性分析应该充分考虑坝高和坝坡这两个因素对其稳定性的影响。库克提出的面板坝的典型分区模型没有明确指出“死区”的范围,也没有给出可参考的主次堆石变形模量关系,高面板坝的应力变形特性更为复杂,需要对这一问题进行更为详细的探讨。
     本文就坝高和坝坡对高面板坝的稳定性的影响进行分析,分别采用极限平衡法和有限元强度折减法,得到了坝高和坝坡对稳定性的影响的表达式;研究了面板坝断面分区优化中主次堆石分界线坡度和主次堆石变形模量比值对大坝变形特性的影响,提出了主次堆石分界线坡度和主次堆石变形模量比值的合理取值范围,使得坝体应力变形和稳定性满足要求的同时,实现充分利用当地材料、挖填平衡的经济性原则。主要内容如下:
     (1)采用基于极限平衡法的STAB软件,分别取不同的坝高(150m、200m、250m、300m)和上、下游坝坡坡比(1:1.4、1:1.5、1:1.6、1:1.7),计算不同工况下的坝体稳定系数,通过线性回归,得到坝高及坝坡与稳定性的关系表达式,为高面板坝的坝高和坝坡设计提供了很好的借鉴。
     (2)采用有限元强度折减法,以摩尔-库伦等面积圆屈服准则为屈服准则,取坝高为300m,上、下游坝坡坡比均为1:1.4的混凝土面板堆石坝,计算不同工况下的坝体稳定系数。结果发现该屈服准则计算的结果与传统的极限平衡法计算的结果十分接近。也进一步验证了上述公式的合理性。
     (3)通过研究坝体最大断面的主次堆石分界线坡度的变化对坝体稳定性的影响;不同主次堆石分界线坡度、不同主次堆石变形模量对面板堆石坝变形、应力特性的分析,研究了主次堆石分界线坡度及主次堆石变形模量比值的合理取值范围,为面板堆石坝的断面分区优化和合理利用开挖料提供参考。
Concrete Faced Rockfill Dam (CFRD) was widely adopted in the recent decades because of its good security, extensive adaptability, convenient construction, small investment, short construction period. With the development of techniques and continuous application of new technologies about CFRD, it is becoming a competitive dam type among earth and rockfill dams and the height of CFRD is increasing. Shui Buya CFRD (dam height 233m) is the highest one among all the established CFRD in the world, and 300m level-CFRD is designed at home and abroad.
     The increase of dam height raises a more strict claim about the security for the design of CFRD. The research approach adequate for 100m level-CFRD needed to be revaluated while the engineering characteristics and other key technologies of 300m level-CFRD are also requiring deep analysis, among which the slope stability and section division optimization are the critical technical issues. For a long time, the CFRD was considered it has a good stability due to the rockfill’s erosion-resistance and geology adaptability, and the slope ration adopted 1:1.3 or 1:1.4 with experience. But this empirical design ratio might not be suitable to high CFRD, and the analysis of slope stability should consider the effect of dam height and slope ratio. In the typical division of CFRD proposed by Cooke, the scale of“dead zone”was not exactly designed, and there was no referable deformation modulus ratio between main and secondary rockfill zone. Owning to the complex stress-deformation characteristics of high CFRD, this question should also be discussed particularly.
     The effect of dam height and dam slope to slope stability were analyzed in this article with the limit equilibrium method and strength reduction method based on FEM and the expressions of dam height & stability factor and slope ratio & stability factor were proposed; the effects of the boundary ratio and the deformation modulus ratio between main and secondary rockfill zone to stress-deformation characteristics were studied and the reasonable scale of the boundary ratio and the deformation modulus ratio were suggested, which both meet the stability requirement and make full use of the rockfill materials to achieve the economical efficiency. The main content are as follows:
     (1) With the STAB program based on the limit equilibrium method (LEM), the stabilities of typical height dams (150m、200m、250m、300m) and slope ratios (1:1.4、1:1.5、1: 1.6、1:1.7) were analyzed under different operating times, the expressions of dam height & stability factor and slope ratio & stability factor was obtained by linear regression with a favorable correlation, which provides reference to the slope and dam height design of high CFRD.
     (2) Through strength reduction method based on FEM, the stabilites of dams (dam height 300m, dam slope 1:1.4under different operating times) were studied, according to the Mohr– Coulomb equivalent area circle yield criterion . The results implied that the stability factor were close to the results of LEM, which also proved the rationality of expression in content 1.
     (3) The effect of boundary ratio between main and secondary rockfill to stability for the maximum section, the effect of typical boundary ratio and the deformation modulus ratio between main and secondary rockfill to stress-deformation characteristics of high CFRD were studied. The rational range of boundary ratio and the deformation modulus ratio were pointed out to provide some references for the section division optimization and rational utilization of excavated materials for CFRD.
引文
DL/T5016-1999. 1999.《混凝土面板堆石坝设计规范》[S].北京:中国电力出版社
    DL5073-2000. 2000.《水工建筑物抗震设计规范》[S].北京:中国电力出版社
    R.阿尔贝. 2008.高土石坝建筑材料研究.水利水电快报. 29(10):31-35
    SL228. 1999.混凝土面板堆石坝设计规范[S].北京:中国水利水电出版社
    编写委员会. 2005.水布垭面板堆石坝前期关键技术研究[M].中国水利水电出版社
    博弈工作室. 2005. APDL参数化有限元分析技术及其应用实例[M].北京:中国水利水电出版社
    蔡新. 2005.混凝土面板堆石坝结构分析与优化设计[M].北京:中国水利水电出版社
    曹克明,汪易森等. 2008.混凝土面板堆石坝[M].北京:中国水利水电出版社
    李广信. 2005.高等土力学.清华大学出版社
    蒋国澄,傅志安. 1997.混凝土面板坝工程[M].北京:清华大学出版社
    蒋国澄,赵增凯.中国的高混凝土面板堆石坝[M].国际大坝会议——混凝土面板堆石坝国际研讨会论文集. CFRD’2000. 2000.09
    蒋国澄,赵增凯.中国混凝土面板堆石坝20年回顾[A].见:中国混凝土面板堆石坝20年——综
    合·设计·施工·运行·科研[C].北京:中国水利水电出版社, 2005
    阚前华,谭长建,张娟,董城. 2006. ANSYS高级工程应用实例分析与二次开发[M],电子工业出版社. 38~40.
    库克(Cooke J B).混凝土面板堆石坝的经验设计[J].国际水力发电和大坝建设(International Water
    Power & Dam Construction) Auguest 1998.傅湘宁译.载于水利水电快报, 1999.20(5):7~11
    李昌彩. 2005.水布垭面板堆石坝前期关键技术研究[M].北京:中国水利水电出版社
    李守巨,刘迎曦. 2003.基于模拟退火算法的边坡最小安全系数全局搜索方法.岩石力学与工程学报. 22(2): 236~241
    李围等. 2007. ANSYS土木工程应用实例[M].北京:中国水利水电出版社
    郦能惠,张建宁,熊国文等. 2005.中国面板堆石坝运行情况及监测资料分析[A].见:中国混凝土面
    板堆石坝20年——综合·设计·施工·运行·科研[C].北京:中国水利水电出版社
    郦能惠,孙大伟.李登华等. 2009. 300m级超高面板堆石坝变形规律的研究[J].岩土工程学报. 31(2):157~159
    郦能惠. 2007a.高混凝土面板堆石坝设计理念探讨[J].岩土工程学报. 29(8): 1143~1150
    郦能惠. 2007b.高混凝土面板堆石坝新技术[M].北京:中国水利水电出版社
    郦能惠,孙大伟. 2007c.马吉混凝土面板堆石坝三维有限元应力变形分析计算[R].南京:南京水利科学研究院.
    刘建生,佐正友,贺勇. 2007.泗南江水电站面板堆石坝筑坝材料性能分析.云南水力发电. 23(5): 16~20
    栾茂田,辛军霞,赵尚传. 2002.面板堆石坝边坡稳定性可靠性分析及其应用.大连理工大学学报. 42(4): 467~472
    罗先启,葛修润. 2007.混凝土面板堆石坝应力应变分析方法研究[M].北京:中国水利水电出版社
    马洪琪,曹克明.超高面板坝的关键技术问题[J].水利水电施工. 2008,(1):15~16
    马铁龙(Marteron B). 2005.世界高混凝土面板堆石坝的发展[A].见:中国混凝土面板堆石坝20年——综合·设计·施工·运行·科研[C].北京:中国水利水电出版社
    南洪. 2008.邓肯张E - B模型原理及其在成屏面板坝中的应用[J].人民长江, 39(11):73~74
    祁庆和. 1997.水工建筑物[M].中国水利水电出版社
    孙丽丽,李宗利. 2009.水资源与水工程学报[J]. 20:113~116
    张伯平,党进谦. 2001.土力学与地基基础[M].西安地图出版社.
    陈祖煜. 2003.土质边坡稳定分析[M].中国水利水电出版社
    王海俊,殷宗泽. 2008.堆石流变试验及双屈服面流变模型的研究[J]. 30 (7):959~963.
    王呼佳,陈洪军. 2006. ANSYS工程分析进阶实例.北京:中国水利水电出版社
    王新敏. 2007. ANSYS工程结构数值分析[M].北京:人民交通出版社
    王勇,殷宗泽. 2000.一个用于面板坝流变分析的堆石体流变模型[J]. 21(3):227~230
    徐泽平,邓刚. 2008.高面板堆石坝的技术进展及超高面板堆石坝关键技术问题探讨[J].水力学报39 (10)
    徐泽平. 2003.混凝土面板堆石坝技术文集[M].黄河水利出版社
    徐泽平. 2005.高混凝土面板堆石坝应力变形特性研究[M].郑州:黄河水利出版社
    张嘎,张建民. 2004.粗颗粒料的应力应变特性及其数学描述研究[J].岩土力学. 25(10):1587~1591
    张葛,王瑞骏,付国栋等. 2009.基于非线性抗剪强度指标的面板堆石坝坝坡稳定有限元分析. 10:123~127
    张鲁渝,郑颖人,赵尚毅等. 2003.有限元强度折减法计算土坡稳定性安全系数的精度研究.水力学报..01: 21~27
    郑颖人,赵尚毅,张鲁渝. 2002.用有限元强度折减法进行边坡稳定分析.中国工程科学. 4(10): 56~63
    王柏乐. 2004.中国当代土石坝工程[M].中国水利水电出版社
    朱伯芳,黎展盾,张壁诚. 1984.结构优化设计原理与应用[M].北京:水利电力出版社
    ChengY M, LansivaaraT, WeiW B. 2007. Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Computers and Geotechnics, 34: 137—150
    Committee on Materials for Fill Dams, ICDLD. 2007. Concrete Face Rockfill Dams Concepts for Design and Construction [M]. ICOLD
    Cooke J B. Progress in Rockfill Dams [J]. 1984.The Eighteenth Terzaghi Lecture, Journal of Geotechnical Engineering, ASCE. 110 (10)
    Hydropower and Dams. 2004. Updates on Some Major CFRD Projects [J]. Hydropower and Dams. 3: 109-113
    Li Shouju, Liu Yingxi.·2005. Slope stability estimation with probabilisticneural networks, Journal of Computational information System [J]. 1(4): 679—685
    Yue Zhongming, Yang Qing. 2000. Shuibuya the world’s highest concrete faced rockfill dam. Hydropower and dam [J]. 07

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700