酸雨胁迫对白兰花生理特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酸雨已成为目前全世界环境问题之一,也是我国的重要环境问题。酸雨危害引起的经济损失和对生态平衡及植物本身影响的严重性已越来越引起人们的关注。本文以长势良好且树龄相同的木兰科植物白兰花(Michelia alba.DC)为实验材料,采用盆栽方式,用模拟酸雨的处理方法,研究了白兰花在模拟酸雨胁迫下的形态指标、生长量指标和某些生理生化指标,探索了白兰花对酸雨胁迫的抗性机理,为酸控制区城市绿化植物的选择和酸雨理论研究提供依据和参考。
     研究结果表明:
     (1)酸雨对白兰花的伤害与酸雨的pH值密切相关,不同酸度酸雨对白兰花的伤害不同。酸雨的酸度越高,频次越多,对白兰花的伤害程度和抑制作用就越大。酸雨对白兰花的可见伤害阈值为pH 3.0;酸雨pH 2.0时,白兰花对酸雨污染敏感等级为Ⅱ。
     (2)白兰花新梢增长率和生长率均随着酸雨的pH值减小而逐渐降低,且各处理的新梢增长率和生长率分别都与pH 5.6(CK)呈显著性差异(p<0.05),白兰花的生长量指标对酸雨较为敏感。
     (3)酸雨胁迫明显影响白兰花的光合作用。与白兰花光合作用相关的叶绿素含量、叶绿素a/b值、净光合速率、气孔导度、胞间CO2浓度、蒸腾速率随着酸雨pH值的减小而下降,引起白兰花光合作用能力下降,从而使其生长发育受到抑制。
     (4)各处理白兰花叶片的MDA含量呈现上升-下降-上升的趋势,说明白兰花对酸雨有一定的适应性,抗氧化系统也积极作出响应以抵御外界伤害,消除自由基,防止膜脂过氧化;但随着酸雨次数的增多,胁迫引起了白兰花叶片的膜脂过氧化加剧,对叶片细胞产生了伤害,且酸雨的酸度越强,伤害越严重。
     (5)酸雨胁迫使白兰花体内保护酶系统的活力和平衡受到破坏,活性氧积累,启动并加剧膜脂过氧化而造成整体膜的损伤;在多次酸雨胁迫下,保护酶系统所起的作用已经有限,不能再清除多余的自由基,白兰花受到伤害。
     (6)白兰花是一种对酸雨胁迫较为敏感的木兰科植物,会随着酸雨pH的减小和胁迫次数的增多而受到更大的伤害。
Acid rain, one of the global environmental problems, is also major environmental issue of China. It has reported that acid rain gives rise to a large amount of economic losses and it does harm to the plants as well as ecological balance, Threaten from acid rain has become increasingly a cause for concern.
     In this study, Michelia alba.DC growing in a good condition and in the same age were planted in pots and treated by simulated acid rain under different pH values (pH= 2.0,3.0,4.0, 5.6). The morphological indices, the growth index and some physiological and biochemical indicators were determined to exploring the acid rain resistance mechanism of Michelia alba.DC. The work provides an experimental basis for acid rain theory on a certain plant species, and also it gives an important reference to the selection of urban green plants in acid rain control area. The experimental results are as follows:
     (1) Damage to Michelia alba. DC from acid rain is closely related to the acidity. The higher acidity and the higher occurrence frequency of acid rain, correspondingly, the heavier damage and the greater inhibition on Michelia alba. DC. The visible damage threshold of acid rain on Michelia alba. DC were pH= 3.0; the sensitivity of Michelia alba.DC to acid rain pollution are in gradeⅡunder pH= 2.0.
     (2) The new branch increment rate and the growth rate of Michelia alba. DC were decreased in accordance with the decreasing of pH values, The branch increment rates and growth rates in all treatment groups were unexceptionally different from the CK (p<0.05). The growth rate was a sensitive indicator to acid rain for Michelia alba. DC.
     (3) The stress of acid rain has an evident effect on the photosynthesis of Michelia alba. DC. The contents of chlorophyll, the contents of chlorophyll a/b, the net photosynthetic rates (Pn), the stomatal conductances (Gs), the intercellular CO2 concentrations (Ci), and the transpiration rates (WUE) were all decreased in accordance with the decreasing of rainfall acidity, indicating that the photosynthetic capacity of Michelia alba. DC is suppressed and the growth of Michelia alba. DC is inhibited.
     (4) The malondialdehyde (MDA) levels in the leaves of Michelia alba.DC under acid rain treatment showed up-down-up trends, implying that the orchids have some adaptability to acid rain. The antioxidant system make an active response to resisting outside hurts: eliminating free radicals, preventing peroxide of membrane lipid. With the increasement of the frequency of acid rain, the peroxidation of lipid in the leaves of Michelia alba.DC are aggravated, which injures the leave cells, the stronger the acidity of acid rain, the more serious injuries.
     (5) Acid rain stress also destroys the vitality and balance of endogenous protective enzyme system in Michelia alba. DC, the reactive oxygen species were accumulated, and the lipid peroxidation were enhanced as well as the bulk membrane was damaged. Under repeat acid rain stresses, the protective function of enzyme systems is heavily impaired, which can not remove excess free radicals, and it also can not prevent the Michelia alba. DC from outside hurts effectively.
     (6) The Michelia alba. DC is a Magnoliaceae species relatively sensitive to acid rain stress. The injury on Michelia alba. DC became heavier with the decreasing of pH values of acid rain and with the increasing of the stress frequency of acid rain.
引文
[1]冯宗炜.中国酸雨对陆地生态系统的影响和防治对策[J].中国工程科学,2000,9(2):5-12.
    [2]吴杏春,林文雄,洪清培,等.模拟酸雨对草坪草若干生理指标的影响[J].草业科学,2004,21(8):88-92.
    [3]吴丹,王式功,尚可政.中国酸雨研究综述[J].干旱气象,2006,24(2):70-77.
    [4]张士功,张华.酸雨对我国生态环境的危害及防治对策[J].中国农业资源与区划,2001,22(1):41-44.
    [5]张广生.30种草本观赏植物对模拟酸雨的反应[J].中国农业生态学报,2007,15(2):104-107.
    [6]余春珠.三种木本植物对酸雨的敏感性和抗性[J].生态环境,2005,14(1):86-90.
    [7]曾庆玲.酸雨对不同抗性植物种子萌发的影响[J].农业环境科学学报,2004,23(1):39-42.
    [8]周青.酸雨对三种本本植物的胁迫效应[J].环境科学,2002,23(5):42-46.
    [9]王忠.植物生理学[M].中国农业出版社,2000,466-471.
    [10]姜卫兵,曹晶,李刚,等.我国木兰科观赏新树种的开发及在园林绿化中的应用[J].上海农业学报,2005,21(2):68.73.
    [11]姜卫兵,李刚,翁忙铃,等.5种木兰科园林树种在南京地区冬春季节的光合生理生态学特征研究[J].应用生态学报,2007,18(4):749-755.
    [12]Huang Y Z, Li Z X, Li X D, et.al.Impact of simulated acid rain on growth and nutrient elements uptake by Eucalyptus and Pinusmassoniana[J].Ecology and Environment,2006,15(2):331-336.
    [13]Tong G H, H L..Effects of simulated acid rain and its acidified soil on soluble sugar and nitrogen contents of wheat seed lings[J].Chin.J.App1.Ecol,2005,16(8):1487-1492.
    [14]齐泽民.酸雨对植物影响的研究进展[J].世界科技研究与发展,2004,4.
    [15]林慧萍.酸雨对陆生植物的影响机理[J].福建林业科技,2005,32(1):60-64.
    [16]肖艳,黄建昌.13种果树对酸雨抗性的研究[J].果树学报,2004,3(3):191-195.
    [17]黄建昌,肖艳.模拟酸雨对6种园林植物的影响[J].西南农业大学学报,2002,24(4):360-362.
    [18]Silva LC,oliva MA,Asevedo AA et al.Micromo hological and all atomical alterations caused by simulated acid rain in Restlnga Plants:Eugenia uniflora and Clusia hiluriana.[J] Water Air and soil Pollution,2005,168(1-4):129-143.
    [19]Lee Y, Park J,Iin K,et al.Arabidopsis leaf necrosis caused by simulated acidrain is related tothesalic acid signaling Path way[J].Plant Physiologic Biochem,2006,44 (1):38-42.
    [20]王玮.模拟酸雨对青菜叶片若干显微结构和生理变化影响的初步研究[J].上海农学院学报,1986,5(4):267-272.
    [21]文宗振,钟荣亮,潘询操.酸雨对萝卜叶超微结构的危害初报[J].广西农业大学学报,2002,11(4):85-8.
    [22]邱栋梁,刘星辉,王湘平.模拟酸雨对龙眼叶绿体的伤害效应[J].应用与环境生物学报,2002,8(2):154-155.
    [23]Singh B, Agrawal M. Impact of Simulated Acid Rain on Growth and Yield of Two Cultivars of Wheat[J].Water,Air,&Soil Pollution,2004,152(1-4):71-80.
    [24]Devpura S, Khan T I. Effect of simulated acid rain exposure on growth and biochemical parameters of Phaseolus aureus Var. RMG-62,in a pot experiment[J].Current Bio-Sciences,2003,1(1):35-44.
    [25]Devpura S,Khan T I. Effect of simulated acid rain on germination and seedlings of Phaseolus aureus.Var.RMG-62[J].Nature Environment and Polution Technology,2003,2(3):337-339.
    [26]Solomon D M,Devpura S,Khan T I.Effect of simulated acid rain on germination and seedlings of Arachis hypogea L Var.M-13[J].Curt.Sci.,2003,3(1):137-140.
    [27]黄建昌,肖艳,张运新,等.模拟酸雨对芒果的生理伤害和生长的影响[J].热带作物学报,2003,24(1):28-30.
    [28]单运峰.酸雨、大气污染与植物[M].北京:中国环境科学出版社,1994.
    [29]Malecka A, Jalruszkiewiez W,Tomaszewska B.Antioxidative Defense to Lead Stress in Subeellular Compartments of Pea Root Cells [J].Acta Bioehifnica Poloniea.2001,48:687-698.
    [30]李晶,阎秀峰,祖元刚.低温胁迫下红松幼苗活性氧的产生及保护酶的变化[J].植物学报,2000,42(2):148-152.
    [31]Tong G H, Liang H L. Effects of simulated acid rain and its acidified soil on soluble sugar and nitrogen contents of wheat seed lings[J]. Chin. J. Appl.Ecol,2005,16(8):1487-1492.
    [32]童贯和,刘天骄,黄伟.模拟酸雨及其酸化土壤对小麦幼苗膜脂过氧化水平的影响[J].生态学报,2005,25(6):1509-1516.
    [33]袁琳,克热木·伊力,张利权.NaCI胁迫对阿月浑子实生苗活性氧代谢与细胞膜稳定性的影响[J].植物生态学报,2005,29(6):955-991.
    [34]吕家根,占达东,王周平,章竹君.模拟酸雨胁迫下小麦微弱延迟发光及其生理、生态变化相关性研究[J].化学学报.2003,61(5):760-764:
    [35]布坎南旧(Buchanan.B.B),翟礼嘉等译.植物生物化学与分子生物学洲[M].科学出版社,2004,2.
    [36]刘娥娥,宗会,刘振飞等.盐胁迫下Lacl3和CPZ对稻苗抗氧化酶类活性的影响[J].2002,28(1):42-46.
    [37]吴强,冯汉青,李红玉等.梁厚果干早胁迫对小麦幼苗抗氛呼吸和活性氧代谢的影响[J].植物生理与分子生物学学报,2006,32(2):217-224.
    [38]黄建昌,肖艳,周厚高.模拟酸雨对番木瓜不同成熟度叶片膜脂过氧化作用的影响[J].广西植物,2005,25(6):562-565,575.
    [39]刘金祥,蔡瑜,肖生鸿.模拟酸雨对矮象草生理生态特性的影响[J].湛江师范学院学报,2005,26(6):65-70.
    [40]童贯和.酸雨对黄棕壤的致酸作用与对小麦幼苗膜脂过氧化水平的影响[J].土壤通报,2005,36(2):216-219.
    [41]张光生,刘英,周青.9种草本观赏植物叶绿素含量和细胞膜透性对酸雨胁迫的响应[J].生态与农村环境学报,2006,22(4):53-57.
    [42]樊后保,减润国,KosukeWaki.女贞种子和幼苗对模拟酸雨的反应田[J].林业科学,2000,36(6):90-94.
    [43]蔡如,黄建昌,肖艳.模拟酸雨对6种园林植物生长和生理反应的影响团.仲恺农业技术学院学报,2002,15(3):28-32.
    [44]黄继山,温文保,蔺万煌,等.酸雨对树木叶细胞伤害的模拟研究[J].林业科学研究,2002,15(2):219-224.
    [45]宋贺,黄婷等.酸雨胁迫条件下紫花苜蓿种子萌发和幼苗生理特性的变化[J].生物学杂志,2007,24(5):41-42.
    [46]刘建福,汤青林,倪书邦,等.水分胁迫对澳洲坚果叶绿素a荧光参数的影响[.J].华侨大学学报(自然科学版),2003,24(3):305-309.
    [47]刘建福.磷胁迫对澳洲坚果幼苗叶片光合作用的影响[J].西南师范大学学报(自然科学版),2007,32(2):45-48.
    [48]夏阳,孙明高,李国雷,等.盐胁迫对四旁园林绿化树种叶片中叶绿素含量动态变化的影响[J].山东农业大学学报(自然科学版),2005,36(1):30-34.
    [49]彭彩霞,彭长连,林桂珠,等.模拟酸雨对农作物种子萌发和幼苗生长的影响[J].热带亚热带植物学报,2003,11(4):400-404.
    [50]李焰焰,聂传,董召荣.模拟酸雨对小黑麦种子萌发及幼苗生理特性的影响[J].生态学杂志,2005,24(4):395-397.
    [51]田大伦,黄智勇,闫文德,等.模拟酸雨对3种盆栽灌木幼苗叶矿质元素含量的影响[J].中南林业科技大学学报(自然科学版),2007,27(1):1-8.
    [52]邱栋梁,刘星辉,郭素枝,等.模拟酸雨对龙眼叶片气体交换和叶绿素a荧光参数的影响[J].植物生态学报,2002,(26):441-446.
    [53]单运峰.酸雨、大气污染与植物[M].北京:中国环境科学出版社(1994).
    [54]张耀明,吴丽英,王晓霞,等.酸雨对农作物的叶片伤害及生理特征的影响[J].农业环境保护,1996,15(5):197-208.
    [55]刘玉壶.中国植物志(第30卷第1分册)[M].北京:科学出版社,1996.
    [56]余文琴.白兰花的耐寒性及其越冬期保护酶活性的变化[J].福建农业大学学报29(4):440-443,2000.
    [57]李志国,翁忙铃,姜武,等.模拟酸雨对乐东拟单性木兰幼苗部分生理指标的影响[J].生态学杂志,2007,26(1):31.344(1):86-90.
    [58]黄智勇,田大伦.模拟酸雨对盆栽广玉兰幼苗叶矿质元素含量的影响[J].中南林业科技大学学报 (自然科学版),2007,27(1):35-39.
    [59]付晓萍,田大伦,黄智勇,等.模拟酸雨对植物形态学效应的影响[J].浙江林学院学报,2006,23(5):521-526.
    [60]潘瑞炽,董愚等.植物生理学(第2版)[M].北京:高等教育出版社,1990:106-117.
    [61]傅大立.玉兰属的研究[J].武汉植物学研究,2001,19(3):191-198.
    [62]傅大立,李芳东,赵天榜,等.玉兰属5树种生理指标的对比研究[J].林业科学,2003,39(1):44-49.
    [63]孙谷畴,赵平,曾小平.两种木兰科植物叶片光合作用的光驯化[J].生态学报,2004,24(6):1111-1117.
    [64]魏菱等.四川省酸雨污染现状及趋势分析[J].四川环境,2001,20(4):63-65.
    [65]郝再彬,苍晶,徐仲.植物生理实验[M].哈尔滨:哈尔滨工业大学出版社,2004,9,31-32,46-48,101-115.
    [66]黄瑞冬,王进军,许文娟.玉米和,高粱叶片叶绿素含量及动态的比较[J].杂粮作物,2005,25(1):30-31.
    [67]张明生,谈锋.水分胁迫下甘薯叶绿素a/b比值的变化及其与抗旱性的关系[J].种子,2001,4:23-25.
    [68]张小兰,施国新,徐楠,等.Hg2+、Cd2+离子对轮藻(chara)部分生理生化指标的影响[J].南京师大学报(自然科学版),2002,25(1):38-43.
    [69]童贯和等.模拟酸雨致酸土壤对小麦幼苗生长发育的影响[J].农村生态环境,2005,21(1):47-50.
    [70]Rao MV, Paliyath G,Ormrod DP. Ultraviolet-B and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana[J]. Plant Physiology,1996,110(1):125-136.
    [71]Chou H, Seo NH. Oxidative stress in Arabidopsis thaliana exposed to cadmium15due to hydrogen .peroxide accumulation [J].Plant Science,2005,168:113-120.
    [72]付士磊,周永斌,何兴元,等.干旱胁迫对杨树光合生理指标的影响[J].应用生态学报,2006,17(11):2016-2019.
    [73]刘亚云,孙红斌,陈桂珠.多氯联苯对桐花树幼苗生长及膜保护酶系统的影响[J].应用生态学报,2007,18(1):123-128.
    [74]李燕,薛立,吴敏.树木抗旱机理研究进展[J].生态学杂志,2007,26(11):1857-1866.
    [75]付晓萍,田大伦.酸雨对植物的影响研究进展[J].西北林学院学报,2006,21(4):23-27.
    [76]杨振德.几种园林树种对酸雨抗性的研究[J].广西科学院学报,1998,14(3):28-31.
    [77]Liu W, Li P J, Zhou Q X, Sun T H, et al. Effect of short term phenanthrene stress on SOD activities and MDA contents in soybean(Glycinemax) seedlings[J]. Chin. J. App l. Ecol.,2003,14 (4):5812584.
    [78]李建武,王蒂.水分胁迫对马铃薯试管苗抗氧化酶活性的影响[J].北方园艺,2008(1):7-9.
    [79]蒋燕,孟玲,赵会杰.2007.高温干旱处理对番茄不同品种幼苗生长的影响[J].北方园艺,(1):1-5.
    [80]张英鹏,林咸永,章永松,李刚,杨运娟.不同氮素形态对菠菜生长及体内抗氧化酶活性的影响[J].浙江大学学报(农业与生命科学版),2006,32:139-144.
    [81]Wan M L, Kuang Y H, Chen J X. Effect of phosphorus deficit on membrane lip id per oxidation and the activity of defense enaymes in sugar cane. J.of China Agric. Univ.,1999,2 (2):58261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700