制粒环模磨损失效分析及45~#钢抗苜蓿草粉的磨料磨损试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料的磨损是机械产品中常见的失效形式,每年给社会带来巨大的经济损失。我国采用加工配合饲料的环模制粒机生产苜蓿草颗粒,作为苜蓿饲草产品加工利用的主要方式,已解决了苜蓿产业化生产中贮藏、运输及饲喂的问题。但是,由于苜蓿的物理机械性能与普通饲料不同,因此在用加工配合饲料的颗粒机加工苜蓿草颗粒的生产实践中,颗粒机环模的磨损非常严重,即环模抗苜蓿草粉的耐磨性较低,其产量只有生产配合饲料产量的四分之一左右,这便增加了苜蓿草颗粒产品的生产成本。环模制粒机的环模选材多以优质合金钢为原材料,其成本昂贵,这无形中也增加了饲料企业产品的生产成本。以价格低廉的优质碳素结构钢45#钢作为制造环模的代表材料,并把45#钢作为抗苜蓿草粉磨损性能比较的参照材料,为以后的抗苜蓿金属材料的磨损做基础工作。因此,分析研究颗粒机环模磨损失效的原因,以及苜蓿草粉对金属材料的磨损性能的影响,对提高颗粒机环模的使用寿命有现实意义。
     本课题的主要工作有以下几方面,①分析环模失效形式,从宏观上观测实际环模失效机理,从磨损形貌上进一步分析其失效原因;②对45#钢毛坯件进行化验,确定其毛坯件本身无缺陷;③以选定的热处理方案进行淬火处理,首先将四组试件统一做组织均一化的预热处理,使其晶粒细化,组织结构统一,其次将四组试件按预定方案做常规淬火热处理和亚温淬火热处理,再低温回火,并测得各试件硬度值;④对试件做冲击试验,求得其平均韧度值;⑤进行磨料磨损失重试验,主要从质量损失上观察耐磨性优劣情况,用电子扫描显微镜观察磨损面的宏观磨损状况,判断磨损机理,再运用金相显微镜从金相组织方面分析解释耐磨性的原因,进一步验证试验结果。最后得到试验结论,结论如下:
     (1)由于磨损使得环模产生孔径增大、进料倒角被磨损、模孔内壁凹凸不平、壁厚减小,强度降低4种结构失效现象,导致了颗粒形成的受力关系的变化而最终导致环模失效;
     (2)环模表面在塑性变形和显微切削两种磨损机制作用下产生表面的材料流失,造成环模的磨损失效。
     (3)淬火后的45#钢抗苜蓿草粉的耐磨性要优于未经淬火热处理的试件,耐磨性最好的是亚温淬火的试件;
     (4)苜蓿草粉磨粒对未经热处理的45#钢金属材料表面的磨损为硬、软磨粒共同作用的结果,在硬磨料磨损条件下以显微切削为主要磨损机制,在软磨粒磨损条件下以多次塑性变形和低周期疲劳为主要磨损机制,经过热处理之后的试件的磨粒磨损仍然以显微切削机制为主导,塑性疲劳磨损不明显;
     (5)在苜蓿草粉磨料对45#钢的磨粒磨损实验中,单一的提高硬度不是提高耐磨性的有效途径,硬度、塑性、韧度的合理配合能提高45#钢的抗苜蓿草粉磨粒磨损能力。
The attrition of the material is the common expiration form in the mechanical product, and brings the huge economic loss to the society every year. Using the circular mold Pelletier producing the mixed feed to product the alfalfa grass pellet in our country, as the main expiration form on product and utilize the alfalfa forage product, which has solved the problem of stores, transports and feeds on the process of the alfalfa industrialization. But in production practice of using the Pelletier of the mixed feed to product the alfalfa grass pellet, the attrition of circular mold is extremely serious, that is to say the abrasive resistance of circular mold is low in wearing alfalfa grass pellet, its output only about 1/4 of that of the mixed feed, and increases the production cost of grass pellet because the alfalfa's physical and mechanical property is different from the ordinary feed. The material of the circular mold Pelletier machine mostly takes the high quality alloy steel as the raw material, its cost is expensive, and which increases the cost of enterprise's product in some way. Using the high quality carbon structural steel 45# steel which low in price as the circular mold's representative material and the reference material with alfalfa grass powder in attrition performance, which is the foundation work for the later anti-alfalfa metallic material's attrition. Therefore, analyzing the expiration reason of circular mold, studying the influence of the alfalfa grass powder’s wear performance with the metal material, which have the practical significance to enhances the circular mold’s service life.
     This topic's prime task has the following several aspects,①Analyzes circular mold expiration form, observe the actual circular mold expiration mechanism from macroscopic, and further analyzes its expiration reason from the attrition appearance;②Carries on the chemical examination of the 45# steel’s raw materials, determined that its raw materials itself does not have the flaw;③Carries on quenching processing using the designated heat treatment plan, firstly makes the micro-structure homogenizing preheating processing for four group of test sample, causes its grain refining, and the micro-structure to be unified, next makes the conventional quenching heat treatment and the subcritical quenches heat treatment for four groups of test samples according to the predetermined plan and tempering ,and then obtains various test samples degree of hardness value;④Performs the impact test to the test sample, obtains its average tenacity value;⑤Carries on the grinding abrasion weightlessness experiment, mainly observes the wear resistant situation whether good or bad from the mass defect, with the scanning electronic microscope to observe the wearing surface's macroscopic wear condition, to judge the abrasion mechanism, and analyzes and explains the reason of wear resistant again using the micro-structure microscope from the microstructure aspect, further confirms the test result. Finally obtains the experimental conclusion, the conclusion is as follows:
     (1) Because the circular mold is wore, and causes the aperture is increased, feeding bevel edge is worn, the endophragm of model hole is uneven, and the inside diameter is increased, wall thickness reduces .those 4 kinds of structure expiration phenomenon caused the granulation stress relations changed and finally causes the circular mold expiration;
     (2) The plastic deformation and micro cuts produce the circular mold surface superficial material is drained under two kind of attrition mechanisms function , finally creates the circular mold’s attrition expiration.
     (3) The test sample’s wear resistance of quenched 45# steel to alfalfa grass powder is better than that of unquenched, what the wear resistance is best is the subcritical quenches heat treatment test sample;
     (4)The surface attrition of the alfalfa grass powder grinding compound to metal material—45# steel are the result of the hard and soft abrasive simultaneously, under the condition of hard abrasive, the wear is mainly the micro-cutting wearing, while it is dominated by the plastic deformation many times and the low cycle fatigue wear in the case of soft abrasive. When the test sample were quenched, the wear is mainly the micro-cutting wearing either, the plastic deformation weary which is the grass powder grinding medium to 45 # steel is not obvious. (5) In the abrasive attrition experiment of the alfalfa grass powder grinding to the 45# steel, sole enhances hardness is not the effective way of enhancing the wear resistant, the reasonable coordination of hardness, the plasticity and toughness can improve the attrition ability of 45 # steel to resistance alfalfa grass powder.
引文
[1]夏清阳,赵兰印,葛发权,等.调整农业结构发展苜蓿产业实现增收思考[A].第二届苜蓿发展大会[C].北京:中国草学会,中国畜牧业协会,2003,235~237
    [2]王勇.浅析苜蓿草加工技术[J].《牧羊通讯》技术资料汇编,饲料加工新技术[Z].江苏牧羊集团有限公司,2002,9
    [3]云锦凤,米副贵.苜蓿饲草收获与利用[C].首届中国苜蓿发展大会会议论文集.中国草原学会,2001, 116-118
    [4]张维果,吴劲锋.苜蓿草粉制粒密度与挤出力关系研究[J].甘肃农业大学学报.2006.41(2)::78~82
    [5]戴斌.提高制粒机压模使用寿命技术的探讨[J].粮食与饲料工业,1997,5:14~15
    [6]吴劲锋,黄建龙,赵武云,等.苜蓿草颗粒制粒环模磨损失效分析与磨料磨损试验研究[J].中国农机化,2007,(2):84~86
    [7]张维果.制粒环模的力学模型与磨料磨损试验研究[D].甘肃农业大学.2006
    [8]孙家枢,贺镇江.磨料对材料表面磨损作用力及磨损机理的研究[J].农业机械学报,1984,(1):58~68.
    [7]常会宁,郝平,苜蓿产业化前景广阔[J].黑龙江畜牧兽医,2001,(10):136~137
    [9]曾国良.制粒技术[J].《牧羊通讯》技术资料汇编,饲料加工新技术[Z].江苏牧羊集团有限公司,2002,9
    [10]王荫波,农牧渔业部畜牧局,中国畜牧业机械化[M].北京:农业出版社,1988.
    [11]刘继业,李德发,赵和平,等.饲料加工技术(下册)[M].北京:化学工业出版社,1989
    [12]牧羊集团.MUZL420型牧羊-UMT颗粒机使用说明书[Z].牧羊-UMT机械有限公司
    [13]夏清阳,赵兰印,葛发权,等.调整农业结构发展苜蓿产业实现增收思考[A].第二届苜蓿发展大会[C].北京:中国草学会,中国畜牧业协会,2003,235~237
    [14]张玉发.中国的苜蓿草产业化[J].中国牧业通讯,1998,(8):24
    [15]董宽虎.苜蓿产业化生产与加工利用[M].北京:金盾出版社,2002
    [16]戴斌,提高颗粒机压模使用寿命技术的探讨[J].粮食与饲料工业,1997,(18):14~15
    [17]谢正军,王炳德,李彦炜,等.饲料制粒新技术[J].饲料工业,2002,23(3):7~11
    [18]邵荷生,张清.金属的磨料磨损与耐磨材料[M].北京:机械工业出版社,1988.
    [19]荣长发,王严兴,杨国欣.磨损研究的状况与发展[J].工业技术经济,1996,(04):136~138
    [20]第一机械工业部摩擦磨损润滑调查织,摩擦磨损润滑开展情况的分析报告,1975
    [21]殷国福,陈永华.计算机辅助设计技术与应用[M].北京:科学出版社,2002.
    [22]邓守军,孙乐民,张永.磨损机理的变迁与现状[J].机械研究与应用,2004,17(6):10~11
    [23] Amontons,G,Hirst,W. Acad.R,Soc,1969,206.
    [24] Coulomb .C.A.,Theories des machines simples , Memoires de metnematique of de Physique de I‘Academia des sciences .10,1785,161~331.
    [25] Bowdon,F.P.,Tabor,D,The Friction and Lubrication of Solids.
    [26] Burwell,J.T.,Strang,C.D,Applied Physics,23,1952,18~28.
    [27] Archard,J.F.,Proc.Roy.Soc.A,243,1233,1957.190~205.
    [28] Kparenbckna,N.B.Ochobu pacuetob natpehne ,Mamnhoctpoehne,1977.
    [29] Sub,N.P.,Wear,25,1973,111~124.
    [30] JOST HP. Tribology education and research[R].Jost Rep.Department of Education and Science, HMAO ,London,1966.
    [31]张晓峰,方亮,邢建东,等.二体磨损与三体磨损之间的关系[J]西安公路交通大学学报,2000,7(20):93~97
    [32]王吉会,郑俊萍,刘家臣,等.材料力学性能[M].天津大学出版社,2006.9:272~292
    [33]曹建国主编,汽车维修实用技术[M].重庆大学出版社,2003
    [34]黄智文.谈谈磨粒磨损[J].表面技术,2000,(04) :34~36
    [35]杨忠,左洪福,刘正埙.一种发动机滑油磨粒形态测量与分析技术[J].南京航空航天大学学报, 1997,(02):208~213
    [36]邵荷生.摩擦与磨损[M].机械工业出版社,1988,2:203~213
    [37] A.D.萨凯.金属磨损原理[M].煤炭工业出版社,1980
    [38]柴田正道,日本,姚英.各种因素对滚动接触疲劳寿命的影响[J].国外内燃机车, 1996,(03):6~13
    [39]杨代华,肖祥麟.平面钢领疲劳磨损机理分析[J].纺织学报, 1994, 01
    [40]岳钟英,周平安,史晋宏.影响材料腐蚀磨损的因素及其机理研究[J].摩擦学学报.1987, 02
    [41]黄日铜,李振洋编.汽车使用管理[M].人民交通出版社, 1990
    [42]姜振雄,丁家盈,须祖兴.软磨料磨损机制的初步探讨[A].姜振雄,强韧白口铸铁[M].浙江大学出版社,1989
    [43]汪宁.纯煤的软磨料磨损特性[A].中国金属学会耐磨材料学术委员会.《水利水电机械》编辑部编,第三届金属耐磨材料学术会议论文选集[C].1996
    [44] Richardson R L D.The wear of metal by hard abrasive [J].Wear,1967,10:291~309
    [45] Richardson R.C.D, The Wear of Materials by Relatively soft Abrasives .Wear .Vol.11.1968,245~275.
    [46] Rabinowicz E. The Wear of Hard Surface by Relatively soft Abrasives .Wear of Materials .1983.12~17.
    [47] K.C.Ludema. The Lecture About Wear on China Research instate of Agricultural Machinery .1982
    [48]关凯书,刁新华,张美华,磨损机理的定量分析方法[J],润滑与密封,2000,(1):33~34
    [49]刘暾,静压气体润滑[M].哈尔滨工业大学出版社,1990
    [50]向红亮,刘东.磨盘材料软磨料的磨损机理[J].中国造纸,2007,26(2):18~19
    [51] Ouellet D, Bennington C P J, Potkins D·Wood comminution andmaterial flow in a laboratory chip refiner[J]·Journal of Pulp and Paper Science,1995,21 (11): 415
    [52]林福严,邵荷生.软磨料冲蚀磨损机理的研究[J].水利电力机械,1990,(01):17~21
    [53]邹鸿承,娄彦良,戴蜀娟,等.第二相粒子对材料延展性断裂过程的影响[J].华中理工大学学报,1989(2):57
    [54]范新会,贺林.马氏体高铬铸铁抗磨料磨损与抗冲击疲劳性能的研究[J].摩擦磨损,1989(3):36
    [55]周平安,孙家枢,张兴龙.拖拉机铸造履带板磨料磨损特性的研究[J].农业机械学报,1984,(2):67~76
    [56] Wang Ning; Transformation of soft-abrasive wear into hard-abrasive wear under the effect of frictional heat[J].Tribology Transactions, 1989, 32:85-90
    [57]郭二军,王丽萍,岳金权,等.双螺旋辊式新型磨浆机螺旋套磨损机理的研究[J],摩擦学学报,2005,25(6):593~596
    [58]李长河,微动磨损对农业机械的危害及预防措施[J].农机化研究,2005(6):49~51
    [59]邹雨合.45钢汽车轮毂轴管的热处理工艺改进[J].机械工人(热加工) , 2007,(02):39~40
    [60]刘爱国,李杰.关于45钢热处理工艺的研究和改进[J].机械工程与自动化,2004,(05):79~80
    [61]赵振东.45钢回火公式的应用[J].机械工人,热加工,1994,(05):25
    [62]杨雁霞. 45#钢零件淬火裂纹分析及对策[J].沿海企业与科技,2005,(07):149,166
    [63]清华大学材料科学与程系,材料科学与工程概论[M].清华大学教务处
    [64]工程陶瓷冲击韧性试验方法[A].国家技术监督局,1994,7~12
    [65]王东升,康建军,付宗敏.ZGCr6SiMnMo在大中型球磨机二仓筒体衬板上的应用研究[J].矿山机械,1998,(4):24~26
    [66]李维.冲击韧性(a_K)与冲击吸收功(A_K)[J].理化检验.2000,(03):34
    [67]赵作善.实验设计[M].第二版.北京:中国农业大学出版社,1998
    [68]成大先,机械设计手册[M].第三版,北京:化学工业出版社
    [69]慈铁军.铬对高铬铸铁组织、性能的影响及冲击磨料磨损机理研究[D].华北电力大学,2000.
    [70]罗先武,许洪元,卢达溶.泵轮叶片快速磨损失重法试验研究[J].金属矿山,1996,(11):33~35
    [71]覃峰.陶瓷/金属梯度耐磨涂层的实验研究及喷涂过程仿真[D].武汉理工大学,2003
    [72]张辉.陶瓷/金属梯度耐磨涂层的实验研究及设计计算可视化[D].武汉理工大学,2002
    [73]陈岳林,汪杰君.金相组织定量识别分析研究[J].特种铸造及有色合金, 2005,(03):13~15
    [74]左秀荣,姜茂发,薛向欣,等.金相组织分析软件的设计[J].钢铁研究学报,2001,(05):64~66
    [75]师俊赢.金相组织对工件表面质量的影响[J].机械工人,热加工,1993,(05)
    [76]秦紫瑞,孙敬元.Hastelloy B-2型铸造镍基合金的组织及其局部腐蚀行为研究[J].上海有色金属,1994,(06):332~338
    [77]黄明富,邓世萍,吕振林,等.湿式磨机中低铬铸铁磨球的磨损形貌分析[J].水利电力机械,2003,(02):44~47
    [78]刘峰璧,李续娥,谢友柏.载荷动态特性对三体磨料磨损过程的影响[J].机械设计与研究,2000,(01):42~43
    [79]马争,桂长林.评定磨合表面的最佳形貌参数[J].摩擦学学报,1995,(02):133~137
    [80]李淑英,马子宁,赵彦军,等.用扫描电镜观察人工模拟磨损粘胶纤维的形貌变化[J].广东公安科技,1996,(02):27~30
    [81]朱昱,赵彦军,马子宁,等.用扫描电镜鉴定纺织纤维的破损原因[J].广东公安科技, 1996,(04):25~28
    [82]柏建仁,潘艳春,张承琮.发动机气缸粘着磨损微观形貌分析[J].汽车技术,1994,(09):42~47
    [83]马前,柳百成,王兆昌. Fe-C合金高温保温过程中碳化物表面形貌连续变化的研究[J].钢铁,1994,(05)
    [84]马前,王兆昌.共晶碳化物形貌与分布对白口铸铁抗冲击磨料磨损性能的影响[J].机械工程材料,1994,(05):37~39
    [85]吴劲锋,黄建龙张维果苜蓿草粉制粒密度与挤出力模拟试验[J],农业机械学报,2007,38(1):68~71
    [86]张清.金属磨损和金属耐磨材料手册[M].北京:冶金工业出版社.1991
    [87]张剑锋,周志芳.摩擦磨损与抗磨技术[M].天津:天津科技翻译出版公司.1993
    [88]籍国宝.摩擦磨损原理[M].北京:农业出版社.1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700