电站锅炉煤粉空气富氧直接点火技术的理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油与煤炭均是人类宝贵的和有限的一次能源及资源,为了保证资源的可持续利用,电厂锅炉节油和提高燃料利用率已越来越被重视。电厂锅炉煤粉气流空气富氧直接点火技术即是应此而生的一项全新的无油点火技术。
     煤粉气流空气富氧直接点火的概念是常温的高氧浓度煤粉气流在常温环境下直接点火,并不需要外部热源而稳定着火燃烧。其基本原理是利用煤粉在高氧浓度下显著增加的燃烧放热速度和单位体积烟气焓来保证合适的火焰温度、回流热量和着火距离,促使火焰自稳定着火燃烧。
     针对煤粉气流空气富氧直接点火新概念和新技术,需要从基本燃烧理论到实际工程应用的全方位进行研究。因此本文从以下几个方面开展了研究:
     (1)利用热分析技术研究了煤粉在不同氧浓度条件下的燃烧特性,得出在高氧浓度下,煤粉的着火温度、着火热有所降低,但并不能克服煤种之间的差异,而呈倍数关系提高的燃烧速度、理论燃烧温度、烟气焓,为煤粉气流冷态条件下自稳燃提供了可行性。同时研究了煤焦的热分析燃烧特性,采用数学优化方法(差分进化算法DE)计算煤焦燃烧的动力学参数。并建立了DE分离法,对热分析TG曲线进行分离,研究了煤焦在高氧浓度下分段燃烧的动力学参数。
     (2)在大型卧式燃烧试验炉上进行了煤粉气流空气富氧直接点火的试验研究,分别试验了旋流燃烧器、直流燃烧器空气富氧直接点火的可行性,并进行了燃烧参数的测试。旋流燃烧器在一次风氧浓度为30.1%时,旋流二次风氧浓度在23.2%以上时,冷炉冷风煤粉气流可以直接用火把点燃,此时综合氧浓度为25.1%。直流燃烧器冷炉冷风成功直接点火的最低氧浓度为27.9%,最低煤粉浓度为0.32kgC/kgA.在富氧条件下,煤粉气流离开喷口即迅速着火,火焰炽亮,火焰发展也较为迅速。
     (3)从节约点火费用角度出发,提出了两种富氧方式:局部富氧与整体富氧。局部富氧是在燃烧器中心钝体边缘加入氧气,整体富氧是在一次风管道中加入氧气,局部富氧比整体富氧大幅度节省了氧气消耗量(1:3)。以125MW机组锅炉直流燃烧器为原型,设计了空气富氧直接点火直流燃烧器,对该燃烧器的燃烧特性进行了数值计算模拟。得出局部富氧点火的一次风速、煤粉浓度、氧气流速均存在最佳值。整体富氧随着氧浓度的提高显著提升煤粉气流的燃烧强度。
     (4)在电厂125MW机组中储式直流燃烧锅炉上进行了煤粉气流空气富氧直接点火技术的工程开发、应用与试验。煤粉气流空气富氧直接点火技术获得了成功。富氧燃烧器无论局部富氧或整体富氧均可以实现冷炉冷风直接点火,煤粉气流燃烧稳定,火炬明亮,燃烧无明显黑烟。试验表明,富氧点火的燃烧效率可达90%以上;采用富氧点火能满足锅炉升温升压的要求,锅炉升温升压过程中,富氧点火的煤粉燃烧效率达到87%(非精确采样),优于其它无油点火技术;富氧燃烧器能满足锅炉正常负荷运行要求,可作为主燃烧器安全使用;富氧燃烧器具有很好的低负荷适应能力,在发电功率25MW以上均能保持不投油、不投氧稳定燃烧;富氧燃烧器改造对一次风系统运行无明显影响。
     (5)与其它无油(微油)点火技术相比,采用富氧直接点火技术可以减少投资费用。由于提高了点火期间的煤粉燃尽率,而辅助燃料(氧气、油、电)费用相近,因而更加节约锅炉点火综合运行费用。
     (6)对空气富氧燃烧状态下的煤灰结渣特性进行了分析研究,结果表明富氧燃烧的煤灰灰熔点会有所提高,富氧点火燃烧对锅炉结渣无明显的不利影响。采用热分析方法研究了煤灰的熔融过程,结果表明不同气氛对煤灰中矿物质熔融特征温度影响不明显,主要影响了矿物质的熔融程度。并以热分析特征温度为依据,进一步研究了煤灰熔融过程中的矿物质演变机理。
The primary energy resource of oil and coal are valuable and limited. For the sustainable utilization of the energy resource, saving oil and improving coal utilization efficiency have got more and more attention in power plant. Against the background, a novel technique of no-oil ignition——pulverized-coal direct ignition with oxygen-enriched air, was proposed and investigated in the paper.
     The concept of pulverized-coal direct ignition with oxygen-enriched air was described as: the oxygen-enriched pulverized-coal flow is ignited directly in cold conditions and able to combust stably without other heat source. And the basic principle is that the combustion heat release rate and the heat capacity of flue gas per unit volume, both of which are bound to increase greatly responsible for high concentration of oxygen in pulverized coal flow, preserve a proper level of flame temperatures, backflow heat and ignition distance, and thus provoke a steady combustion.
     Given that the brand new concept and technique of pulverized-coal direct ignition with oxygen-enriched air, the basic theories of combustion and practical application in engineering are studied thoroughly and in detail in the paper. The related work includes:
     (1) The combustion characteristics of the pulverized-coal with different oxygen concentrations are studied by thermal analysis technology. Conclusions can be drawn that, ignition temperature and ignition heat of pulverized coal are reduced at high oxygen concentrations. But it is limit between the differences of coal quality. The combustion rate, theoretical combustion temperature and heat capacity of flue gas which increasing more times enabled the spontaneous and stable combustion of pulverized coal in cold conditions. Meanwhile, the combustion characteristics of coal char are studied with thermal analysis. Combustion kinetic parameters of coal char are calculated by the mathematic optimization Algorithm (Differential Evolution, DE). The DE separation method was proposed and the kinetic parameters of the coal char combustion with multi-stage at high oxygen concentration were studied.
     (2) Experimental study was done in a large horizontal furnace, which was involved with testing the feasibility of pulverized-coal direct ignition with oxygen-enriched air by using swirl burner and straight burner, as well as tuning the combustion parameters. In the cold furnace, the cold pulverized-coal flow from the swirl burner could be ignited by a torch when the primary air oxygen concentration is above 30.1% and the secondary air oxygen concentration is above 23.2%. In this case, the mixed air oxygen concentration was 25.1%. Furthermore that from the straight burner was ignited directly, with the minimum oxygen concentration 27.9% and the minimum pulverized-coal concentration 0.32kgC/kgA. In the oxygen-enriched air condition, the pulverized-coal flow was ignited rapidly after leaving the nozzle. The flame was singular bright and completed more quickly.
     (3) For cutting down the consumption of oxygen, two oxygen enrichment modes were proposed:partial oxygen enrichment and overall oxygen enrichment. By adding oxygen into the center of the flow from the edge of the blunt body, partial oxygen enrichment consumed oxygen only one third of that of overall oxygen enrichment which adding oxygen into the primary air pip. Based on the straight burner of an 420t/h boiler, an oxygen-enriched straight burner was specially designed for direct ignition with oxygen-enriched air. The combustion characteristics of the new straight burner were simulated by means of numerical computation. The result shows that the primary air velocity, pulverized-coal concentration and the flow velocity of oxygen for the partial oxygen enrichment burner have their own optimum values, while for the overall oxygen enrichment burner, the combustion of the pulverized-coal flow is strengthened significantly with the increasing of oxygen concentration.
     (4) The technique of pulverized-coal direct ignition with oxygen-enriched air was studied on its project development, engineering application and experiments in a storage pulverized-coal boiler of 125MW unit with straight combustion burners. It deserved great success. Either partial oxygen enrichment or overall oxygen enrichment, the oxygen-enriched burner can both be ignited directly in cold conditions; the combustion of the pulverized-coal flow is steady with bright flame and absence of black smoke. Some meaningful results can be obtained from the experiments. The combustion efficiency of oxygen-enriched ignition exceeds 90%. The requirements of raising temperature and boosting pressure of the boiler could be completed with oxygen-enriched ignition burner, which has a higher combustion efficiency of 87% (non-exact sampling) than other no-oil ignition techniques. Oxygen-enriched burner was qualified as the main burner to bear the designed load of the boiler. What's more, oxygen-enriched burner owns a good ability to adapt to the low loads to 25MW without additional oil or oxygen help. Finally, there was obscure influence on the primary air system operating.
     (5) Pulverized-coal direct ignition with oxygen-enriched air leads to fewer investment cost than other techniques of no-oil (or tiny-oil) ignition if it was used on more than one boiler in plant. Because of the higher coal combustion efficiency with the oxygen-enriched burner, there are also fewer operating costs, except the obscure difference of the auxiliary fuel (oxygen, oil, and electricity) costs.
     (6) The coal ash was produced under the condition of oxygen-enriched combustion and studied on the slag characteristics. The results show that the oxygen-enriched combustion increases somewhat the ash fusion point and that the oxygen-enriched ignition does not result in a significant deterioration of slag trends. The fusion procedure of the coal ash was investigated with the method of thermal analysis. The results indicated that the atmosphere mainly affects the fusion degree of the mineral matters rather than the characteristic temperature of mineral matters in coal ash. Further investigation on the evolution of mineral matters in the course of fusion was performed based on the characteristic temperatures of thermal analysis.
引文
[1]World energy outlook 2009[R]. Paris:OECD/IEA,2009.
    [2]BP statistical review of world energy June 2010[R]. London:BP p.l.c.,2010.
    [3]国家统计局能源统计司.中国能源统计年鉴2009[M].北京:中国统计出版社,2010.
    [4]王永正.一种用于煤粉锅炉点火和稳燃的煤粉直接点火燃烧器[J].动力工程,1989,9(2):44-48.
    [5]涂建华.无油点火——煤粉锅炉点火技术的必然趋势[J].发电设备,1996(3):12-15.
    [6]刘影,宋资勤,包克福.煤粉锅炉点火技术及其发展[J].发电设备,2001(4):13-16.
    [7]李文蛟,邱建荣,李琳琅,等.几种无油直接点火煤粉燃烧器机理浅析[J].热力发电,2003,32(2):62-64.
    [8]Sugimoto M., Maruta K. and Takeda K., et al. Stabilization of pulverized coal combustion by plasma assist[J]. Thin Solid Films,2002,407(1-2):186-191.
    [9]Gorokhovski M. A., Jankoski Z. and Lockwood F. C., et al. Enhancement of pulverized coal combustion by plasma technology[J]. Combustion Science and Technology,2007, 179(10):2065-2090.
    [10]张孝勇,王雨蓬,姜伟力,等.等离子体点燃煤粉的热物理分析[J].中国电力,2005,38(12):82-84.
    [11]Askarova A. S., Karpenko E. I. and Lavrishcheva Y. I., et al. Plasma-supported coal combustion in boiler furnace[J]. IEEE Transactions on Plasma Science,2007,35(6): 1607-1616.
    [12]刘士香,卢丽君,都淑丽.DLZ-200-A型等离子煤粉点火燃烧器[J].华北电力技术,200l(7):21-23.
    [13]池作和,孙公钢.微油点火燃烧器一级燃烧室结构数值模拟研究[J].热力发电,2007,36(11):20-24.
    [14]Liu Chunlong, Li Zhengqi and Zhao Yang, et al. Influence of coal-feed rates on bituminous coal ignition in a full-scale tiny-oil ignition burner[J]. Fuel,2010,89(7): 1690-1694.
    [15]付忠广,王志鹏,史亮亮.燃煤锅炉微油点火燃烧器的数值计算分析[J].工程热物理学报,2008,29(4):609-612.
    [16]张玉家,陶新建.少油点火技术在600MW锅炉上的应用[J].华东电力,2001,29(6):26-28.
    [17]刘建国.少油点火煤粉燃烧器技术改造与效果[J].电力建设,2007,28(4):76-78,86.
    [18]姜家仁,秦明,吴少华,等.少油点火与水平浓淡燃烧器相结合在一台600MW机组锅炉上的应用[J].热能动力工程,2004,19(4):424-426.
    [19]张志俊,车刚.小油枪点火技术在燃用低挥发份煤超临界锅炉中的应用及问题分析[J].山东电力技术,2010(2):46-50.
    [20]翁善勇,凌柏林,赵虹,等.外燃式微油点火和超低负荷稳燃煤粉燃烧器:中国,200810162047.2[P].2009-04-22.
    [21]魏光建.电站锅炉节油点火技术试验研究与现场应用[D].浙江大学硕士学位论文,2008.
    [22]米加昌,周宏志.少油点火双向稳燃煤粉燃烧器的研究与实践[J].电站系统工程,2006,22(3):25-26.
    [23]康志忠,孙保民,郭永红,等.高温空气点火在200MW机组锅炉中的应用[J].中国电机工程学报,2009,29(14):18-23.
    [24]孙佰仲,刘洪鹏,刘秀,等.电磁感应高温空气加热特性试验研究[J].中国电机工程学报,2009,29(20):30-34.
    [25]聂欣,周志军,吕明,等.煤粉气流在高温空气中着火与熄火的试验研究[J].中国电机工程学报,2008,28(14):67-72.
    [26]石伟.感应加热煤粉多级无油点火的试验研究和数值模拟[D].浙江大学博士学位论文,2003.
    [27]Li Wenjiao, Cen Kefa and Zheng Chuguang, et al. Induction-heating ignition of pulverized coal stream[J]. Fuel,2004,83(16):2103-2107.
    [28]郑立刚.煤粉射流的高温空气燃烧特性与燃煤锅炉低NOx燃烧优化研究[D].杭州:浙江大学博士学位论文,2009.
    [29]阎维平,米翠丽.300MW富氧燃烧电站锅炉的经济性分析[J].动力工程学报,2010, 30(3):184-191.
    [30]Toftegaard Maja B., Brix Jacob and Jensen Peter A., et al. Oxy-fuel combustion of solid fuels[J]. Progress in Energy and Combustion Science,2010,36(5):581-625.
    [31]Kakaras E., Koumanakos A. and Doukelis A., et al. Oxyfuel boiler design in a lignite-fired power plant[J]. Fuel,2007,86(14):2144-2150.
    [32]肖琨,陈楠,甄飞强,等.火力发电厂CO2捕捉技术[J].锅炉技术,2010,41(1):73-76.
    [33]Wall T. F. Combustion processes for carbon capture[J]. Proceedings of the Combustion Institute,2007,31(1):31-47.
    [34]Hjartstam S., Andersson K. and Johnsson F., et al. Combustion characteristics of lignite-fired oxy-fuel flames[J]. Fuel,2009,88(11):2216-2224.
    [35]Boushaki T., Sautet J. C. and Labegorre B. Control of flames by tangential jet actuators in oxy-fuel burners[J]. Combustion and Flame,2009,156(11):2043-2055.
    [36]Toporov D., Bocian P. and Heil P., et al. Detailed investigation of a pulverized fuel swirl flame in CO2/O2 atmosphere [J]. Combustion and Flame,2008,155(4):605-618.
    [37]Rathnam Renu Kumar, Elliott Liza K. and Wall Terry F., et al. Differences in reactivity of pulverised coal in air (O2/N2) and oxy-fuel (O2/CO2) conditions[J]. Fuel Processing Technology,2009,90(6):797-802.
    [38]Normann F., Andersson K. and Leckner B., et al. High-temperature reduction of nitrogen oxides in oxy-fuel combustion[J]. Fuel,2008,87(17-18):3579-3585.
    [39]Chui E. H., Douglas M. A. and Tan Y. W. Modeling of oxy-fuel combustion for a western Canadian sub-bituminous coal[J]. Fuel,2003,82(10):1201-1210.
    [40]段伦博,赵长遂,李庆钊,等.O2/CO2气氛下煤焦燃烧实验研究[J].燃料化学学报,2009,37(6):654-658.
    [41]李庆钊,赵长遂.O2/CO2气氛煤粉燃烧特性试验研究[J].中国电机工程学报,2007,27(35):39-43.
    [42]黄晓宏,柳朝晖,刘敬樟,等.O2/CO2条件下煤粉燃烧火焰特性的实验研究[J].工程热物理学报,2009,30(7):1245-1248.
    [43]Niu S., Lu C. and Han K., et al. Thermogravimetric analysis of combustion characteristics and kinetic parameters of pulverized coals in oxy-fuel atmosphere[J]. Journal of Thermal Analysis and Calorimetry,2009,98(1):267-274.
    [44]Borrego A. G. and Alvarez D. Comparison of chars obtained under oxy-fuel and conventional pulverized coal combustion atmospheres[J]. Energy & Fuels,2007,21(6): 3171-3179.
    [45]南京工学院,西安交通大学热能动力教研室.电厂锅炉原理[M].北京:电力工业出版社,1980.
    [46]Wu Kuo-Kuang, Chang Yu-Cheng and Chen Chiun-Hsun, et al. High-efficiency combustion of natural gas with 21-30% oxygen-enriched air[J]. Fuel,2010,89(9): 2455-2462.
    [47]潘亮.富氧燃烧火焰特性及热工特性试验研究[D].吉林大学硕士学位论文,2007.
    [48]有山达郎.单一煤粉粒子燃烧的直接观察[J].武钢技术,1996(8):19-24.
    [49]Shaddix C. R. and Molina A. Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion[J]. Proceedings of the Combustion Institute, 2009,32(2):2091-2098.
    [50]Bejarano Paula A. and Levendis Yiannis A. Single-coal-particle combustion in O2/N2 and O2/CO2 environments[J]. Combustion and Flame,2008,153(1-2):270-287.
    [51]Ponzio A., Senthoorselvan S. and Yang W. H., et al. Ignition of single coal particles in high-temperature oxidizers with various oxygen concentrations[J]. Fuel,2008,87(6): 974-987.
    [52]Cho Chong Pyo, Jo Sangpil and Kim Ho Young, et al. Numerical studies on combustion characteristics of interacting pulverized coal particles at various oxygen concentration[J]. Numerical Heat Transfer; Part a:Applications,2007,52(12):1101-1122.
    [53]Fan Yue Sheng, Zou Zheng and Cao Zidong, et al. Ignition characteristics of pulverized coal under high oxygen concentrations[J]. Energy & Fuels,2008,22(2):892-897.
    [54]Chen H. P., Wang J. and Yang H. P., et al. Study on combustion characteristic of coal-char in oxygen-enriched environments[C].2009 Asia-Pacific Power and Energy Engineering Conference (APPEEC), New York,2009:275-279.
    [55]Hu Y. Q., Nikzat H. and Nawata M., et al. The characteristics of coal-char oxidation under high partial pressure of oxygen[J]. Fuel,2001,80(14):2111-2116.
    [56]Mcallister S., Fernandez-Pello C. and Urban D., et al. The combined effect of pressure and oxygen concentration on piloted ignition of a solid combustible[J]. Combustion and Flame,2010,157(9):1753-1759.
    [57]唐强,王丽朋,闫云飞.富氧气氛下煤粉燃烧及动力学特性的实验研究[J].煤炭转化,2009,32(3):55-59.
    [58]毛玉如,方梦祥,吴学成,等.富氧气氛下煤焦热重试验与模拟[J].热力发电,2005,34(3):22-24.
    [59]樊越胜,邹峥,高巨宝,等.富氧气氛中煤粉燃烧特性改善的实验研究[J].西安交通大学学报,2006,40(1):18-21.
    [60]樊越胜,邹峥,高巨宝,等.煤粉在富氧条件下燃烧特性的实验研究[J].中国电机工程学报,2005,25(24):118-121.
    [61]方立军,刘彦丰,惠世恩.煤焦燃烧模型的热重实验研究[J].燃烧科学与技术,2003,9(6):535-538.
    [62]刘靖昀.富氧环境下煤粉燃烧特性试验研究[D].浙江大学硕士学位论文,2006.
    [63]赵文田,张永密,袁丽,等.热重法研究富氧条件下煤粉的燃烧特性[J].山东电力技术,2008(3):48-52.
    [64]徐迎超,蒋孝科,毛天,等.富氧气氛煤粉气流着火特性的实验研究[J].锅炉技术,2008,39(1):42-46.
    [65]Stanmore B. R., Choi Y. C. and Gadiou R., et al. Pulverised coal combustion under transient cloud conditions in a drop tube furnace[J]. Combustion Science and Technology, 2000,159:237-253.
    [66]Murphy J. J. and Shaddix C. R. Combustion kinetics of coal chars in oxygen-enriched environments[J]. Combustion and Flame,2006,144(4):710-729.
    [67]Joutsenoja T., Saastamoinen J. and Aho M., et al. Effects of pressure and oxygen concentration on the combustion of different coals[J]. Energy & Fuels,1999,13(1): 130-145.
    [68]Zhang Lian, Binner Eleanor and Qiao Yu, et al. In situ diagnostics of victorian brown coal combustion in O2/N2 and O2/CO2 mixtures in drop-tube furnace[J]. Fuel,2010, 89(10):2703-2712.
    [69]王培萍,岳希明,王三保.电站锅炉富氧燃烧的节能效益研究[J].节能技术,2007,25(4):360-362,370.
    [70]刘兴家.提高锅炉热效率的新技术——富氧燃烧[J].工业锅炉,2007(1):10-12,28.
    [71]Fan Yuesheng, Si Pengfei and Bai Bao, et al. Analysis and numerical simulation on an improved oxygen-enriched burner[C].2010 Asia-Pacific Power and Energy Engineering Conference, APPEEC 2010-Proceedings, Chengdu, China,2010.
    [72]沈光林.膜法富氧助燃技术在节能和环保中的应用[J].能源环境保护,2005,19(6):5-7,39.
    [73]孙晓明.富氧燃烧技术在链条锅炉上的应用[D].大庆石油学院硕士学位论文,2009.
    [74]张保军,李桥义,李跃华,等.利用富氧空气提高火焰温度增加熔窑产量[J].玻璃,2008,35(10):17-19.
    [75]张传海.膜法富氧技术及其在济钢的应用[J].青岛建筑工程学院学报,2005,26(4):67-70.
    [76]杨福隆,王连杰,栾吉益,等.热风炉富氧燃烧技术的开发与应用[J].山东冶金,2005,27(5):8-10.
    [77]方寿奇.膜法富氧技术在燃煤锅炉上的应用[J].膜科学与技术,2001,21(3):46-49.
    [78]徐承立,马洪亭,姚洪娥.富氧燃烧技术用于链条燃煤蒸汽锅炉的合理性和可行性[J].节能,2009,28(6):45-47.
    [79]张家元,周孑民,陈乔平,等.膜法富氧局部助燃技术在煤粉锅炉上的应用[J].动力工程,2007,27(4):518-521.
    [80]张家元,周孑民,阳绍伟,等.煤粉锅炉膜法富氧局部助燃技术开发及应用[J].热能动力工程,2007,22(4):391-394.
    [81]张家元.煤粉锅炉高效低NOx膜法富氧局部助燃技术的应用研究[D].中南大学博士学位论文,2007.
    [82]张家元,周孑民,闫红杰.煤粉锅炉膜法富氧局部助燃技术[J].中南大学学报(自然 科学版),2007,38(5):857-862.
    [83]王卫平.膜法富氧局部助燃技术在四角切圆煤粉锅炉上的工程应用研究[D].中南大学硕士学位论文,2007.
    [84]Krzywanski J., Czakiert T. and Muskala W., et al. Modeling of solid fuel combustion in oxygen-enriched atmosphere in circulating fluidized bed boiler part 2. Numerical simulations of heat transfer and gaseous pollutant emissions associated with coal combustion in O2/CO2 and O2/N2 atmospheres enriched with oxygen under circulating fluidized bed conditions[J]. Fuel Processing Technology,2010,91(3):364-368.
    [85]李新梦,高峰,姚磊,等.富氧微油燃烧器的点火与稳燃特性研究[J].华电技术,2008,30(3):14-17,36.
    [86]李新梦,姚磊,李传统.富氧微油点火燃烧器的数值实验研究[J].电站系统工程,2008,24(1):19-20,23.
    [87]宁友.富氧助燃小油枪直接点火燃烧器装置:中国,CN200520021510.3[P].2006-11-29.
    [88]李意,盛昌栋.O2/CO2煤粉燃烧对矿物质成灰行为的影响[J].燃烧科学与技术,2008,14(4):310-316.
    [89]李意,盛昌栋.O2/CO2煤粉燃烧时含铁矿物质转化行为的实验研究[J].燃料化学学报,2008,36(4):415-420.
    [90]Bool L. E., Peterson T. W. and Wendt Jol. The partitioning of iron during the combustion of pulverized coal[J]. Combustion and Flame,1995,100(1-2):262-270.
    [91]岑可法,樊建人,池作和,等.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算[M].北京:科学出版社,1994.
    [92]Erickson T. A., Allan S. E. and Mccollor D. P., et al. Modelling of fouling and slagging in coal-fired utility boilers[J]. Fuel Processing Technology,1995,44(1-3):155-171.
    [93]王永华,刘文荣.矿物学[M].北京:地质出版社,1985.
    [94]王泉清,曾蒲君.煤灰熔融性的研究现状与分析[J].煤炭转化,1997,20(2):32-37.
    [95]陈文敏,姜宁.煤灰成分和煤灰熔融性的关系[J].洁净煤技术,1996,2(2):34-37.
    [96]毛军,徐明厚,李帆.碱性矿物质对煤灰熔融特性影响的研究[J].华中科技大学学报 (自然科学版),2003,31(4):59-62.
    [97]修洪雨,黄镇宇,张堃,等.CaO对煤灰主要成分熔融特性的影响[J].电站系统工程,2005,21(2):20-22.
    [98]Huggins Frank E., Kosmack Deborah A. and Huffman Gerald P. Correlation between ash-fusion temperatures and ternary equilibrium phase diagrams.[J]. Fuel,1981,60(7): 577-584.
    [99]李慧,焦发存,李寒旭.助熔剂对煤灰熔融性影响的研究[J].煤炭科学技术,2007,35(1):81-84.
    [100]张堃,黄镇宇,修洪雨,等.煤灰中化学成分对熔融和结渣特性影响的探讨[J].热力发电,2005,34(12):27-30,43.
    [101]Vassilev S. V., Kitano K. and Takeda S., et al. Influence of mineral and chemical-composition of coal ashes on their fusibility[J]. Fuel Processing Technology, 1995,45(1):27-51.
    [102]Shah K. V., Cieplik M. K. and Betrand C. I., et al. Correlating the effects of ash elements and their association in the fuel matrix with the ash release during pulverized fuel combustion[J]. Fuel Processing Technology,2010,91(5):531-545.
    [103]Van Dyk J. C., Benson S. A. and Laumb M. L., et al. Coal and coal ash characteristics to understand mineral transformations and slag formation[J]. Fuel,2009,88(6):1057-1063.
    [104]Wigley F., Williamson J. and Riley G. The effect of mineral additions on coal ash deposition[J]. Fuel Processing Technology,2007,88(11-12):1010-1016.
    [105]Reifenstein A. P., Kahraman H. and Coin Cda, et al. Behaviour of selected minerals in an improved ash fusion test:quartz, potassium feldspar, sodium feldspar, kaolinite, illite, calcite, dolomite, siderite, pyrite and apatite[J]. Fuel,1999,78(12):1449-1461.
    [106]Thompson D. Predicted mineral melt formation by bcura coal sample bank coals: variation with atmosphere and comparison with reported ash fusion test data[J]. Fuel, 2010,89(8):2062-2071.
    [107]芦涛,张雷,张晔,等.煤灰中矿物质组成对煤灰熔融温度的影响[J].燃料化学学报,2010,38(1):23-28.
    [108]曹敏,谷小虎,樊崇,等.义马煤灰高温下矿物质变化[J].煤炭转化,2010,33(1):12-15,21.
    [109]Font O., Moreno N. and Querol X., et al. X-ray powder diffraction-based method for the determination of the glass content and mineralogy of coal (CO)-combustion fly ashes[J]. Fuel,2010,89(10):2971-2976.
    [110]陈玉爽,张忠孝,李洁,等.煤灰中高熔点矿物质莫来石的实验与量化研究[J].洁净煤技术,2009,15(4):97-100.
    [111]李明,李伟东,李伟锋,等.污泥对神府煤灰熔点的影响[J].燃料化学学报,2009,37(4):416-420.
    [112]占中华,刘小伟,姚洪.煤燃烧中外在矿物质转化机理及动力学参数计算[J].燃烧科学与技术,2007,13(4):355-359.
    [113]白进,李文,李保庆.高温弱还原气氛下煤中矿物质变化的研究[J].燃料化学学报,2006,34(3):292-297.
    [114]李帆,邱建荣,郑瑛,等.煤燃烧过程矿物质行为研究[J].工程热物理学报,1999,20(2):258-260.
    [115]李继炳,沈本贤,赵基钢,等.助熔剂对皖北刘桥二矿煤灰熔融特性的影响[J].煤炭学报,2010,35(1):140-144.
    [116]李继炳,沈本贤,李寒旭,等.铁基助熔剂对皖北刘桥二矿煤的灰熔融特性影响研究[J].燃料化学学报,2009,37(3):262-265.
    [117]李继炳,沈本贤,赵基钢,等.镁基助熔剂对刘桥二矿混煤灰熔融特性的影响[J].煤炭转化,2009,32(2):37-40.
    [118]Li Jie, Du Mei-Fang and Yan Bo, et al. Quantum and experimental study on coal ash fusion with borax fluxing agent[J]. Journal of Fuel Chemistry and Technology,2008, 36(5):519-523.
    [119]李洁,杜梅芳,闫博,等.添加硼砂助熔剂煤灰熔融性的量子化学与实验研究[J].燃料化学学报,2008,36(5):519-523.
    [120]孙群,薛永强.添加助熔剂降低淮南煤灰熔融性机理初探[J].煤质技术,2006(1):19-20.
    [121]许志琴,于戈文,邓蜀平,等.助熔剂对高灰熔点煤影响的实验研究[J].煤炭转化,2005,28(3):22-25.
    [122]陈国艳,张忠孝,代百乾,等.添加剂对煤灰熔融特性的影响[J].锅炉技术,2009,40(5):18-21,26.
    [123]王泉清,曾蒲君.高岭石对神木煤灰熔融性的影响[J].煤化工,1997(3):40-45.
    [124]Qiu J. R., Li F. and Zheng Y., et al. The influences of mineral behaviour on blended coal ash fusion characteristics [J]. Fuel,1999,78(8):963-969.
    [125]Qiu J. R., Li F. and Zheng C. G. Mineral transformation during combustion of coal blends[J]. International Journal of Energy Research,1999,23(5):453-463.
    [126]李帆,邱建荣,郑楚光,等.混煤煤灰熔融特性及矿物质形态的研究[J].工程热物理学报,1998,19(1):112-116.
    [127]李帆,邱建荣.混煤煤灰在加热过程中矿物质行为研究[J].燃料化学学报,1997,25(5):400-403.
    [128]王泉海,邱建荣,李帆,等.混煤燃烧过程中矿物质的形态变化及相变[J].化工学报,2000,51(6):840-843.
    [129]Erickson Thomas A., Ludlow Douglas K. and Benson Steve A. Fly ash development from sodium, sulphur and silica during coal combustion[J]. Fuel,1992,71(1):15-18.
    [130]GB/T 212-2001煤的工业分析方法[S].2001-11-12.
    [131]李帆.煤燃烧过程中矿物质行为特征研究[D].武汉:华中理工大学博士学位论文,2000.
    [132]Wu Xiaojiang, Zhang Zhongxiao and Chen Yushuang, et al. Main mineral melting behavior and mineral reaction mechanism at molecular level of blended coal ash under gasification condition[J]. Fuel Processing Technology,2010,91(11):1591-1600.
    [133]Abdel-Rehim A. M. Application of thermal analysis to mineral synthesis[J]. Journal of Thermal Analysis and Calorimetry,1997,48(1):177-202.
    [134]Hansen L. A., Frandsen F. J. and Dam-Johansen K., et al. Quantification of fusion in ashes from solid fuel combustion [J]. Thermochimica Acta,1999,326(1-2):105-117.
    [135]Bydalek A. Assessing the refining abilities of slags by modelling a real process of metal melting[J]. Journal of Thermal Analysis and Calorimetry,2001,65(2):591-597.
    [136]Arvelakis S., Frandsen F. J. and Dam-Johansen K. Determining the melting behaviour of ashes from incineration plants via thermal analysis[J]. Journal of Thermal Analysis and Calorimetry,2003,72(3):1005-1017.
    [137]Kavouras P., Kehagias T. and Chrissafis K., et al. The role of alkali content in the devitrification mechanisms of SiO2-Fe2O3-Na2O-PbO system[J]. Journal of Thermal Analysis and Calorimetry,2006,86(3):715-719.
    [138]邓芙蓉,杨建国,赵虹.利用TG-DSC方法研究煤灰熔融特性[J].煤炭科学技术,2005,33(2):46-49.
    [139]杨建国,邓芙蓉,赵虹,等.煤灰熔融过程中的矿物演变及其对灰熔点的影响[J].中国电机工程学报,2006,26(17):122-126.
    [140]刘志,杨建国,赵虹.配煤煤灰熔融特性的热分析研究[J].电站系统工程,2006,22(3):4-6.
    [141]Yang J. G., Deng F. R. and Zhao H., et al. Mineral conversion and microstructure change in the melting process of shenmu coal ash[J]. Asia-Pacific Journal of Chemical Engineering,2007,2(3):165-170.
    [142]杨建国,刘志,赵虹,等.配煤煤灰内矿物质转变过程与熔融特性规律[J].中国电机工程学报,2008,28(14):61-66.
    [143]舒朝晖,田季林,赵永椿,等.煤及其低温灰的热重实验研究[J].中国电机工程学报,2007,27(14):46-50.
    [144]冯洁,傅培舫,周怀春.煤灰相变及其机理的研究[J].工程热物理学报,2009,30(11):1965-1968.
    [145]李小敏.流化床气化条件下煤灰低熔点共融物形成特性[D].浙江大学硕士学位论文,2007.
    [146]Pipatmanomai S., Fungtammasan B. and Bhattacharya S. Characteristics and composition of lignites and boiler ashes and their relation to slagging:the case of mae moh pcc boilers[J]. Fuel,2009,88(1):116-123.
    [147]Lawrence A., Kumar R. and Nandakumar K., et al. A novel tool for assessing slagging propensity of coals in pf boilers[J]. Fuel,2008,87(6):946-950.
    [148]Masia Aat, Buhre Bjp and Gupta R. P., et al. Use of tma to predict deposition behaviour of biomass fuels[J]. Fuel,2007,86(15):2446-2456.
    [149]Masia Aat, Buhre Bjp and Gupta R. P., et al. Characterising ash of biomass and waste[J]. Fuel Processing Technology,2007,88(11-12):1071-1081.
    [150]Rushdi A., Shanna A. and Gupta R. An experimental study of the effect of coal blending on ash deposition[J]. Fuel,2004,83(4-5):495-506.
    [151]熊友辉,孙学信.高温灰渣的塑性流体特性研究[J].华中理工大学学报,2000,28(10):100-101.
    [152]Gupta S. K., Wall T. F. and Creelman R. A., et al. Ash fusion temperatures and the transformations of coal ash particles to slag[J]. Fuel Processing Technology,1998, 56(1-2):33-43.
    [153]Wall T. F., Creelman R. A. and Gupta R. P., et al. Coal ash fusion temperatures-new characterization techniques, and implications for slagging and fouling[J]. Progress in Energy and Combustion Science,1998,24(4):345-353.
    [154]Liu Y. H., Gupta R. and Elliott L., et al. Thermomechanical analysis of laboratory ash, combustion ash and deposits from coal combustion[J]. Fuel Processing Technology,2007, 88(11-12):1099-1107.
    [155]Arvelakis S., Folkedahl B. and Frandsen F. J., et al. Studying the melting behaviour of fly ash from the incineration of msw using viscosity and heated stage xrd data[J]. Fuel,2008, 87(10-11):2269-2280.
    [156]DL/T 660-2007煤灰高温粘度特性试验方法[S].2007-7-20.
    [157]Vargas S., Frandsen F. J. and Dam-Johansen K. Rheological properties of high-temperature melts of coal ashes and other silicates[J]. Progress in Energy and Combustion Science,2001,27(3):237-429.
    [158]Tonmukayakul N. and Nguyen Q. D. A new rheometer for direct measurement of the flow properties of coal ash at high temperatures [J]. Fuel,2002,81(4):397-404.
    [159]焦发存.配煤对煤灰熔融特性和灰渣粘度影响的实验研究[D].安徽理工大学硕士学 位论文,2006.
    [160]许世森,王保民,李广宇,等.一种预测煤灰粘温特性的数学模型[J].热力发电,2007,36(7):5-7,20.
    [161]郭风.煤粉富氧燃烧和新型富氧燃烧器直接点火技术及数值研究[D].杭州:浙江大学硕士学位论文,2007.
    [162]Stenseng M., Zolin A. and Cenni R., et al. Thermal analysis in combustion research[J]. Journal of Thermal Analysis and Calorimetry,2001,64(3):1325-1334.
    [163]Kok M. V. and Pamir M. R. Pyrolysis and combustion studies of fossil-fuels by thermal-analysis methods[J]. Journal of Analytical and Applied Pyrolysis,1995,35(2): 145-156.
    [164]Ma Shengping, Hill J.O. and Heng S. A thermal analysis study of the pyrolysis of victorian brown coal[J]. Journal of Thermal Analysis and Calorimetry,1989,35(3): 977-988.
    [165]Ma S., Hill J.O. and Heng S. A kinetic analysis of the pyrolysis of some australian coals by non-isothermal thermogravimetry[J]. Journal of Thermal Analysis and Calorimetry, 1991,37(6):1161-1177.
    [166]Arenillas A., Rubiera F. and Pevida C., et al. A comparison of different methods for predicting coal devolatilisation kinetics[J]. Journal of Analytical and Applied Pyrolysis, 2001,58:685-701.
    [167]Bassilakis R., Carangelo R. M. and Wojtowicz M. A. TG-FTIR analysis of biomass pyrolysis[J]. Fuel,2001,80(12):1765-1786.
    [168]Avid B., Purevsuren B. and Born M., et al. Pyrolysis and TG analysis of shivee ovoo coal from mongolia[J]. Journal of Thermal Analysis and Calorimetry,2002,68(3):877-885.
    [169]Vamvuka D., Kakaras E. and Kastanaki E., et al. Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite[J]. Fuel,2003,82(15-17):1949-1960.
    [170]Ischia M., Perazzolli C. and Dal Maschio R., et al. Pyrolysis study of sewage sludge by TG-MS and TG-GC-MS coupled analyses[J]. Journal of Thermal Analysis and Calorimetry,2007,87(2):567-574.
    [171]Yang H. P., Chen H. P. and Ju F. D., et al. Influence of pressure on coal pyrolysis and char gasification[J]. Energy & Fuels,2007,21(6):3165-3170.
    [172]王俊琪,方梦祥,骆仲泱,等.煤的快速热解动力学研究[J].中国电机工程学报,2007,27(17):18-22.
    [173]平传娟,周俊虎,程军,等.混煤热解反应动力学特性研究[J].中国电机工程学报,2007,27(17):6-10.
    [174]Li Z. Q., Liu C. L. and Chen Z. C., et al. Analysis of coals and biomass pyrolysis using the distributed activation energy model[J]. Bioresource Technology,2009,100(2): 948-952.
    [175]魏砾宏,李润东,李爱民,等.煤粉热解特性实验研究[J].中国电机工程学报,2008,28(26):53-58.
    [176]宋长忠.火灾可燃物热解动力学及着火特性研究[D].浙江大学博士学位论文,2006.
    [177]徐朝芬,孙学信,胡松.基于TGA-DSC-FTIR联用技术研究煤粉的燃烧特性[J].热能动力工程,2005,20(3):288-290.
    [178]周英彪,范杜平,段权鹏,等.基于热天平着火温度的新方法[J].电站系统工程,2007,23(3):29-31.
    [179]聂其红,孙绍增,李争起,等.褐煤混煤燃烧特性的热重分析法研究[J].燃烧科学与技术,2001,7(1):72-76.
    [180]徐朝芬.烟煤与无烟煤混燃特性的热分析试验研究[J].华北电力大学学报,2005,32(6):29-32.
    [181]邹学权,王新红,武建军,等.用热重-差热-红外光谱技术研究煤粉的燃烧特性[J].煤炭转化,2003,26(1):71-73.
    [182]马爱玲,谌伦建,黄光许,等.生物质与煤混烧燃烧特性研究[J].煤炭转化,2010,33(1):55-60.
    [183]马晓茜.开缝钝体燃烧器冷热态试验研究及其应用[J].华中理工大学学报,1997,25(A01):82-85.
    [184]赵伶玲,周强泰,赵长遂.花瓣稳燃器回流区的特性分析[J].动力工程,2006,26(3):379-382.
    [185]林正春,范卫东,李友谊,等.一种低NOx旋流燃烧器流场特性的研究[J].动力工程,2008,28(3):355-360.
    [186]靖剑平,李争起,陈智超,等.中心给粉燃烧器在燃用烟煤1025t/h锅炉上的应用[J].中国电机工程学报,2008,28(02):1-7.
    [187]熊友辉,孙学信.用差热分析法确定煤发热量的研究[J].煤炭转化,1998,21(1):77-79.
    [188]李钧,阎维平,刘亚芝.煤质变化对锅炉燃烧工况的影响[J].热力发电,2009,38(8):59-64.
    [189]DL/T 5145-2002火力发电厂制粉系统设计计算技术规定[S].北京:中国标准出版社,2002-4-27.
    [190]丁立新.电厂锅炉原理[M].北京:中国电力出版社,2006.
    [191]路春美,王永征.煤燃烧理论与技术[M].北京:地震出版社,2001.
    [192]还博文.锅炉燃烧理论与应用[M].上海:上海交通大学出版社,1999.
    [193]GB/T 212-2008煤的工业分析方法[S].北京:中国标准出版社,2008-7-29.
    [194]孙庆雷,李文,李保庆.神木煤显微组分热解特性和热解动力学[J].化工学报,2002,53(11):1122-1127.
    [195]Kok M. V., Pokol G. and Keskin C., et al. Combustion characteristics of lignite and oil shale samples by thermal analysis techniques[J]. Journal of Thermal Analysis and Calorimetry,2004,76(1):247-254.
    [196]周俊虎,平传娟,杨卫娟,等.混煤燃烧反应动力学参数的热重研究[J].动力工程,2005,25(2):207-210,230.
    [197]刘建忠,冯展管,张保生,等.煤燃烧反应活化能的两种研究方法的比较[J].动力工程,2006,26(1):121-124.
    [198]Ozbas K. E., Kok M. V. and Hicyilmaz C. Comparative kinetic analysis of raw and cleaned coals[J]. Journal of Thermal Analysis and Calorimetry,2002,69(2):541-549.
    [199]Ebrahimi-Kahrizsangi R. and Abbasi M. H. Evaluation of reliability of coats-redfern method for kinetic analysis of non-isothermal TGA[J]. Transactions of Nonferrous Metals Society of China,2008,18(1):217-221.
    [200]胡荣祖.热分析动力学 第2版[M].北京:科学出版社,2008.
    [201]孙桂玲,刘波,李维祥,等.谱图曲线中高斯峰的分离算法与计算机实现[J].南开大学学报(自然科学版),2004,37(4):115-117.
    [202]姚林波,高振敏.运用X射线衍射和多重峰分离程序解析高岭石的结构缺陷[J].矿物学报,1996,16(2):132-140.
    [203]奥诚喜.X射线衍射谱的一种分峰新技术[J].西北大学学报(自然科学版),2003,33(1):9-12.
    [204]王培崇,钱旭,王月,等.差分进化计算研究综述[J].计算机工程与应用,2009,45(28):13-16.
    [205]杨启文,蔡亮,薛云灿.差分进化算法综述[J].模式识别与人工智能,2008,21(4):506-513.
    [206]宁桂英.差分进化算法及其应用研究[D].广西民族大学硕士学位论文,2008.
    [207]Differential evolution (DE) [EB/OL]. http://www.icsi.berkeley.edu/-storn/code.html
    [208]Chakraborty Uday K. Advances in differential evolution[M]. Berlin:Springer,2008.
    [209]孙庆雷,李文,李保庆.神木煤显微组分半焦燃烧特性[J].化工学报,2002,53(1):92-95.
    [210]张军,袁建伟.煤的显微组分及其对粉煤焦形态的影响[J].燃烧科学与技术,1995,1(3):196-202.
    [211]Lester Edward, Watts David and Cloke Mike, et al. Determining the composition of binary coal blends using bayes theorem[J]. Fuel,2003,82(2):117-125.
    [212]苏·S.,徐振刚.用显微组分指数预测煤的燃烧行为[J].煤质技术,2002(3):52-55,12.
    [213]张军,袁建伟.显微组分对粉煤燃烧的影响[J].燃料化学学报,1995,23(4):441-446.
    [214]李小江.煤岩显微组分对着火点的影响规律[J].热力发电,1992(3):10-19.
    [215]李余增.热分析[M].北京:清华大学出版社,1987.
    [216]林驹,张济宇,钟雪晴.黏胶废液对福建无烟煤水蒸气催化气化的动力学和补偿效应[J].燃料化学学报,2009,37(4):398-404.
    [217]王文钊,刘朝,唐经文.动力学参数的补偿效应及改进的求解方法[J].生物质化学工程,2008,42(4):13-16.
    [218]盛昌栋,齐宏.煤粉气流着火方式与煤粉浓度的关系[J].电站系统工程,1995,11(3):31-37.
    [219]李文蛟,姚强.煤粉气流着火特性与粒径之间关系的研究[J].锅炉技术,1998,29(12):7-11.
    [220]张忠孝.煤粉气流着火特性试验研究[J].电站系统工程,1991(4):38-46.
    [221]GB 13223-2003火电厂大气污染物排放标准[S].
    [222]周怀春,孙丹萍,方庆艳,等.煤粉稳燃技术的发展历程和展望[J].动力工程,2008,28(5):657-663,681.
    [223]周怀春,方庆艳,张志国.煤粉射流吸热着火稳燃机理及新型稳燃技术的探讨[J].动力工程,2006,26(1):101-107.
    [224]Horbaniuc B., Marin O. and Dumitrascu G., et al. Oxygen-enriched combustion in supercritical steam boilers[J]. Energy,2004,29(3):427-448.
    [225]Skeen Scott A. Oxygen-enhanced combustion:theory and applications[D]. Saint Louis: Washington University,2009.
    [226]王春波,周慧.小型循环流化床富氧燃烧NOx的生成试验与模拟研究[J].动力工程学报,2010,30(6):420-424.
    [227]王春波,陈传敏.循环流化床富氧燃烧下飞灰的碳酸化[J].中国电机工程学报,2008,28(29):54-58.
    [228]毛玉如.循环流化床富氧燃烧技术的试验和理论研究[D].浙江大学博士学位论文,2003.
    [229]Smart J. P., O'Nions P. and Riley G. S. Radiation and convective heat transfer, and burnout in oxy-coal combustion[J]. Fuel,2010,89(9):2468-2476.
    [230]Smart J., Lu G. and Yan Y., et al. Characterisation of an oxy-coal flame through digital imaging[J]. Combustion and Flame,2010,157(6):1132-1139.
    [231]刘彦.O2/CO2煤粉燃烧脱硫及NO生成特性实验和理论研究[D].浙江大学博士学位论文,2004.
    [232]Chui E. H., Majeski A. J. and Douglas M. A., et al. Numerical investigation of oxy-coal combustion to evaluate burner and combustor design concepts[J]. Energy,2004,29(9-10): 1285-1296.
    [233]王建强.300MW电站锅炉富氧燃烧的数值模拟与分析[D].华北电力大学(保定)硕士学位论文,2007.
    [234]刘宏卫.基于W火焰锅炉空气燃烧与O2/O2燃烧数值模拟的比较[J].华东电力,2009,37(7):1219-1222.
    [235]Krishnamoorthy G., Sami M. and Orsino S., et al. Radiation modelling in oxy-fuel combustion scenarios[J]. International Journal of Computational Fluid Dynamics,2010, 24(3-4):69-82.
    [236]米翠丽,阎维平,李皓宇,等.O2/CO2燃烧方式下锅炉对流传热系数的修正算法和数值研究[J].动力工程,2009,29(5):417-421.
    [237]赵伶玲.花瓣燃烧器的稳燃性能与应用研究[D].东南大学博士学位论文,2005.
    [238]周孟.煤粉炉微油点火燃烧器的数值模拟[D].大连理工大学硕士学位论文,2008.
    [239]Launder B. E. and Spalding D. B. Lectures in mathematical models of turbulence[M]. Academic Press,1979.
    [240]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [241]岑可法.高等燃烧学[M].杭州:浙江大学出版社,2002.
    [242]陈占军,金晶,钟海卿,等.超细化煤粉气流着火特性的试验研究[J].热力发电,2004,33(4):45-47.
    [243]周俊虎,周志军.煤粉空气流在管内着火规律的研究[J].浙江大学学报:自然科学版,1997,31(5):668-676.
    [244]崔凤誉,张玉周.等离子煤粉点火燃烧器工业性试验研究及应用[J].中国电力,2001,34(2):16-20.
    [245]周俊虎,聂欣,周志军,等.无油点火燃烧器内煤粉浓度与着火点关系试验研究[J].热力发电,2004(11):14-16.
    [246]DL/ T5121-2000火力发电厂烟风煤粉管道设计技术规程[S].2000-11-3.
    [247]JB/ T5902-2001空气分离设备用氧气管道技术条件[S].2001-5-23.
    [248]GB 16912-1997氧气及相关气体安全技术规程[S].1997-7-7.
    [249]张孝勇,陈学渊,罗泽斌,等.等离子点火技术在烟煤锅炉上的应用[J].中国电力, 2002,35(12):15-18.
    [250]沈光林.膜法富氧技术及其应用研究[J].化工进展,1996(5):45-47.
    [251]林向东,王海萍.富氧膜技术及其装置试验研究[J].热能动力工程,1999,14(2):99-101.
    [252]沈光林.膜法富氧助燃技术节煤率高达29.7%[J].节能,2007,26(1):44.
    [253]俞保云,郭永涛,应隆飚,等.膜法富氧局部增氧助燃技术及其在抛煤机锅炉中的应用[J].热力发电,2006,35(2):49-51.
    [254]沈光林.膜法富氧助燃技术在工业锅炉中的应用[J].工业锅炉,2002(6):20-24.
    [255]苏德胜,宋明勇.膜法富氧局部增氧助燃节能技术[J].油气田地面工程,1999,18(2):69-70.
    [256]沈光林,伊军.膜法富氧在石油化工中的应用进展[J].石油炼制与化工,1999,30(11):28-32.
    [257]王保国,袁乃驹.膜法富氧技术的现状与未来[J].化工进展,1995(2):19-23.
    [258]JB/ 8542-1997小型空气分离设备[S].1997-4-15.
    [259]张波,孙忠伟,文军,等.220t/h电站锅炉防结渣改造方案的数值模拟[J].燃烧科学与技术,2007,13(1):91-95.
    [260]赵玉晓,李瑞扬,孙斌,等.解决六角切圆锅炉结渣问题的研究及工程应用[J].中国电机工程学报,2004,24(7):231-235.
    [261]王勤辉,揭涛,李小敏,等.反应气氛对不同煤灰烧结温度影响的研究[J].燃料化学学报,2010,38(1):17-22.
    [262]GB/ 219-2008煤灰熔融性的测定方法[S].2008-7-29.
    [263]杨勇,杨光,黄淑来,等.粉煤灰中fCaO和Ca(OH)2的检测方法[J].水泥,2000(8):44-46.
    [264]龚德生.煤灰熔融动态特性的研究[J].电力技术,1989(7):22-27.
    [265]刘泽常,高洪阁,邱学明.应用热力学函数研究不同钙基固硫试剂的固硫特性[J].山东科技大学学报(自然科学版),2000,19(1):21-24.
    [266]素木洋一著,刘达权,陈世兴译.硅酸盐手册[M].北京:轻工业出版社,1982.
    [267]杨淑珍,牟善彬,赵素玲,等.硬石膏的高温相变和结构研究[J].矿物学报,1998, 18(1):73-79.
    [268]辽宁省地质局中心实验室.矿物差热分析[M].北京:地质出版社,1975.
    [269]蔡根才.QDTA/T/EGD/GC在线联用技术X.菱铁矿、高岭石、白云石、方解石、石英五元混合矿物的组成分析[J].华东理工大学学报,1995,21(2):256-261.
    [270]高峰,赵增立,崔洪,等.煤系高岭土的DTA特征[J].燃料化学学报,1998,26(1):24-29.
    [271]须藤俊男.粘土矿物学[M].北京:地质出版社,1981.
    [272]魏存弟,马鸿文,杨殿范,等.煅烧煤系高岭石的相转变[J].硅酸盐学报,2005,33(1):77-81.
    [273]李帆,邱建荣,郑楚光.煤中矿物质对灰熔融温度影响的三元相图分析[J].华中理工大学学报,1996,24(10):96-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700