新能源电力系统广域源荷互动调度模式理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的迅速发展,化石能源耗竭和环境恶化的压力与日俱增;电力作为最重要的能源供应方式,其生产和利用的格局正在发生根本变革。发电侧,化石能源发电形式正在向大容量、低排放机组转变,排放耗能高的小机组逐渐淘汰;可再生能源特别是风能、太阳能等清洁能源发电的并网规模迅速扩大。负荷侧,用电结构发生显著变化,高峰负荷快速增长,导致峰谷差逐年拉大;电动汽车、分布式发电的发展使传统负荷出现了含源负荷的新特征,智能电表的推广将使电网出现分布广域、数量海量的主动负荷节点,用户不再仅仅是电网末端的刚性负荷,而是能够通过高级量测体系参与到系统运营中来,实现与电网的互动。电网的运行特性将更加复杂,调度模式需要做出相应改变,以适应传统电网向新能源电力系统转变的要求。
     本文提出了新能源电力系统的广域源荷互动调度模式,并通过基础研究、核心研究和扩展研究三部分来构建较为完整的方法论体系。通过需求侧与电网双向互动的方式,探求一种实现安全经济、低碳环保目标的智能调度形式,进而提升新能源电力系统的运行品质。在此基础上,进行了如下的进一步研究:
     研究了需求侧资源的虚拟发电厂管理模式,并基于价格型需求响应实现规模风电消纳。基于虚拟发电厂实现对海量需求侧资源的运行管理,介绍了虚拟发电厂的组成和特征;推导了风电出力的随机模型,并据此建立了风电消纳的随机机会决策模型,决策模型中考虑了需求侧的电量电价互弹性和自弹性,利用随机模拟粒子群算法进行求解。研究表明,通过价格型需求响应,虚拟发电厂能够较好地实现广域需求侧资源管理和参与规模风电消纳的目的,并取得良好的效益。
     研究了含风电场电力系统日前发电计划的源荷互动调度模式。在介绍需求侧参与日前发电计划的互动机制的基础上,建立了源荷互动的安全约束机组组合模型,优先调度风电,目标函数为常规机组的发电成本(或耗量)和需求侧资源调用成本(或耗量当量)最小,约束条件综合考虑系统约束、机组约束、需求侧特殊约束以及静态安全约束,构建的混合整数线性规划模型可利用商业优化软件ILOG/CPLEX进行求解,模型和解法能够适用于大规模系统。算例分析表明了所提模型与解法的有效性。
     研究了源荷互动调度模式下,含风电场电力系统的模糊机会调度模型与解法。基于可信性理论,推导了风电预测误差的可信性分布函数;继而建立了模糊机会约束条件,根据不同的研究问题分别定义模糊置信度指标,构建起静态经济调度、动态经济调度和安全约束机组组合的模糊机会决策模型;将模糊机会条件转化为其清晰等价类,引入有关的参数将机会条件表示成传统约束条件的形式,便于嵌入到确定性模型中快速求解。研究表明,模糊机会约束调度模型可描述风电预测误差的模糊性对电网调度的影响,决策结果能够取得经济与风险(或可靠性)的折中。
     研究了节能减排环境下的广域源荷互动调度问题。根据不同碳排放管制环境,提出了三种节能减排调度模式,分别是考虑碳约束的经济调度、考虑成本约束的低碳调度以及碳排放权与发电联合调度模式,并分别构建了混合整数线性规划模型。其次,设计了一种未来碳排放交易下的需求侧备用竞价与调度模式。提出未来电力输送的过程还将是碳汇流的观点,并据此分析了基于碳交易的需求侧备用交易原理,将碳交易视为需求侧备用的节能减排机会成本;根据不同需求侧资源的调度特性和排放特性,建立了需求侧备用竞价模型和需求侧备用调度的数学模型。算例分析证明了所提模式与模型的有效性,源荷互动调度模式能够取得良好的节能减排与安全经济效益。
With the rapid development of the national economy, and the growing pressure due to the exhaustion of fossil fuel and the deteriorating ecological environment, technological revolutions have gradually hit the production and utilization pattern of electric power, which is the main energy supply resource of the world. In the generation side, fossil energy generation units with larger capacity and lower emission are welcomed, leaving a number of small units with high emission and high energy-consumption being eliminated. Renewable energy such as wind power generation and photovoltaic generation has witnessed a rapid growth in penetration scale. In the demand side, changes in electric utility structure lead to swift growths in peak load and peak-valley difference. Furthermore, with the development of electric vehicles (EV) and distributed generation (DG), a new concept of source-contained load appears. And as the extension of smart meter, the consumers, which can be seen as active load nodes of wide area and large amount, are playing a more and more important role in system operation by means of advanced metering infrastructure(AMI), instead of a simple non-elastic load, and thus realize the interaction with the grid. According to the increasing complexity of grid operation characteristics, the dispatching mode should make changes accordingly to meet the demand of the transition from the conventional power grid to new energy power system.
     A new dispatch philosophy named Wide-Area Source and Load Interactive Scheduling mode (WASLIS) is proposed in this paper, the method of which involves the construction of a complete methodological system by means of basic research, core research and patulous research. The source and load interaction mode is employed to achieve a safe, economical, low carbon and environmental-friendly goal, which could promote the operation quality of new energy power system. Further studies are organized as follows.
     In charpter3, a mode called virtual power plant (VPP) is studied in order to manage the large amount of demand side resources, and a chance constrained model to improve wind power usage is founded based on real time price (RTP) demand reponse (DR). Firstly, the concept and characteristics of VPP are introduced and moreover a self-organized management mode is presented. Secondly, based on the stochastic model of wind power output, a random chance constrained model is founded to decide RTP scheme improving wind power usage, which both cross-elastic and self-elastic coefficients of electricity price elasticity are considered. To solve the proposed chance constrained model, a stochastic simulation based particle swarm algorithm is employed. The research showed that according to price-based DR, VPP could achieve the purpose of demand side resource management and improving the ability of wind power usage of power system.
     In charpter4, a day-ahead generation scheduling scheme is presented by means of WASLIS for power system wind farm integrated. An interaction mechanism of demand side participating in day-ahead generation scheduling is introduced, moreover a security constrainted unit commitment (SCUC) model and its algorithm are presented for source and load interaction. Considering wind power priority scheduled, the SCUC target function is minimizing both generation cost of conventional power unit and DR implemented cost. Meanwhile constraint conditions include system constraints, unit constraints, demand side special constraints and static security constraint. A mixed integer linear programming (MILP) model is developed to desribe the proposed SCUC problem, which can be solved by CPLEX. Simulation on examples verifies the validity of the proposed model and algorithm, which can be used to solve the large-scale power system SCUC problem.
     In charpter5, both fuzzy chance constrained dispatch model and solution in power system contained wind farm are researched under WASLIS mode. Based on credibility theory, the credibility distribution function model of wind power forecast errors is established and then the fuzzy chance constraints are founded. The fuzzy credibility indexes are defined due to different problem, employed to describe the fuzzy chance decision models of static economic dispatch, dynamic economic dispatch and the SCUC. The fuzzy chance constraints are turned into their equivalent forms, and the parameters are proposed to change the chance constraints into traditional constraints, so the deterministic model can be used for fast solution. It is shown that the fuzzy chance constrained dispatch model can describe the impact of fuzziness of wind power forecast errors on the distribution, and the decision result can reach the balance of economic and risk (or reliability).
     In charpter6, The WASLIS is studied for energy saving and emission reduction. Firstly, based on different carbon emission regulations, the economic dispatch considering carbon constraint, low-carbon dispatch considering cost constraint and coordinated dispatch of power generation and carbon emission permit are proposed, furthermore MILP model is separately established. And then, a bid-scheduling model of demand side reserve (DSR) is proposed considering the future carbon emission trading. The process of future power transmission is also carbon flow, and based on this point of view, the DSR trading principle based on carbon trading is researched, in which the carbon trading is treaded as DSR opportunity cost for energy saving and emission reduction. The trading model and dispatch model of DSR are formed based on different dispatch and emission properties of demand side resource. The analysis of the example proves the effectiveness of the pattern and the model, and WASLIS can bring good benefit on all aspects of economical efficiency, energy saving, emission reduction and safety.
引文
[1]国家能源局发展规划司.能源规划数据手册[M].北京:中国电力出版社,2009:198-200
    [2]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359
    [3]Ronan D, Eleanor D Mark O'.System operation with a significant wind power penetration[A]. IEEE Power Engineering Society General Meeting[C]. Denver, 2004:1002-0227
    [4]李亚楼,周孝信,林集明,等.2008年IEEE PES学术会议新能源发电部分综述[J].电网技术,2008,32(20):1-7
    [5]张钦,王锡凡,付敏,等.需求响应视角下的智能电网[J].电力系统自动化,2009,33(17):49-55
    [6]Energy Policy act of 2005, Public law 109-58-Aug.8, 2005[EB/OL]. (2007-05-21). http://www.doi.gov/iepa/EnergyPolicyActof2005. pdf
    [7]Jupe SCE, Taylor P.C.. Distributed Generation Output Control for Network Power Flow Management[J]. IET Renewable Power Generation,2009,3(4): 371-386
    [8]Alvarez-Herault M. C., Picault D., Caire R., et al. A Novel Hybrid Network Architecture to Increase DG Insertion in Electrical Distribution Systems[J]. IEEE Trans on Power Systems,2011,26(2):905-914
    [9]王成山,李鹏.分布式发电、微网与智能配电网的发展与挑战[J].电力系统自动化,2010,34(2):10-14
    [10]武建东.智能电网与中国互动电网创新发展[J].电网与清洁能源,2009,25(4):5-8
    [11]武建东.本刊特别报告之二——中国智能互动电网发展战略[J].中国电力企业管理,2009,13:20-29
    [12]卢强.智能电网是智能电力系统的一部分[EB/OL]. [2010-05-10]. http: //www.022net.com/2010/5-12/484166222634431-2.html
    [13]于尔铿.现代电力系统经济调度[M].北京:水利电力出版社,1986:21-25
    [14]国家电力监管委员会.美国电力市场改革[M].北京:中国电力出版社,2006:103-194
    [15]张力,刘俊勇,刘继春.火电机组年合同电量的编制与分解算法研究[J].继电器,2007,35(4):64-69
    [16]国办发[2007]53号.关于转发发展改革委等部门节能发电调度办法(试行)的通知[S].北京:国务院办公厅,2007
    [17]Raglend I J, Padhy N P. Solutions to Practical Unit Commitment Problems with Operational, Power Flow and Environmental Constraints[A]. Proceedings of IEEE power engineering society general meeting[C]. Canada:Montreal,2006,10:1-8
    [18]Wu Lei, Shahidehpour M, Li Tao. Stochastic Security-Constrained Unit Commitment[J]. IEEE Transactions on Power Systems,2007,22(2):800-811
    [19]Ferial T J H, Ei-Hawary M E. A Summary of Environmental Economic Dispatch Algorithms[J]. IEEE Trans on Power Systems,1994,9(3):1508-1516
    [20]Lamont J W, Obessis E V. Emission Dispatch Model and Algorithms for the 1990's[J]. IEEE Transactions on Power Systems,1995,10(2):941-947
    [21]杨明,韩学山,梁军,等.经济调度中考虑温室气体排放约束的新方法(英文)[J].电工技术学报,2008,23(12):166-172
    [22]Steinberg M J, Smith T H. The Theory of Incremental Rates[J]. Electrical Engineering,1934,53(4):571-584
    [23]George E E. Intrasystem Transmission Losses[J]. AIEE Trans.,1943,62(3): 153-158
    [24]Kirchmayer L K, Stagg G W. Anysis of Total and Incremental Losses in Transmission Systems[J]. AIEE Trans,1951,70(11):647-653
    [25]Ross D W, Kim S. Dynamic Economic Dispatch of Generation [J]. IEEE Trans on PAS,1980,99(6):2060-2068
    [26]Wood W G. Spinning Reserve Constrained Static and Dynamic Economic Dispatch [J]. IEEE Trans on Application Systems,1982,101(2):381-388
    [27]Zuyi Li, Shahidehpour M. Generation scheduling with thermal stress constraints [J]. IEEE on Power Systems,2007,18(4):1402-1409
    [28]Wang S J, Shahidehpour, S.M., Kirschen, D.S., et al. Short-term Generation Scheduling with Transmission and Environmental Constraints Using an Augmented Lagrangian Relaxation [J]. IEEE on Power Systems,1995,10(3): 1294-1301
    [29]Hindi K S, Ghani M R. Dynamic Economic Dispatch for Large Scale Power Systems:a Lagrangian Relaxation Approach[J]. International Journal of Eclectrical Power&Energy Systems,1991,13(1):51-56
    [30]Duvvuru N, Swarup K S. A hybrid Interior Point Assisted Differential Evolution Algorithm for Economic Dispatch[J]. IEEE on Power Systems, 2011,26(2):541-549
    [31]Yamin H, Al-Agtash S, Shahidehpour M. Security-Constrained Optimal Generation Scheduling for GENCOs[J]. IEEE on Power Systems,2004,19(3): 1365-1372
    [32]潘毅,柳悼,于尔铿.电力系统动态优化调度的两极协调方程算法[J].中国电机工程学报,1996,16(6):417-420
    [33]韩学山,柳焯.考虑机组爬坡速度和网络安全约束的经济调度解耦算法[J].电力系统自动化,2002,26(13):32-37
    [34]X. S. Han, H. B. Gooi, Daniel S. Kirschen. Economic Dispatch:Feasible and Optimal Solutions[J]. IEEE Trans. on Power Systems,2001,16(1):22-28
    [35]Carpentier J. Contribution A'letude du Dispatching Economique[J]. Bulletin de laSociete Francaise des Electriciens,1962,3(1):431-447
    [36]Dommel H W, Tinney W F. Optimal Power Flow Solutions[J]. IEEE Trans on Power System,1977,87:1866-1876
    [37]Conejo A J, Aguado J A. Multi-Area Coordinated Decentralized DC Optimal Power Flow[J]. IEEE Trans. on Power Systems,1998,13(4):1272-1278
    [38]Sarkar V, Khaparde S A. DCOPF-Based Marginal Loss Pricing with Enhanced Power Flow Accuracy by Using Matrix Loss Distribution[J]. IEEE Trans, on Power Systems,2009,24(3):1435-1445
    [39]Sarkar V, Khaparde S A. Optimal LMP Decomposition for the ACOPF Calculation[J]. IEEE Trans. on Power Systems,2011,26(3):1714-1723
    [40]李文沅.电力系统安全经济运行——模型与方法[M].重庆:重庆大学出版社,1989:3
    [41]Lesieutre B C, Rogers K M, Overbye, T.J., et al. A Sensitivity Approach to Detection of Local Market Power Potential [J]. IEEE Trans, on Power Systems,2011,26(4):1980-1988
    [42]Wells D W. Method for Economic Secure Loading of a Power System[J]. Proc. of IEEE,1968,115(8):606-614
    [43]Sun D I, Ashley B, Brewer B, et al. Optimal Power Flow by Newton Approach[J]. IEEE Trans. on PAS,1984,103(10):2864-2880
    [44]李尹,张伯明,孙宏斌.基于非线性内点法的安全约束最优潮流(一)理论分析[J].电力系统自动化,2007,31(9):7-13
    [45]Wei H, Sasaki H, Kubokawa J, et al. An Interior Point Nonlinear Programming for Optimal Power Flow Problems with a Novel Data Structure[J]. IEEE Trans. on Power Systems,1998,3(3).870-877
    [46]Bartholomew-biggs M C. Recursive Quadratic Programming Methods Based on the Augmented Lagrange[J]. Mathematical Programming Study,1987, 31(1):21-24
    [47]XIE K, SONG Y H. Optimal Power Flow with Time Related Constrains by a Nonlinear Interior Point Method[A]. Proceedings of IEEE Power Engineering Society Winter Metting:Vol 3, Jan 23-27,2000, Singapore. Piscataway, NJ[C]. USA:IEEE,2000:1751-1759
    [48]XIE K, SONG Y H. Dynamic Optimal Power Flow by Interior Point Methods[J]. IEE Proceesings:Generation, Transmission and Distribution, 2001,148(1):76-84
    [49]R H Kerr, J L. Scheidt, A. J. Fontana, et al. Unit Commitment[J]. IEEE Trans. Power App. Syst.,1966, PAS-85(5):417-421
    [50]K. Hara, M. Kimura, N. Honda. A Method for Planning Economic Unit Commitment and Maintenance of Thermal Power Systems[J]. IEEE Trans. Power App. Syst.,1966, PAS-85(5):427-436
    [51]R. M. Burns, C. A. Gibson. Optimization of Priority Lists for a Unit Commitment Program[A]. in Proc. IEEE Power Eng. Soc. Summer Meeting[C].1975
    [52]R. R. Shoults, S.K.Chang, S. Helmick, et al. A Practical Approach to Unit Commitment, Economic Dispatch and Savings Allocation for Multiple-Area Pool Operation with Import/Export Constraints[J]. IEEE Trans. Power App. Syst.,1980, PAS-99(2):625-635
    [53]F. N. Lee. Short-term Unit Commitment-a New Method[J]. IEEE Trans. Power Syst.,1988,3(2):421-428
    [54]F. N. Lee, Q. Feng. Multi-Area Unit Commitment[J]. IEEE Trans. Power Syst.,1992,7(2):591-599
    [55]Li, C., Johnson R. B., Svoboda A. J.. A New Unit Commitment Method[J]. IEEE Trans, on Power Systems.1997,12(1):113-119
    [56]Van den Bosh P P J, Honderd G. A Solution of the Unit Commitment Problem via Decomposition and Dynamic Programming[J]. IEEE Trans on Power Apparatus and Systems,1985, PAS-104(7):1684-1690
    [57]Nieva R, Inda A, Guillen I. Lagrangian Reduction of Search-Range for Large-Scale Unit Commitment[J]. IEEE Trans on Power Systems,1987,2(2): 465-473
    [58]Bertsekas D.P., Lauer G.S., Sandell N.R., et al. Optimal Short-Term Scheduling of Large-Scale Power Systems[J]. IEEE Trans.on Automatic Control,1983, AC-28(1):1-11
    [59]Virmani, S.E., Adrian,C., Imhot, K., et al. Implementation of a Lagrangian Relaxation Based Unit Commitment Problem[J]. IEEE Trans.on Power Systems,1989,4(4):1373-1380
    [60]Peterson W.L., Brammer S.R.. A Capacity Based Lagrangian Relaxation Unit Commitment with Ramp Rate Constraints[J]. IEEE Trans.on Power Systems, 1995,10(2):1077-1084
    [61]Madrigal M., Quintana V.H. An Interior-Point/Cutting-Plane Method to solve Unit Commitment Problems[J]. IEEE Trans.on Power Systems,2000,15(3): 1022-1027
    [62]陈海良,郭瑞鹏.基于改进离散粒子群算法的电力系统机组组合问题[J].电网技术,2011,35(12):94-99
    [63]Rajan, C.C.A., Mohan M.R.. An Evolutionary Programming-Based Tabu Search for Solving the Unit Commitment Problem[J]. IEEE Trans.on Power Systems,2004,19(1):577-585
    [64]王楠,张粒子,舒隽.基于粒子群修正策略的机组组合解祸算法[J].电网技术,2010,34(1):79-83
    [65]Saber A.Y., Senjyu T., Yona A., et al. Unit Commitment Computation by Fuzzy Adaptive Swarm Optimization[J]. IET Generation, Transmission and Distribution,2007,3(3):456-465
    [66]Dillon T S, Edwin K, Kochs H D, et al. Integer Programming Approach to the Problem of Optimal Unit Commitment with Probabilistic Reserve Determination[J]. IEEE Trans on Power Apparatus and Systems,1978, PAS-97(6):2154-2166
    [67]The Dash XPRESS website[EB/OL].[2011-5-28]. http://www. Dashoptimizati on.com/home/products/products_optimizer.html
    [68]The ILOG CPLEX website[EB/OL]. [2011-5-28]. http://www.ilog.com/produc ts/cplex/
    [69]Li Tao, Shahidehpour M. Price-Based Unit Commitment:a Case of Lagrangian Relaxation Versus Mixed Integer Programming[J]. IEEE Trans on Power Systems,2005,20(4):2015-2025
    [70]徐帆,姚建国,耿建,等.机组耗量特性的混合整数模型建立与分析[J].电 力系统自动化,2010,34(10):45-50
    [71]Dillon T S, Edwin K W, Kochs H D, et al. Integer Programming Approach to the Problem of Optimal Unit Commitment with Probabilistic Reserve Determination [J]. IEEE Trans on Power Apparatus and Systems,1978,97(6): 2154-2166
    [72]Chang G W, Tasi Y D, Lai C Y, et al. A Practical Mixed Integer Linear Programming Based Approach for Unit Commitment[A]. Proceedings of IEEE PES General Meeting[C]. Denver, USA,2004,1:221-225
    [73]MIGUS L, ARROYO J M. A Computationally Efficient Mixed-Integer Linear Formulation for the Thermal Unit Commitment Problem[J]. IEEE Trans on Power Systems,2006,21(3):1371-1378
    [74]张利.电力市场中的机组组合理论研究[D].济南:山东大学,2006
    [75]Ruzic S, Rajakovic N. A New Approach for Solving Extended Unit Commitment Problem[J]. IEEE Trans on Power Systems,1991,6(1):269-277
    [76]Wang S J, Shahidehpour S M, Kirschen D S. Short-Term Generation Scheduling with Transmission and Environmental Constraints Using an Augmented Lagangian Relaxation[J]. IEEE Trans on Power Systems,1995, 10(3):1294-1301
    [77]汪洋,夏清,康重庆.考虑电网N-1闭环安全校核的最优安全发电计划[J].中国电机工程学报,2011,31(10):39-45
    [78]王楠.发电调度优化模型与方法研究[D].北京:华北电力大学,2011
    [79]Ma H, Shahidehpour S M. Transmission-Constrained Unit cCmmitment Based on Benders Decomposition[J]. Electrical Power&Energy Systems,1998, 20(4):287-294
    [80]Fu Y, Shahidehpour S M, Li Z. Security-Constrained Unit Commitment With AC Constraints [J]. IEEE Trans on Power Systems,2005,20(3):1538-1550
    [81]苏济归,舒隽,谢国辉,等.大规模机组组合问题计及网络约束的线性化求解方法[J].电力系统保护与控制,2010,38(18):10-13,98
    [82]杨朋朋,韩学山,查浩.一种计及静态安全约束机组组合的有效算法[J].电力系统自动化,2009,33(08):39-43
    [83]陈之栩,谢开,张晶,等.电网安全节能发电日前调度优化模型及算法[J].电力系统自动化,2009,33(01):10-13,98
    [84]耿建,徐帆,姚建国,等.求解安全约束机组组合问题的混合整数规划算法性能分析[J].电力系统自动化,2009,33(21):24-27
    [85]Fu Y, Shahidehpour M. Fast SCUC for Large-Scale Power Systems[J]. IEEE Trans on Power Systems,2007,22(4):2144-2151
    [86]US Department of Energy. Benefits of Demand Response in Electricity and Recommendations for Achieving Them:a Report to the United States Congress Pursuant to Section 1252 of Energy Policy Act of 2006 [EB/OL]. (2007-05-21). http://www.oe.energy.gov/DocumentsandMedia/cong ress_1252d.pdf
    [87]S. Covino. Demand Side Response 21st Century Style[A].2003 IEEE Power Engineering Society General Meeting[C]. IEEE,2003:2280-2284
    [88]J. H. Doudna. Overview of California ISO Summer 2000 Demand Response Programs[A]. Proceedings of IEEE Power Engineering Society Winter Meeting[C]. Piscataway (NJ),2000:228-233
    [89]D. J. Lawrence.2001 Performance of New York ISO Demand Response Programs[A].2002 IEEE Power Engineering Society Winter MeetingfC]. New York(NY), USA,2002:995-998
    [90]FERC. Assessment of Demand Response and Advanced Metering:2007 staff report[R]. In. Federal Energy Regulatory Commission,2007
    [91]张钦,王锡凡,王建学,等.电力市场下需求响应研究综述[J].电力系统自动化,2008,32(3):97-106
    [92]S Borenstein, J Bushnell, C R Knittel. Market Power in Electricity Market: Beyond Concentration Measures[EB/OL]. http://www.ucei.berkeley.edu/PD F/pwpOSqr.pdf
    [93]张宇波,罗先觉,邹晓松,等.发电市场势力研究与交易方式对发电市场势力影响的分析[J].中国电机工程学报,2004,24(4):18-23
    [94]T A Johnsen, S K Verma, C Wolfram. Zonal Pricing and Demand-Side Bidding in the Norwegian Electricity Market1999[EB/OL]. http://www. ucei. berkeley. edu/ucei
    [95]D S Kirschen, G Strbac, P Cumperayot, e. al. Factoring the Elasticity of Demand in Electricity Prices[J]. IEEE Transactions on Power Systems,2000,15(2):612-617
    [96]秦祯芳,岳顺民,余贻鑫,等.零售端电力市场中的电量电价弹性矩阵[J].电力系统自动化,2004,28(05):16-19,24
    [97]陈皓勇,付超.统一价格和PAB竞价的实验分析[J].电力系统自动化,2007,31(04):12-17
    [98]曹世光,李卫东,柳焯,等.计及直接负荷控制的动态优化调度模型[J].中国电机工程学报,1998,18(3):160-162
    [99]曾鸣.多类负荷最优调度的数学模型及其应用[J].中国电力,1997,30(9):30-32,39
    [100]王建学,王锡凡,张显,等.电力市场和过渡期电力系统可中断负荷管理(二)——可中断负荷运营[J].电力自动化设备,2004,24(6):1-5
    [101]吴集光,刘俊勇,牛怀平,等.调峰电价与可中断负荷联动机制研究[J].中国电力,2005,38(2):59-63
    [102]于娜,于继来,王承民.高峰期网络受阻约束调度的可中断负荷优化模型[J].上海交通大学学报,2009,43(11):1818-1822
    [103]刘昌,姚建刚,余虎,等.一种新型的电网输电阻塞管理模式[J].电网技术,2005,29(12):16-21
    [104]李海英,李渝曾,张少华.可中断负荷参与输电阻塞管理的模型与算法[J].电力系统自动化,2006,30(10):17-21
    [105]Newcomer Adam, Blumsacka Seth, Apt Jay, et al. Electricity Load and Carbon Dioxide Emissions:Effects of a Carbon Price in the Short Term [A]. Proceedings of the Annual Hawaii International Conference on System Sciences[C]. USA:Inst of Elec and Elec Eng Computer Society,2008:179
    [106]张国新,王蓓蓓.引入需求响应的电力市场运行研究及对我国电力市场改革的思考[J].电力自动化设备,2008,28(10):28-33
    [107]王建学,王锡凡,别朝红.电力市场中的备用问题[J].电力系统自动化,2001,25(15):7-11,14
    [108]孙听,童明光,赵庆波,等.二级备用辅助服务市场中可中断负荷管理模型研究[J].中国电机工程学报,2004,24(3):35-38
    [109]吴集光,刘俊勇,牛怀平,等.电力市场环境下最优备用容量的确定[J].电力系统自动化,2005,29(15):10-13,22
    [110]葛炬,张粒子.可中断负荷参与的备用市场帕累托优化模型[J].电力系统自动化,2006,30(09):34-37
    [111]李晓军,谭忠富,王绵斌,等.考虑用户参与下电网公司购买备用的优化模型[J].电力系统及其自动化学报,2007,19(2):9-14
    [112]Meyer T, Luther J. On the Correlation of Electricity Spot Market Prices and Photovoltaic Electricity Generation[J]. Energy Conversion and Management, 2004,45(17):2639-2644
    [113]Prieto JI, Martinez-Garcia JC, Garcia D. Correlation Between Global Solar Irradiation and Air Temperature in Asturias, Spain[J]. Solar Energy.2009, 83(7):1076-1085
    [114]Hadi B, Luo Changling, Boon T O. Impacts of Wind Power Minute-to-Minute Variations on Power System Operation[J]. IEEE Trans on Power Systems, 2008,23(1):150-160
    [115]李付强,王彬,涂少良,等.京津唐电网风力发电并网调峰特性分析[J].电网技术,2009,33(18):128-132
    [116]张宁,周天睿,段长刚,等.大规模风电场接入对电力系统调峰的影响[J].电网技术,2010,34(1):152-158
    [117]杨琦,张建华,王向峰,等.基于小波神经网络的风速及风力发电量预测[J].电网技术,2009,33(17):44-48
    [118]李智,韩学山,韩力,等.地区电网风电场功率超短期预测方法[J].电力系统自动化,2010,34(07):90-94
    [119]杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5
    [120]谷兴凯,范高锋,王晓蓉,等.风电功率预测技术综述[J].电网技术,2007,31(2):335-338
    [121]雷亚洲,王伟胜,印永华,等.含风电场电力系统的有功优化潮流[J].电网技术,2002,26(6):18-21
    [122]周玮,彭昱,孙辉,等.含风电场的电力系统动态经济调度[J].中国电机工程学报,2009,29(25):13-18
    [123]孙元章,吴俊,李国杰,等.基于风速预测和随机规划的含风电场电力系统动态经济调度[J].中国电机工程学报,2009,29(4):41-47
    [124]Ruey-Hsun Liang, Jian-hao Liao. A fuzzy Optimization Approach for Generation Scheduling with Wind and Solar Energy Systems[J]. IEEE Transactions on Power Systems,2007,22(4):1665-1674
    [125]陈海焱,陈金富,段献忠.含风电场电力系统经济调度的模糊建模及优化算法[J].电力系统自动化,2006,30(2):22-26
    [126]Chen L C. Optimal Wind-thermal generating unit commitment [J]. IEEE Trans on Energy Conversion,2008,23(1):273-280
    [127]Tuohy A, Meibom P, Denny E, et al. Unit Commitment for Systems with Significant Wind Penetration[J]. IEEE Trans on Power Systems,2009,24(2): 592-601
    [128]Wu Lei, Shahidehpour M, Li Tao. Stochastic Security-Constrained Unit Commitment[J]. IEEE Trans on Power Systems,2007,22(2):800-811
    [129]江岳文,陈冲,温步瀛.含风电场的电力系统机组组合问题随机模拟粒子群算法[J].电工技术学报,2009,24(6):129-137
    [130]刘峻,何世恩.建设坚强智能电网助推酒泉风电基地发展[J].电力系统保护与控制,2010,38(21):19-23
    [131]Xie Le, Joo Jhi-Young, Ilic Marija D. Integration of Intermittent Resources with Price-responsive Loads[A].41st North American Power Symposium-NAPS[C]. USA:IEEE Computer Society,2009:1-6
    [132]Hamidi V, Li F, Robinson F. The Effect of Responsive Demand in Domestic Sector on Power System Operation in the Networks With High Penetration of Renewables[A]. IEEE Power and Energy Society General Meeting[C]. USA: Inst of Elec and Elec Eng Computer Society,2008:1-8
    [133]Callaway Duncan S. Tapping the Energy Storage Potential in Electric Loads to Deliver Load Following and Regulation, with Application to Wind Energy[J]. Energy Conversion and Management,2009,50(5):1389-1400
    [134]Ramteen Sioshansi, Walter Short. Evaluating the Impacts of Real-Time Pricing on the Usage of Wind Generation[J]. IEEE Trans on Power Systems,2009, 24(2):516-524
    [135]Ramteen Sioshansi. Evaluating the Impacts of Real-Time Pricing on the Cost and Value of Wind Generation[J]. IEEE Trans on Power Systems,2010,25(2): 741-748
    [136]Dirk Westermann, Andreas John. Demand Matching Wind Power Generation With Wide-Area Measurement and Demand-Side Management[J]. IEEE Trans on Energy Conversion,2007,22(1):145-149
    [137]The Brattle Group, Freeman Sullivan&Co, Global Energy Partners LLC. A National Assessment of Demand Response Potential[R]. USA:Federal Energy Regulatory Commission(FERC),2009
    [138]肖创英,汪宁渤,丁坤,等.甘肃酒泉风电功率调节方式的研究[J].中国电机工程学报,2010,30(10):1-7
    [139]崔杨.大规模风电场群联网的源网协调性研究[D].北京:华北电力大学,2011
    [140]FENIX. Flexible Electricity Nehmorks to Integrate the eXpected Energy Evolution,6th FrameWork Program of the European Commission 2005 [EB/OL]. [2008-11-01]. http://www.fenix-project.org
    [141]Nerea R, Inigo C, Jose O. A Direct Load Control Model for Virtual Power Plant Management[J]. IEEE Trans on Power Systems,2009,24(2):959-966
    [142]Elaheh M, Seyed M M T. Bidding Strategy of Virtual Power Plant for Participating in Energy and Spinning Reserve Markets-Part Ⅰ:Problem Formulation [J]. IEEE Trans on Power Systems,2011,26(2):949-956
    [143]Elaheh M, Seyed M M T. Bidding Strategy of Virtual Power Plant for Participating in Energy and Spinning Reserve Markets-Part Ⅱ:Numerical Analysis [J]. IEEE Trans on Power Systems,2011,26(2):957-964
    [144]Molderink A, Bakker V, Bosman M.G.C., et al. Management and Control of Domestic Smart Grid Technology[J]. IEEE Trans on Smart Grid,2010,2 (1): 109-119
    [145]Heredia F.J., Rider M.J., Corchero C. Optimal Bidding Strategies for Thermal and Generic Programming Units in the Day-Ahead Electricity Market [J]. IEEE Trans on Power Systems,2011,26(2):1504-1518
    [146]H.哈肯著,郭治安译.高等协同学[M].北京:科学出版社,1989
    [147]刘宝碇,赵瑞清.随机规划与模糊规划[M].北京:清华大学出版社,1998
    [148]Raglend I J, Padhy N P. Solutions to Practical Unit Commitment Problems with Operational, Power Flow and Environmental Constraints[A]. Proceedings of IEEE power engineering society general meeting[C]. Montreal, Canada, 2006,10:1-8
    [149]刘宝碇,彭锦.不确定理论教程[M].北京:清华大学出版社,2005:74-126
    [150]冯永青,吴文传,张伯明,等.基于可信性理论的电力系统运行风险评估:(二)理论基础[J].电力系统自动化,2006,30(2):11-15
    [151]刘宝碇,赵瑞清,王纲.不确定规划及应用[M].北京:清华大学出版社,2003:185-187
    [152]Goebel G, Landberg L, Kariniotakis G, et al. State-of-the-Art on Methods and Software Tools for Short Term Prediction of Wind Energy Production[A]. Proceedings of European Wind Energy Conference & Exhibition[C], June 16-19,2003. Madrid, Spain
    [153]Su C C, Hsu Y Y. Fuzzy Dynamic Programming:Application to Unit Commitment[J]. IEEE Trans.on Power Systems,1991,6(3):1321-1237
    [154]王爽心,韩芳,朱衡君.基于改进变尺度混沌优化方法的经济负荷分配[J].中国电机工程学报,2005,25(24):90-95
    [155]Stavins, Robert N. Experience with Market-Based Environmental Policy Instruments[EB/OL]. [2001-11]. http://www.rff.org/documents/RFF-DP-01-58.pdf
    [156]A Denny Ellerman, Barbara K Buchner. The European Union Emissions Trading Scheme:Origins, Allocation, and Early Results[EB/OL]. [2007-01]. http//reep.oxfordjournals.org/cgi/content/abstract/1/1/66
    [157]Liu Xian, Xu Wilsun. Minimum Emission Dispatch Constrained by Stochastic Wind Power Availability and Cost[J]. IEEE Transactions on Power Systems, 2010,25(3):1705-1714
    [158]陈启鑫,康重庆,夏清,等.低碳电力调度方式及其决策模型[J].电力系统自动化,2010,34(12):18-23
    [159]Environmental Audit Committee. Personal Carbon Trading [EB/OL]. [2008-05-26]. http://www.publications.parliament.uk/pa/cm200708/cmselect/cmenvaud /565/565.pdf
    [160]罗运虎,薛禹胜,Gerard Ledwich,等.低电价与高赔偿2种可中断负荷的协调[J].电力系统自动化,2007,31(11):17-21
    [161]John G Vlachogiannis. Probabilistic Constrained Load Flow Considering Integration of Wind Power Generation and Electric Vehicles[J]. IEEE Trans on Power Systems,2009,24(4):1808-1817
    [162]Marnay C, Bailey O C. The CERTS Microgrid and the Future of the Macrogird[A]. Proceedings of the 2004 ACEEE Summer Study on Energy Effciency in Buildings[C], August 2004, U.S.:2004
    [163]Kadurek P, Ioakimidis C, Ferrao P. Electric Vehicles and Their Impact to the Electric Grid in Isolated Systems[A]. Proceedings of International Conference on Power Engineering, Energy and Electrical Drives[C], March 18-20,2009, Lisbon, Portugal:49-54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700