聚苯胺水性防腐蚀涂料的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
暴露在酸性环境和海水环境中的金属非常容易腐蚀,防腐蚀问题亟待解决。近年来,涂层仍是最常用的防腐蚀方法之一,而环保型水性涂料将是未来的发展方向。论文研究了乳液聚合法制备掺杂态聚苯胺及其水性醇酸树脂涂层对低碳钢在模拟海水环境及酸性条件下的防护作用,重点研究了纳米SiO_2及玻璃鳞片的加入对聚苯胺水性醇酸树脂涂层防护性能的影响。通过对比研究不同涂层的极化曲线、交流阻抗、盐雾加速腐蚀、微观结构及元素价态,提出了聚苯胺水性醇酸树脂涂层对低碳钢的腐蚀作用机理。
     采用乳液法以苯胺单体为原料、(NH4)2SO4为氧化剂、十二烷基苯磺酸为掺杂剂合成了掺杂态聚苯胺,将其与水性醇酸树脂混合制备涂料,并将其涂装于低碳钢表面。通过电化学阻抗、电化学极化曲线分别在3.5%的NaCl和0.5mol·L-1H2SO4电解质溶液中研究其电化学性能及耐盐雾性能。结果表明聚苯胺加入量为5%时,涂料表现出最佳的耐腐蚀性能。相对于未加入聚苯胺的涂层,极化电阻Rp分别高出3个数量级,腐蚀电流低于分别低于3个数量级。
     在加入聚苯胺5%的基础上,分别加入一定量的纳米SiO_2和玻璃鳞片进行改性研究。结果表明涂层的耐蚀能力大幅增高,且当纳米SiO_2加入量为0.5%、玻璃鳞片加入量为10%时,涂层的综合性能最佳。在NaCl溶液浸泡初期,其极化电阻为8.67×108Ohm,腐蚀电流密度为1.45×10-11 A·cm-2,自腐蚀电位为-0.53V;浸泡800小时后,试样的极化电阻为1.82×106Ohm,腐蚀电流密度为1.62×10-9 A·cm-2,自腐蚀电位为-0.56V。在0.5 mol·L-1 H2SO4中浸泡初期,极化电阻为9.27×108Ohm,自腐蚀电位为-0.52V,腐蚀电流密度为3.08×10-11 A·cm-2。在浸泡1000h后,极化电阻近似为2.68×108 Ohm,自腐蚀电位为-0.46V,腐蚀电流密度为2.34×10-9 A·cm-2,耐盐雾时间为60天,性能与溶剂型涂层相当。
     对金属基材表面物质进行XPS分析发现在0.5mol·L-1 H2SO4溶液和3.5%NaCl溶液中浸泡过的试样表面有钝化层生成,主要成分为α-Fe2O3和γ-Fe2O3。通过对比测试前后的金属基材的SEM照片中可以发现,3.5%NaCl溶液中浸泡过的试样在钝化层表面出现大量的点蚀孔,而在0.5mol·L-1 H2SO4溶液中浸泡过的试样表面相对其他样品表面分布少量的针孔,电化学性能优良。
     通过试验总结出聚苯胺在中性和酸性溶液中制钝过程机理,并指出这一过程是一个缓慢的过程,电解液的浸入对钝化层的破坏和钝化层的生成是竞争的过程。
It is urgent to solve corrosion problems, as metals are easy to be corrupted in acid circumstance and sea water. In recent years, coating is the most important and economical method of all anticorrosive methods, especially the environmental friendly coating has become the research focus. The coatings including watery alkyd and doped polyaniline synthesized by emulsion copolymerization method to protect mild steel in the artificial sea water and acid circumstance was investigated in this paper. The effects of additives of Nano-SiO_2 and glass flake on the anti-corrosion property of the polyaniline-water watery alkyd coating have been studied.. Based on the experimental data of Polarization curves (Pol), Electrochemical Impendence Spectrum (EIS), Salt spray test, microstructure and element analysis, the anticorrosion mechanism of watery alkyd polyaniline coatings was summarized
     Doped polyaniline was synthesized from aniline by adding (NH4)2SO4 as oxidant and DBSA as doping agent via emulsion copolymerization method. The production was blended with water alkyd in order to prepare anticorrosion coatings which were spread on the mild steel surface. Electrochemical methods and salt spray were employed to study mild steel blocks with coatings in 3.5% NaCl aqueous solution and 0.5mol·L-1H2SO4 aqueous solution respectively. The result presents the coating obtaining 5% polyaniline has excellent anticorrosion properties. Compared with coatings without polyaniline, polar resistance (Rp) of coatings with 5% polyaniline could increase three orders of magnitude and corrosion current density is lower three orders of magnitude.
     The nano- SiO_2 and glass flakes were blended in the coatings besides 5% polyaniline and their anticorrosion capability was better than those without nano- SiO_2 and glass flakes. The anticorrosion properties of the coatings (2#) containing 0.5% nano-SiO_2, 10% glass flakes and 5% polyaniline was more excellent than the others. Rp, Ecorro and Icorro of 2# coatings were respectively 8.67×108Ohm and 1.82×106Ohm, -0.53V and -0.56V, 1.45×10-11 A·cm-2 and 1.62×10-9A·cm-1 in 3.5% NaCl aqueous solution initially and after 800h. In the 0.5mol·L-1H2SO4 aqueous solution initially and after 1000h, the coatings′Rp, Ecorro and Icorro are 9.27×108Ohm and 2.68×106Ohm, -0.52V and -0.46V, 3.08×10-11 A·cm-2 and 2.34×10-9A·cm-1 respectively. Salt spray test of the coating was about 60 days. The properities of watery coatings were near to solvent coatings.
     We found that the mild steel blocks had passivation layer on surface whether samples soaked in3.5% NaCl or 0.5mol·L-1 H2SO4 aqueous solution from XPS. The main phase is properlyα-Fe2O3,γ-Fe2O3 and Fe-PANI complexes. Compared SEM photos before testing with after testing, surface of passivation layer which was soaked in 3.5% NaCl appeared lots of pinholes, but the sample soaked in H2SO4 aqueous solution has a little.
     The anticorrosion mechanism of polyaniline for mild steel blocks passivated in neutral and acid solution was explored in this paper. The passivation is a slow process and the formation and dissolve of the passivation competitively happened during corrosion process.
引文
1. 付文静.国内外防腐蚀涂料的技术现状与发展[[J].全面腐蚀控制.1996,12 (1):24-27,36
    2. 柯伟.中国腐蚀调查报告[M].北京:化学工业出版社,2003:248
    3. 郭清泉等.重防腐涂料的发展展望[J]. 北工进展, 2003,22(9):947
    4. 郭小峰.防腐蚀涂料的前景[J]中国涂料,1991 (2),3-5
    5. Mengoli G, MusianiM M, Pelli B. Anodic synthesis of sulfur – bridged polyanilinecoatings onto Fe sheets [J ]. A Appl Polym Sci , 1983,28: 1125 -1136
    6. KesslerT, CastroLuna A M. Catalytic Polyaniline-support electrodes for application electrocatalysis [J]. Solid State Eleetroehem,2003,7: 593-598
    7. 张其锦,翟众.聚苯胺的电化学合成实验[J]. 大学化学.1998,13(4): 41-42
    8. 王治安. 还原态和掺杂态聚苯胺的制备:[硕士学位论文]. 长沙:中南大学材料科学与工程学院, 2007
    9. LimH, Kim B A, Choi A H. Characterization of Polyaniline thin films prepared by cluster beame deposition methods, Synthetic Metals, 2003, 135-136: 81~82
    10. 苏 光 耀 , 高 德 叔 , 林 成 章 . 聚 苯 胺 修 饰 不 锈 钢 电 极 的 腐 蚀 行 为 [J]. 表 面 技术,1997,26(4):19-21
    11. 王杨勇,强军锋,井新利. 聚苯胺防腐蚀涂料的研究进展[J]. 宇航材料工艺,2002,4:1-6
    12. 王科,张旺玺. 导电聚苯胺的研究进展[J]. 合成技术及应用,2004,19(1): 23-27
    13. 封伟, 韦玮,吴洪.聚合方法对聚苯胺导电性能的影响. 功能材料[J], 1999,30(3): 320-322
    14. MaeDiarnid A G, et al. Polyaniline: interconversion of metallic and Insulated forms [J]. Mol Crust Liq Cryst, 1985, 121:173-180
    15. GinderA M, Richter A F, et al. Insulator-to-metal transition in polyaniline [J]. Solid State Commun, 1987, 63:97-101
    16. Zuo F, AngeloPoulos M,et al. Conductivity of emeraldine Polymer [J]. Phys Rev, 1989, B39: 3570~3578
    17. Beck F, Haase V, Schroetz M. Electroactive conducting polymers for corrosion control [J]. Proc, 1996,354: 115
    18. Bernhard Wessling, Aoerg Posdorfer, Corrosion Prevention with an Organic Metal (Polyaniline): Corrosion Test Results[J]. Electrochimica Acta, 1999, 44: 2139
    19. MacAndrew T P, Miller S A, Gilicinski A G,Robeson L M, Electrochemical studies of corrosion inhibiting effect of polyaniline coatings[J]. Polym. Mater. Sci. Eng.,1995,72: 563
    20. Bouayed M, Rabaa H,Srhiri A,Saillard A Y,Ben Bachir A,LeBeuze, Polyaniline as Corrosion Inhibitor for Iron in Acid Solutions[J]. Corros.Sci., 1999,41:501
    21. Sathiyanarayanan S, Dhawan S K,Trivedi D C,Balakrishnan K, Investigation of corrosion protection of steel by polyaniline films[J]. Corros.Sci., 1992,33:1831
    22. Wesslingg B, Passivation of Metals by Coating with Polyaniline: Corrosion Potential Shift and Morphological Changes [J]. Adv.Mater,1994,6:226-228
    23. Naseer Ahmad,Alan G,MacDiarmid,Inhibition of Corrosion of Steel with the Exploitation of Conducting[J]. Polymers,Synth. Met.,1996,78:103
    24. Li P, Tan T C, Lee A Y. Corrosion Protection of Mild Steel by Electroactive Polyaniline[J]. Coatings. Synth. Met., 1997,(88):237-242
    25. M.Fahlman, S.Aasty,and A.A.Epstein,Corrosion procteion of iron/steel by emeraldine base polyaniline:An X-ray photolectron spectroscopy study[J]. Synth.Met.1997,85:1323
    26. Talo A,Passiniemi P,Forsen O,et al. Polyaniline/ epoxy coatings with good anti - corrosion properties [J]. Synth Met, 1997,85: 1333-1334.
    27. Schauer T,Aoos A,Dulog L,Eisenbach CD,Protection of Iron Against[J]. Corrosion with Polyaniline Primers, Prog. Org.Coat,1998,33:20
    28. DeBerry D W ,A. Modification of the electrochemical and corrosion behavior of stainless with an electroactive coating[J]. Electrochem.Soc,1985, 132:1022
    29. T hompsonK .G,et al ,L osA lamosN ationalL aboratoryR eportL A-UR-92-360, Lo sA la mos, N M,U SA,199
    30. Nishihara H, Aramaki K, Inhibition Effects of Cyclopentadiene Derivatives on the Iron Corrosion in Sulfuric [J]. AcidBoshoku GiAutsu, 1987,36:361-367
    31. Li P, Tan T C, Lee A Y. Corrosion Protection of Mild Steel by Electroactive Polyaniline Coatings[J]. Synth. Met., 1997,(88):237-242
    32. 杨勇,郭兴伍,翟春泉等, 聚苯胺膜在AZ91镁合金表明的制备[J]. 表面技术,2003, 32(1):43-45
    33. Aui-Ming Yeh, Shir-Aoe Liou, Chiung-Yu Lai. Enhancement of Corrosion Protection Effect inPolyaniline via the Formation of Polyaniline-Clay Nanocomposite Materials [J]. Chem. Mater, 2001,13:1131-1136
    34. Peltola A, Cao Y, Smith P. Epoxy adhensives made with inherently conducting polymers [J] . Adhesives Age 1995 , May : 18
    35. Yang C Y, Cao Y, Smith P , et al. Morphology of conductive, solution – processed blends of polyaniline and poly(methyl methacrylate)[J] . Synth Met , 1993 , 53 : 293-301
    36. 张金勇,李季,王献红等.聚苯胺在防腐蚀领域的应用[J].功能高分子学报,1999,12(3):350-355.
    37. 刘喜军,苏光耀, 高德淑等. 聚苯胺防腐蚀材料的制备与性能研究[J] .表面技术,2005,34(1):50-52.
    38. 黄美荣,杨海军,李新贵. 聚苯胺复合防腐涂料的制备及应用[J].涂料工业, 2004, 34 (1) : 48-54
    39. Yan F, Xue G. Synthesis and Characterization of Electrically Conducting Polyaniline in Water- oil Microemulsion [J]. Mater Chem,1999, (9) : 3035 – 3039
    40. 黄美荣, 李新贵,杨海军. 水性聚苯胺防腐蚀涂料研究[J]. 涂料工业,2005,35(8),1-4
    41. 马利, 杨桔. 现场化学氧化法合成聚苯胺/环氧树脂防腐涂料[J]. 重庆大学学报(自然科学版),2006,29(7):105-107
    42. 胡涛,陈美玲,高宏. 水性醇酸树脂涂料的研究及应用[J]. 中国涂料,2004(5):11-12
    43. Armes SP, Aldissi M. Potassium iodate oxidation route ti polaniline anoptimization study [J]. Polymer, 1991(32): 2.43-2048
    44. Y.Cao, A.Andreatta, A.A.Heeger, et al. Influcnce of chemical polymerization conditions on the properties of polyaniline [J]. Polymer,1989(30): 2305-2311.邹建平,王璐,曾润生. 有机化合物结构分析. 北京:科学出版社,2005. 34
    45. 左演生,陈文哲,梁伟. 材料现代分析方法. 北京:北京工业大学出版社,2000. 68
    46. 李洪义. 纳米氧化钛薄膜制备及其对金属光生阴极保护性能的研究:[博士学位论文]. 北京:清华大学材料科学与工程系
    47. 曹楚南,张鉴清. 电化学阻抗谱导论. 北京:科学出版社,2002. 151-185
    48. P. Li, T. C. Tan, A. Y. Lee. Corrosion protection of mild steel by electroactive polyaniline coatings [J]. Synthdtic Metals, 1997 (88): 237-242
    49. 贾铮,戴长松,陈玲. 电化学测量方法. 北京:化学工业出版社,2006. 52-60
    50. 徐峰,邹侯招,储健. 环保型无机涂料. 北京:化学工业出版社,2004. 337
    51. 毛倩瑾.
    52. Meroufel, C. Deslouis, S. Touzain. Electrochemical and anticorrosion performances of zinc-rich and polyaniline power coatings [A]. Electrochimica Acta, 2007(53): 2331-2338
    53. 孙建平,李宝铭,吴洪才.十二烷基苯磺酸掺杂聚苯胺的性能研究.精细化工.
    54. 2002,19(10),578-580
    55. 任乃媛. 导电聚苯胺的腐蚀防护性能研究:硕士学位论文. 山西:太原理工大学材料科学与工程学院,2006
    56. G.Hernandez-Padron, F.RoAas, V.Castano. Development and teating of anticorrosive SiO2/ phenolic-formaldehydic resin coatings[J], Surface & Coatings Technology, 2006(01):1207-1214
    57. Aui-Ming Yeh, Chang-Aian Weng, Wen-Aia Liao et al. Anticorrosively enhanced PMMA–SiO2 hybrid coatings prepared from the sol–gel approach with MSMA as the coupling agentP[J]. Surface & Coatings Technology, 2006(201): 1788-1795
    58. G. Tansug, T. tuken, A.T.Ozyilmaz, M. Erbil, B. Yzaici. Mild steel protection with epoxy top coated polypyrrole and polyaniline in 3.5% NaCl [J]. Current Applied Physics, 2007(7): 440-445
    59. C.Aeyaprabha, S. Sathiyanarayanan, G. Venkatachari. Effect of cerium ions on corrosion inhibition of PANI for iron in 0.5 M H2SO4 [J]. Applied Surface Science, 2006(253): 432-438
    60. Tunc Tuken, Birgul Yazici, Mehmet Erbil. Zinc modified polyaniline coating for mild steel protection [J]. Materials Chemistry and Physics, 2006(99): 459-464
    61. M.V. Popa, P. Drob, E. Vasilescu. The pigment influence on the anticorrosive performance of some alkyd films [J]. Materials Chemistry and Physics, 2006(100): 296-303
    62. S. Sathiyanarayanan,S, Muthkrishnan,G, Venkatachari. Corrosionprotection of steel by polyaniline blended coating [J]. Electrochimoca Acta, 2006, 51(28): 6313-6319
    63. 竹村.玻璃鳞片树脂衬里技术[D].上海:中日耐蚀高分子材料国际交流会, 1994.
    64. 李登军,刘在阳. 玻璃鳞片涂料重防腐蚀机理及其应用. 纤维复合材料.2000,2(1):45-47
    65. 中国腐蚀与防护学会,腐蚀与防护全书[M].合成树脂及玻璃钢,化学工业出版社, 1989
    66. 中国腐蚀与防护学会,腐蚀与防护全书[M].附腐蚀涂料和涂装,化学工业出版社, 1994
    67. A.A. Hermas, M. Nakayama, K. Ogura. Enrichment of chromium-content in passive layers on stainless steel coated with polyaniline [J]. Electrochimica Acta, 2005(50): 2001-2007
    68. Xiaofeng Lu, YouhaiYu, LiangChen, et al. Aniline dimer–COOH assisted preparation of well-dispersed polyaniline–Fe3O4 anoparticles [J]. Nanotechnology, 2005(6): 1660-1665
    69. Lirong Kong, Xiaofeng Lu, WanAin Zhang. Facile synthesis of multifunctional multiwalled carbon nanotubes/Fe3O4 anoparticles/polyaniline composite nanotubes [J]. Aournal of Solid State Chemistry, 2008(181): 628-636
    70. Feng-Aiin Liu, Li-Ming Huangb, Ten-Chin Wen, et al. Large-area network of polyaniline nanowires supported platinum nanocatalysts for methanol oxidation [J]. Synthetic Metals, 2007(57): 651-658
    71. Chien-Hsin Yanga, Yi-Kai Chiha, Hsyi-En Cheng, et al. Nanofibers of self-doped polyaniline [J], Polymer,2005(46): 10688-10698
    72. Feng-Aiin Liu, Li-Ming Huang, Ten-Chin Wen, et al. Composite Electrodes Consisting of Platinum Particles and Polyaniline Nanowires as Electrocatalysts for Methanol Oxidation [J]. Polymer Composites, 2007: 650-656

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700