N80油管钢在含CO_2/H_2S高温高压两相介质中的电化学腐蚀行为及缓蚀机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成功地制备了用于高温高压电化学腐蚀研究用Ag/AgCl参比电极,在模拟气田腐蚀工况环境下,采用交流阻抗和动电位扫描等电化学技术,辅以SEM、XRD等表面分析方法,研究了N80油管钢在高温高压下含CO_2和(或)H_2S的两相介质中的腐蚀行为和吸附型缓蚀剂的缓蚀机理,特别探讨了腐蚀产物膜对腐蚀过程的影响,分析了腐蚀产物膜的力学性能与油管钢腐蚀速率之间的关系。
     研究结果表明:在CO_2环境中,N80油管钢的电化学腐蚀阳极过程受电化学活化控制,OH~-在表面的吸附放电产生吸附中间体FeOH_(ads)和FeOH~+_(ads),最终生成Fe~(2+);阴极过程由H_2CO_3和HCO_3~-还原为主。随着腐蚀产物膜的形成,交流阻抗谱会发生变化,表现为高频扩展和低频收缩,反应阻力增大。腐蚀产物膜完整覆盖后表现为受电化学活化控制的均匀腐蚀特征。
     在H_2S/CO_2环境中,HS~-吸附能力强,阳极吸附中间体吸附量明显增加,裸金属时阳极反应受到较大程度的促进。阴极以H_2S的还原为主。硫化物腐蚀产物膜容易破裂,由此导致局部腐蚀产生。由于硫化物腐蚀产物膜对腐蚀介质起到很强的扩散阻滞作用,出现Warburg阻抗,使腐蚀过程受扩散控制。
     CO_2分压对腐蚀的影响主要表现在裸金属表面,增大分压使N80钢表面活性增大,腐蚀加速。形成完整的膜后,分压影响很小。加入H_2S后,H_2S含量较小时以CO_2腐蚀为主,腐蚀得到较大程度的促进;H_2S含量增大,转化为以H_2S腐蚀为主,出现局部腐蚀;继续增大H_2S含量,局部腐蚀反而受到抑制。
     噻唑衍生物的加入改变了腐蚀产物膜的内层结构,抑制局部腐蚀的发生。噻唑的缓蚀机理是几何覆盖效应,因吸附覆盖度不大导致缓蚀效率不高。同时噻唑难以在腐蚀产物膜上吸附,腐蚀产物膜形成后对腐蚀速率的影响明显减弱。咪唑啉衍生物属于阳极型缓蚀剂,缓蚀机理为“负催化效应”,不仅能在金属表面上吸附,而且能与腐蚀产物膜协调作用,起到较好的缓蚀效果。
     SEM分析显示,CO_2腐蚀产物膜致密而均匀,表现为均匀腐蚀,H_2S腐蚀产物膜晶粒粗大,并有破裂,引起局部腐蚀坑出现。这与本文提出的电化学模型相吻合。
     确定了腐蚀产物膜的力学性能与N80钢的腐蚀速率之间的关系。N80钢的腐蚀速率随腐蚀产物膜的硬度升高而降低,随产物膜结合强度下降而增大。
An Ag/AgCl (saturated KC1) electrode, which was used as an internal reference electrode in the electrochemical research under the conditions of high temperature and high pressure, was developed by means of electrolyzing. In the simulating gas field downhole CO2 and H2S/CO2 corrosion environment under high temperature and high pressure conditions, the mechanisms of corrosion and inhibition on the N80 steel were studied and the effect on the corrosion behavior of corrosion scale was investigated by using AC impedance spectroscopy, potentiodynamic polarization technique, SEM and XRD et. The relation of the mechanical properties of the corrosion scale and corrosion rate of N80 steel was analyzed also. The results show that:
    In the CO2 corrosion environment, the anodic reactions are controlled by chemical activation step. OH" adsorbs on the surface of N80 steel, and then become into FeOHads and FeOH+ads, Fe2+ is found at last. The reduction of H2CO3 and HCO3-is the most important cathodic reaction. The EIS (Electrochemical Impedance Spectroscopy) curves change with the scale covering the electrode surface. The capacitive arc in high frequency section extends but that contract in low frequency section. The general corrosion occurs.
    In the H2S/CO2 corrosion environment, the amount of adsorptions increases because of the high adsorption capacity of HS-. The reduction of H2S is the main cathodic reaction. The anodic and cathodic reactions are accelerated to different degree. The mass transport process through sulfide film is checked. It was found that the corrosion behavior of the steel is controlled by mass diffusion. The splits of sulfide film induce the pitting.
    The partial pressure of CO2 mainly affects the corrosion behavior of the bare steel. The electrochemical activity of N80 steel increases with the partial pressure of CO2 increasing, so the corrosion rate is accelerated. The partial pressure of CO2 has little effect on the N80 steel as covered by integrated corrosion scale. CO2 corrosion is predominant when the environment contains little H2S, but the corrosion rate is accelerated. H2S corrosion becomes the main one with the partial pressure of H2S increasing. Pitting occurs. However, when the partial pressure of H2S increases to 2psi, the tendency of pitting reduces.
    The derivation of thiazo changes the structure of inner corrosion scale and restrains pitting. The inhibition mechanism is "geometric blocking effect". The inhibition efficiency is very low due to the low adsorption capacity of the inhibitor. It
    
    
    cannot adsorb on the corrosion scale, so the inhibition efficiency obviously reduces after the corrosion scale covering the surface of N80 steel. Imidazoline, as an anodic inhibitor, decreases the corrosion rate by negative catalytic effect. It can not only adsorb on the surface of N80 steel, but also cooperate with corrosion scale, so it has good inhibitive effect.
    It can be found from SEM analysis that: CO2 corrosion scale is compact and uniformity, so N80 steel exhibits general corrosion; H2S corrosion scale is made up of big crystals and has pitting caused by scale split. These results coincide with the electrochemical model put forward in the paper.
    The investigation results on the relations of the mechanical properties of the corrosion scale and corrosion rate show that: The corrosion rate increases with the bounding strengthen of the scale to N80 steel and hardness of scale decreasing.
引文
[1] 李鹤林,石油管工程[M],北京:石油工业出版社,1999
    [2] 李鹤林,“石油管工程”的研究领域、初步成果和展望,中国石油天然气集团公司院士文集(李鹤林集),北京:石油工业出版社,1999
    [3] 李鹤林,路民旭,油气田腐蚀类型、特点和几个重要研究领域[],腐蚀科学与防护技术新进展,北京:化学工业出版社,1999
    [4] [苏]C.萨阿基扬,A.叶夫烈莫夫著,周慧临译,油气田腐蚀设备。北京:石油工业出版社,1988
    [5] Brondel D, Edwards R, Hayman A. et al. Corrosion in the oil industry, Oilfield Review, 1994, 4:4
    [6] 张学元,邸超,雷良才,二氧化碳腐蚀与控制,北京:化学工业出版社,2000
    [7] Crolet J L. Predicting CO_2 corrosion in oil and gas industry, The Institute of Materials, London, UK,1994:1
    [8] Rogers W F. Present day aspects of high-pressure well equipment corrosion, World Oil, 1948,128(6) 154
    [9] 李静,油管钢CO_2腐蚀行为与机理研究,北京科技大学博士论文,2000
    [10] Townshend P E, Colegate G T, Vann Waart T L. Carbon dioxide corrosion at low partial pressure in major submarine pipelines, SPE European Spring Meeting, Paper NO.741, Amssterdam, SPE, Houston, TX, 1972
    [11] Schmitt G, Fundamental aspects of CO_2 corrosion, In:Hausler R H, Giddard H P(Eds), Advances in CO_2 Corrosion. Vol. 1, NACE, Houston, Texas, 1984:10
    [12] Schmitt G, CO_2 Corrosion of steels-An attempt to range parameter and their effects. In:Hausler R H, Giddard H P(Eds), Advances in CO_2 Corrosion. Vol. 1, NACE, Houston, Texas, 1984:1
    
    
    [13] Burke P A, Synopsis: Recent progress in the understanding of CO2 corrosion. In:Hausler R H, Giddard H P(Eds), Advances in CO2 Corrosion. Vol.1, NACE, Houston, Texas, 1984:3
    [14] Ikeda A, Ueda M, Mukai S. CO2 behavior of carbon and Cr steels. In:Hausler R H, G iddard H P(Eds), Advances in CO2 Corrosion. Vol.1, NACE, Houston, Texas, 1984:39
    [15] Dunlop A K, Hassell H L, Rhode P R, Fundamental consideration in sweet gas well corrosion. In:Hausler R H, Giddard H P(Eds), Advances in CO2 Corrosion. Vol.1, NACE, Houston, Texas, 1984:52
    [16] Waard C D, Lotz U, Milliams D E, Corrosion, 1991,47(12) :976
    [17] Schmitt G A, Mueller M, Critical wall shear stresses in CO2 corrosion of carbon steel, Corrosion,/1999, paper NO.44, Houston: NACE,1999
    [18] Schmitt G A, Mueller M, Understanding localized CO2 corrosion of carbon steel from physical properities of iron carbonate scales. Corrosion,/1999, paper NO.38, Houston: NACE, 1999
    [19] Hunnik E W J V, Hendriksen E L J, Pots B F A, The formation of protective FeCO3 corrosion product layers in CO2 corrosion, Corrosion,/1996, paper NO.6, Houston: NACE, 1996
    [20] Nesic S, Lee J, Ruzic V, A mechanistic model of iron carbonate film growth and the effect on CO2 corrosion of mild steel, Corrosion,/2002, paper NO.237, Houston: NACE,2002
    [21] Palacios C A, Shadley J R, Characteristics of corrosion scales on Steels in CO2-saterated NaCl brine. Corrosion, 1991,47(2) : 122
    [22] Al-Hashem A H, Carew J A, The effect of water-Cut on the corrosion behavior of L80 carbon steel under downhole conditions, Corrosion,/2000, paper NO.61, Houston: NACE,2000
    [23] Schmitt G A, Polytechnic I, Gudde T, Fracture mechanical properities of CO2 corrosion product scales and their relation to localized corrosion, Corrosion/1996, paper NO.9, Houston: NACE, 1996
    [24] Davies D H, Burstein G T, The effects of bicarbonate on the corrosion and passivation of iron, Corrosion, 1980,36(8) :416
    [25] Crolet J L, Thevenot N, Nesic S, Role of conductive corrosion products on the protectiveness of corrosion layers, Corrosion,/! 996, paper NO.4, Houston: NACE, 1996
    [26] Gopal M, Rajappa S, Zhang R, Modeling the diffusion effects through the iron carbonnate layer in the carbon dioxide corrosion of Carbon steel, Corrosion,/1998, paper NO.26, Houston: NACE, 1998
    [27] Gopal M, Jiang L, Calculation of mass transfer in multiphase flows, Corrosion,/1998, paper NO.50, Houston: NACE, 1998
    [28] Wang H W, Jepson W P, Gopal M, et al, Effect of bubble on mass transfer in multiphase flow, Corrosion,/2000, paper NO.50, Houston: NACE,2000
    
    
    [29] Postlethwaite John, Wang David, Modeling aqueous CO2 corrosion of iron in turbulent pipe flow, Transfer in Multiphase Flows, Corrosion,/2001, paper NO.41, Houston: NACE,2001
    [30] Dayalan E, Moraes F D, Shadley J R, Rybicki E F, et al, CO2 corrosion prediction in pipe flow under FeCO3 scale-Forming conditions, Transfer in Multiphase Flows, Corrosion,/1998, paper NO.51, Houston: NACE,1998
    [31 ] Onsrum G, Sontvedt T, Recording of local flow disturbances behind obstacles where mesa attack have occurred, Transfer in Multiphase Flows, Corrosion,/1998, paper NO.40, Houston: NACE, 1998
    [32] Nyborg R, Initiation and growth of mesa corrosion attack during CO2 corrosion of carbon steel, Transfer in Multiphase Flows, Corrosion,/1998, paper NO.48, Houston: NACE,1998
    [33] Gopal M, Rajappa S, Effect of multiphase slug flow on thestability of corrosion product layer, Transfer in Multiphase Flows, Corrosion,/!999, paper NO.46, Houston: NACE,1999
    [34] Seal S, Sapre K, Desai V, et al, Surface chemical and morphological changes in corrosion product layers and inhibitors in CO2 corrosion in multiphase flowlines, Transfer in Multiphase Flows, Corrosion,/2000, paper NO.46, Houston: NACE,2000
    [35] Schmitt G, Bosch C, Mueller M, A probabilistic model for flow induced localized corrosion, Transfer in Multiphase Flows, Corrosion,/2000, paper NO.49, Houston: NACE,2000
    [36] AI-Hashem A H, Carew J A, Al-Sayegh A, The effect of water-Cut on the corrosion behavior of L80 carbon steel under dowhole conditions, Transfer in Multiphase Flows, Corrosion,/2000, paper NO.61, Houston: NACE.2000
    [37] Mora-Mendoza J L, Turgoose S, Influence of turbulent flow on the localized corrosion processes of mild steel with inhibited aqueous CO2 systems, Transfer in Multiphase Flows, Corrosion/2001, paper NO.63, Houston: NACE,2001
    [38] Nyborg R, Overview of CO2 corrosion models for wells and pipelines, Transfer in Multiphase Flows, Corrosion/2001, paper NO.62, Houston: NACE.2001
    [39] Hong T, Jepson W P, Gopal M, Wang H B, Shi H. EIS study of corrosion product film in pipelines. Corrosion/2000, paper no.44, Houston: NACE, 2000
    [40] Shadley J R, et al. Prediction of erosion-corrosion penetration rate in a carbon dioxide environment with sand. Corrosion, 1978; 54(12) : 972-978
    [41] Shadley J R, et al. Erosion-Corrosion of a carbon steel elbow in a carbon dioxide environment. Corrosion, 1998; 52(9) : 714-723
    [42] Garber J D. Modeling corrosion rates in non-Annular gas condensate wells containing CO2. Corrosion/1998, paper no.53, Houston: NACE, 1998
    [43] Nesic S, Lunde L. Carbon dioxide corrosion of carbon steel in two-phase flow. Corrosion,
    
    1994; 50(9):717
    [44] Heuer J K, Stubbins J F. Microstrucure analysis of coupons exposed to carbon dioxide corrosion in multiphase flow. Corrosion, 1998; 54(7): 566
    [45] Atanert S, King J E, Corrosion mechanisms of duplex stainless steels in the petrochemical industry, International Pipes and Pipelines, 1995,40(2)
    [46] 任骏,长庆气田腐蚀与防护,天然气工业,1998,18 (5)
    [47] Morsi K M, Studies reveal best installation, coatings for desert gathering lines, Oil and Gas Journal, 1998,96(5)
    [48] 付文静,国内外防腐蚀涂料的技术现状与发展,全面腐蚀控制,12(1),1998
    [49] Tsai S Y, Shih H C, Use of thermal-spray coating for preventing wet H2S cracking, Corrosion Prevention & Control, 1997,44(2)
    [50] Vera J R, Research and development in material technology, Revista Tecnica Intevep, 1990,10(1)
    [51] Poiyakov V N, Preventing of steels fracture in sulfides environments by means of chromium diffusion coatings, Fizika I Khimiya Obrabotki Materialov,1994,4
    [52] 孙克宁,姚枚,无电解Ni-P及其应用研究,电子工艺技术,1998,19(6)
    [53] Mainier F B, Araujo M M, On the effect of the electroless Ni-P coating defects on the performance of this type coating in the oilfield environments, SPE Advance Technology Series, 1994,2(1)
    [54] Pena-Munoz E, Pagetti J, Electrolytic and electroless coatings of Ni-PTFE composites study of some characteristics, Surface & Coatings technology, 1998,107(2-3)
    [55] Kayser K, Hydrogen induced stress corrosion cracking, Wire, 1990,40(6)
    [56] 张颖,碳钢H2S盐水体系中的腐蚀与防护,材料保护,1999,52(3)
    [57] 翁永基,卢绮敏,石油工业防护技术的紧张及某些前沿研究课题,中国腐蚀防护协会成立十五周年暨‘94学术年会集,1994
    [58] Chen Y, Gopal M, Jepson W P, EIS studies of a corrosion inhibitor behavior under multiphase flow conditions, Corrosion Science, 2000,42(8)
    [59] Waard C D, Milliams D E, Carbonic axid corrosion of steel, Corrosion, 1975,31(5):p131
    [60] Davies D H, Burstein G T, The effects of bicarbonate on the corrosion and passivation of iron, Corrosion, 1980,36(8):416
    [61] Ogundele G I, White W E, Some observation on corrosion of carbon steel in aqueous environment containing carbon dioxide, Corrosion, 1986,42(2),:71
    [62] Nesic S, Thevenot N, Crolet J L, Drazic D, Electrochemical properities of iron dissolution in the presence of CO_2-basics revisited, Corrosion/1996, paper NO.3, Houston: NACE, 1996
    [63] Linter B R, Burstein G T, Reaction of pipeline steels in carbon dioxide solutions, Corrosion Science, 1999,42(2):117
    
    
    [64] Videm K, Predicting CO2 corrosion in the oil and gas industry, working party report, The Institute of Materials, London UK, 1994:144
    [65] Schmitt G, Fundamental aspects of CO2 corrosion of steel, Corrosion/1983, paper no.44, Houston: NACE, 1983
    [66] Xia Z, Chou K C, Smialowska Z S, Pitting corrosion of carbon steel in CO2-containing NaCl brine, Corrosion, 1989,445(8) :636
    [67] Nesic S, Postlethwaite J, Olsen S, An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions, Corrosion, 1996,52(4) :280
    [68] 张学元,余刚,王凤平等,Cl-API P105钢在含CO2溶液中的电化学腐蚀行为的影响,高等学校化学学报 , 1999, 20 (7) : 1115
    [69] Linter B R, Burstein G T, Reaction of pipeline steels in carbon dioxide solutions, Corrosion Science, 1999,42(2) :117
    [70] Iofa Z A, Batrakov V V,Cho-Ngok-Ba, Influence of anion adsorption on the action of inhibitors on the acid corrosion of iron and cobalt, Electrochim. Acta, 1964,9:1645
    [71] Shoesmith, D W, Taylor P, Bailey M G, et al, electrochemical behavior of iron in alkaline sulphide solutionsJ. Electrochim.Acta,1978,23:903
    [72] Bolmer P W, Polarization of iron in H2S-NaHS buffers, Corrosion, 1965,21(3) :69
    [73] Ramanchandran S, Campbell S, Ward M B, The interactions and properties of corrosion inhibitors with byproduct layers, Cordon/2000, paper No.25, Houston:NACE,2000
    [74] Al-Hassan S, Mishra B, Olson D L, et al., Effect of microstructure on corrosion of steels in aqueous solution containing carbon dioxide, Corrosion,1988,54(6) :480
    [75] Garbeer J D, Sanglta K, Factors affecting iron carbonate scale in gas condensate wells containing CO2, Corrosion/1998, paper No.19, Houston:NACE,1998
    [76] Hausler R H, Laboratory investigation of the CO2 corrosion mechanism as applied to hot deep gas wells, In: Hausler R H,Giddard H P(Eds), Advances in CO2 Corrosion, Vol.1, NACE,Houston, Texas, 1984:72
    [77] 李国敏,刘烈炜,碳钢在含硫化氢及高压二氧化碳饱和的NaCl溶液中的腐蚀行为,中国腐蚀与防护学报 , 2000,20 (4) :205
    [78] Dugstad A, Lunde L, Videm K, Parametric study of CO2 corrosion of carbon steel, Corrosion/94, paper No. 14, Houston:NACE,1994
    [79] Waard C D, Milliams D E, Carbonic acid corrosion of steel, Corrosion, 1975,.31 (5) : 177

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700