CMOS MAPS带电粒子探测器关键参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为高能物理实验建造的新一代大型强子对撞机需要性能优异的粒子探测器与之配合使用,新型粒子径迹探测器是当前研究的热点和重点器件。近年来,法国IPHC研究所相继研制了一系列采用标准CMOS工艺制造的单片式有源像素传感器用于带电粒子径迹探测,命名为MIMOSA (Minimum Ionizing particle MOS Active pixel sensor)探测器。该类型探测器不仅继承了混合式像素传感器空间分辨率高、读出速度快的特点,更具有制造成本低、器件厚度小的优势。2007年,IPHC开始与本项目组继续开展CMOS单片式有源像素带电粒子径迹传感器的研究工作。
     带电粒子探测器是通过收集带电粒子与入射路径周围的硅原子发生电离反应产生的非平衡载流子来检测带电粒子的。衡量其性能的关键参数包括分辨率、信噪比、读出速度以及抗辐射能力等。为了进一步提高MIMOSA探测器的信噪比和抗辐射能力,需要对探测器敏感空间——外延层的关键工艺参数进行优化,以提高电荷收集效率和收集时间。本文深入探讨了外延层掺杂类型、掺杂浓度、外延厚度、掺杂梯度等参数对电荷收集机制和性能的影响并给出了改进方案。
     本文的工作主要包括:(1)以NIIMOSA-26探测器为原型建立了内嵌物理模型的单像素和3×3矩阵模型;(2)设计了模拟X光辐射的多粒子仿真方法,用于评估探测器电荷收集性能;(3)分别采用了准稳态模式和瞬态模式对不同工艺参数的传感器模型进行了一系列仿真,获得了电子寿命、电势、电场、耗尽区等静态参数以及电荷收集数量收集效率、收集时间、相邻扩散等动态参数。然后,根据仿真结果对工艺参数影响探测性能的原因进行了理论分析和计算,探讨了多个参数相互作用机制并提出了一套改进方案。最后,将优化过的MIMOSA-26AHR探测器的π介子流、55Fe、106Ru辐射实验结果与标准探测器进行了比较分析,验证了理论计算和改进方案的可靠性。此外,还对非均匀掺杂外延探测器的工作原理、应用优势和制造工艺进行了探讨。
     本文的研究表明:采用高电阻率外延层的探测器比低电阻率外延探测器拥有更大的耗尽区、更具优势的电势和电场分布,因此也拥有更加优异的电荷收集能力;N型高阻外延层比P型高阻外延层更加容易完全耗尽并形成范围更大的收集电场。进一步的分析表明:14μm左右是外延层的理想厚度;P型外延层的电阻率越高,电荷收集性能越好;N型外延层能否全耗尽对探测器电荷收集具有重要影响;对于14μm厚的N型外延层,其最佳电阻率约在400~500Ω·cm范围。这些结论为带电粒子探测器关键参数的设计提供了一些新的理论和设计依据。
The new generation of Large Hadron Collider (LHC) has been constructed for high en-ergy physics experiments and the high performance particle detectors are required to work with the collider. The next generation of particle track detector is current research focus and important device. A series of Minimum Ionizing particle MOS Active pixel sensors (MIMOSA), which is a kind of Monolithic Acitve Pixel Sensor (MAPS) and compatible with CMOS technology, have been designed and tested successfully by IPHC. France in last ten years. Not only high spatial resolution and fast readout speed are inherited from hybrid pixel sensors, but also the monolithic sensors have advantages such as low manu-facturing cost and small material budget. From2007, they have cooperated with our team to research the CMOS monolithic active pixel sensor of charged particle tracking.
     The charged particles can be detected by the CMOS sensors through the collection of non-equilibrium carriers which are generated by the ionizing reaction between the charged particles and the silicon atoms around the impinging path. The key performance param-eters are resolution, signal to noise ratio, readout speed, radiation tolerance and so on. As the primary sensitive region of the MIMOSA sensors, the epitaxial layer is the major study object in this work. In order to improve the signal to noise ratio and radiation tol-erance of sensors, the charge collection efficiency and collection time of the pixels should be optimised. The process parameters of the epitaxial layer, such as dopant type, doping concentration, thickness of the layer and doping profile, are deeply studied to understand the charge collection mechanism and find an optimized solution.
     In this paper:(1) a single pixel and a3×3matrix structures are designed using a real MIMOSA-26chip as a reference and then embedded with the required physical models:(2) a novel multi-particle simulation method, based on a single-particle mode, is proposed to emulate the X-ray radiation test, which can be used to assess the perfor-mance of the detector charge collection, especially the efficiency:(3) a quasi-stationary mode and a transient mode are carried out to evaluate the static:factors, such as electron lifetime, electric-potential, electric field and depletion region:dynamic parameters, for instance collected elections, collection efficiency, collection time and neighboring diffu-sion, respectively. Them, theoretical analysis and computation is conducted to assess the effect of different epitaxial parameters quantificationally aud then an optimized solution is proposed. Finally, these results are compared and verified by radiation tests, includ-ing π meson beam.55Fe and106Ra In addition, non-unifornily doped epitaxial layer and its manufacturability is also discussed for charged particle detection application as a preliminary study.
     Simulations and experiments demonstrate that the detector using a high-resistivity epitaxial layer has a larger depletion region, a more attractive electrical potential and electric field distribution, therefore a more excellent charge collection performance than the low-resistivity epitaxial detector. Additionally, X-type high-resistivity epitaxial layer can be fully depleted more easily than the P-type one and a wider electric field is also expected. Further theoretical analysis and simulation results indicate that the14μm is a.n ideal epitaxial layer thickness for both X-type and P-type detectors. In P-type one. the higher the resistivity is. the better the charge collection performance will be. However, the best resistivity for the14μm, X-type epitaxial layer is about400~500Ω·cm. which is due to whether it is fully depleted. These conclusions provide a novel theoretical and construction basis for the design and manufacture of high-performance charged particle detectors.
引文
[1]《高能物理》编辑部.基本粒子物理发展史年表[M].北京,中国:科学出版社,1985.
    [2]谢家麟.粒子加速器与科技创新[M].北京,中国:清华大学出版社,2000.
    [3]OFFICE C P. LHC sets world record beam intensity [R]. Geneva, Switzerland: CERN, 2011.
    [4]OFFICE C P. LHC achieves 2011 data milestone[R]. Geneva, Switzerland: CERN, 2011.
    [5]谢一冈等.粒子探测器与数据获取[M].北京,中国:科学出版社,2003.
    [6]Stopping Powers and Ranges for Protons and Alpha Particles[R]. USA: ICRU, 1993.
    [7]ROSSI B. High energy particles [M]. Englewood Cliffs, New Jersey: prentice-hall inc.. 1952.
    [8]MCKAY K G. Electron-Hole Production in Germanium by Alpha-Particles [J]. Phys. Rev., 1951, 84:829-832.
    [9]KEMMER J. Fabrication of low noise silicon radiation detectors by the planar process [J]. Nucl. lustrum. and Methods, 1980, 169(3):499 - 502.
    [10]ROBINSON D, ALLPORT P, AXDRICEK L, et al. Silicon microstrip detectors for the ATLAS SCT [J]. Nucl. lustrum. Methods Phys. Res. A, 2002, 485(l-2):84 - 88.
    [11]RASHEVSKY A, BONVICINI V, BURGER P, et al. Characteristics of the ALICE Silicon Drift Detector [J]. Nucl. lustrum. Methods Phys. Res. A, 2001, 461(1-3):133-138.
    [12]CANALI C, MAJNI G, MINDER R. et al. Electron and hole drift velocitv mea-surements in silicon and their empirical relation to electric held and temperature [J]. IEEE Trans. Elec. Dev., 1975, 22(11):1045-1047.
    [13]D' AMBROSIO C, LEUTZ H. Hybrid photon detectors [J]. Nucl. lustrum. Methods Phys. Res. A. 2003. 501(2-3):463 - 498.
    [14]BAILEY R, DAMERELL C, ENGLISH R. et al. First measurement of efficiency and precision of CCD detectors for high energy physics [J]. Nucl. lustrum. Methods Phys Res., 1983, 213(2-3):201 -- 215.
    [15]DAMERELL C J S, ENGLISH R L, GILLMAN A R, et al. Use of Charge-Coupled Devices as High Precision Detectors [J].IEEE Trans. on Nucl. Sci., 1986, 33(1):51-53.
    [16]DAMERELL C, FARLEY F, GILLMAN A, et al. Charge-coupled devices for particle detection with high spatial resolution [J]. Nuel. lustrum. Methods Phys. Res.,1981, 185(1-3):33- 42.
    [17]ABE K. ARODZERO A, BALTAY C, et al. Design and performance of the SLD vertex detector: a 307M pixel tracking system [J]. Nuel. lustrum. Methods Phys. Res. A, 1997, 400(2-3):287 - 343.
    [18]DAMERELL C J S. AGXEW G D. CLAUS R, et al. Design and performance of the SLD vertex detector, a 120M pixel tracking system [J]. AIP Conference Proceedings 1992, 272(2):1862-1866.
    [19]STEFANOV K. CCD-based sensor development for the vertex detector at the ILC [C].IEEE Xucl. Sci. Symp. Conf. Rec. Hawaii. USA: IEEE, 2007, 3:1776 -1779.
    [20]DYCK R, WECKLER G. Integrated arrays of silicon photodetectors for image sensing [J]. IEEE Trans. Elec. Dcv., 1968, 15(4):196 - 201.
    [21]MATSUMOTO K, TAKAYAXAGI I, XAKAMURA T, et al. The operation mecha-nism of a charge modulation device (CMD) image sensor [J]. IEEE Trans. Elec. Dev. 1991, 38(5):989 -998.
    [22]PASSERT D. SERVOLI L. BIAGETTI D. et al. Characterization of CMOS Active Pixel Sensors for particle detection: Beam test of the four-sensors RAPS03 stacked system [J]. Xucl. lustrum. Methods Phys. Res. A. 2010. 617(1-3):573 - 575.
    [23]ABREU M, ATAYAX M, BAGLIX C, et al. A test pixel vertex spectrometer to complement the XA50 dimuon spectrometer [J]. Nucl. Instrum. Methods Phys. Res A, 1999, 435(1-2):161 -- 168.
    [24]BARI D D. AXTIXORI F, BARBERIS D, et al. Performance of 0.5×106 sensitive elements pixel telescope in the WA97 heavy ion experiment at CERX [J]. Nucl. lustrum. Methods Phys. Res. A, 1997, 395(3):391--397.
    [25]Kucewicz W, Deptuch G, Zalewska A. et al. Capacitively Coupled Active Pixel Sensors with Analog Readout for Future e+e- Colliders [J]. Acta Physica Polonica B, 1999. 30:2075.
    [26]BATTAGLIA M. ORAVA R. TAMMI K, et al. High-resolution hybrid pixel sensors for the e+e- TESLA linear collider vertex tracker [J].Nucl. lustrum. Methods Phys. Res. A. 2000. 447(l-2):202 - 209.
    [27]BATTAGLIA M. CACCIA M, BOR.GHI S. et al. A Pixel Vertex Tracker for the TESLA Detector[R]. Geneva, Switzerland: CERX, 2001.
    [28]SXOEYS W. PLUMMER J, PARKER S, et al. A new integrated pixel detector for high energy physics [J]. IEEE Trans. Nucl. Sci., 1992, 39(5):1263 -1269.
    [29]MARCZEWSKI J, CACCIA M, DOMANSKI K, et al. Monolithic silicon pixel detec-tors in SOI technology [J]. Nucl. lustrum. Methods Phys. Res. A, 2005. 549(1-3):112- 116.
    [30]RICHTER R, ANDRICEK L, FISCHER P, et al. Design and technology of DEPFET pixel sensors for linear collider applications [J]. Nucl. lustrum. Methods Phys. Res. A, 2003, 511(l-2):250--256.
    [31]ULRICI J, ADLER S, BUCHHOLZ P, et al. Spectroscopic and imaging performance of DEPFET pixel sensors [J]. Nucl. lustrum. Methods Phys. Res. A, 2001, 465(1):247-252.
    [321 AVRILLON S, PERRET-GALLIX D, IKEDA H, et al. Simulation and first beam test of a single-sided two-dimensional detector using pMOS pixels [J]. Nucl. lustrum. Methods Phys. Res. A, 1997, 386(1): 172 - 176.
    [33]TURCHETTA R, et al. A monolithic active pixel sensor for charged particle tracking and imaging using standard VLSI CMOS technology [J]. Nucl. lustrum. Methods Phys. Res. A. 2001, 458(3):677-689.
    [34]HEINI S. et al. A CMOS Current-Mode Active Pixel Sensor for High Energy Physics and Biomedical Imaging Applications [J]. IEEE Trans. Nucl. Sci., 2009, 56(1):346— 353.
    [35]DEPTUCII G, DULINSKI W, CACCIA M. et al. High-resolution, back-side illumi-nated monolithic active pixel sensor for low-energy electron imaging [J]. IEEE Trans. Nucl. Sci., 2005, 52(5):1745~1754.
    [36]BAUDOT J, et al. First test results Of MIMOSA-26. a fast CMOS sensor with integrated zero suppression and digitized output[C].IEEE Nucl. Sci. Symp. Conf. Rec. Orlando. USA: IEEE. 2009:1169-1173.
    [37]WERMES N. Trends in pixel detectors: tracking and imaging [J]. IEEE Trans. Nucl. Sci., 2004, 51(3):1006—1015.
    [38]CLAUS G, COLLEDANI C, DULINSKI W, et al. Particle tracking using CMOS monolithic active pixel sensor[J]. Nucl. Instrum. Methods Phys. Res. A, 2001, 465(1):120- 124.
    [39]GORNUSHKIN Y. CLAUS G, DE BOER W, et al. Test results of monolithic active pixel sensors for charged particle tracking [J]. Nucl. lustrum. Methods Phys. Res. A, 2002, 478(1-2):311 - 315.
    [40]DULIXSKI W, et al. Optimization of tracking performance of CMOS monolithic active pixel sensors [J]. IEEE Trans. Nucl. Sci., 2007, 54(1):284-289.
    [41]DULIXSKI W, BERST D, et al. Radiation hardness improved CMOS sensors as particle detectors in High Energy Physics and Medical Applications [C].IEEE Nucl. Sci. Symp. Conf. R.ec. Oregon, USA: IEEE, 2003,1:310-314.
    [42]DEVEAUX M. CLAUS G, DEPTUCH G. et al. Neutron radiation hardness of mono-lithic active pixel sensors for charged particle tracking[J].Nucl.Iustrum. Methods Phys. Res. A,2003, 512(1-2):71 - 76.
    [13]SZELEZXIAK M A, DEPTUCH G W, GUILLOUX F, et al. Current Mode Mono-lithic Active Pixel Sensor With Correlated Double Sampling for Charged Particle Detection [J]. IEEE Sensors Journal, 2007, 7(1):137 -150.
    [44]DEPTUCH G. CLAUS G, COLLEDAXI C, et al. Development of monolithic active pixel sensors for charged particle tracking [J]. Xucl. Instrum. Methods Phys. Res. A. 2003, 511(1-2):240- 249.
    [45]DEVEAUX M, et al. Xeutron radiation hardness of monolithic active pixel sensors for charged particle tracking [J]. Xucl. Instrum. Methods Phys. Res. A. 2003. 512(1-2):71-76.
    [46]DEVEAUX M. AMAR-YOUCEF S, BESSOX A. et al. Radiation tolerance of CMOS monolithic active pixel sensors with self-biased pixels [J]. Nucl. Instrum. Methods Phys. Res. A, 2010, 624(2):128 - 131.
    [47]DEPTUCH G. et al. Simulation and measurements of charge collection in monolithic active pixel sensors [J]. Xucl lustrum. Methods Phys. Res. A, 2001. 465(l):92-100.
    [48]DEPTUCH G, et al. Design and Testing of Monolithic Active Pixel Sensors for Charged Particle Tracking [J]. IEEE Trans. Xucl. Sci.. 2002, 49(2):601-610.
    [49]SEXTAURUS User Guide [M]. Vol. A. CA, USA: Synopsys Inc., 2008.
    [50]CROOKS J, et al. A Novel CMOS Monolithic Active Pixel Sensor with Analog Signal Processing and 100% Fill Factor [C].IEEE Nucl. Sci. Symp. Conf. Rec. Hawaii, USA: IEEE. 2007, 2:931-935.
    [51]HUSSOX D. Device simulation of a CAIOS pixel detector for MIP tracking [J]. Nucl. lustrum. Methods Phys. Res. A. 2001. 461 (1-3):511-513.
    [52]KLAASSEX D, SLOTBOOM J. DE GRAAFF H. Unified apparent bandgap narrow-ing in n- and p-type silicon [J]. Solid-State Electronics, 1992. 35(2): 125—129.
    [53]LOMBARDI C, MAXZIXI S. SAPORITO A, et al. A physically based mobility model for numerical simulation of nonplanar devices [J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1988, 7(11):1164 -1171.
    [54]HULL R. Properties of Crystalline Silicon [M]. London. United Kingdom: INSPEC 1999.
    [55]KALLIOPUSKA J, ERAXEN S, OR.AVA R. Simulations of 3D silicon radiation detector structures in 2D and 3D [C].IEEE Nucl. Sci. Symp. Conf. R.ec. Wyndham El Conquistador Resort, Puerto Rico: IEEE, 2005, 2:803 -807.
    [56]DOROKHOV A, et al. Improved radiation tolerance of MAPS using a depleted epitaxial layer [C].11th European Symposium on Semiconductor Detectors. Wildbad Kreuth: Max-Planck-Institut Halbleiterlabor, 2009.
    [57]SASIKALA B, KHAX A, POORANCHANDRA S. Introduction to Electrical Elec-tronics and Communication Engineering[M]. New Delhi. INDIA: Firewall Media, 2005.
    [58]C. KITTEL H K. Thermal Physics [M]. New York, United States: W. H. Freeman, 1980.
    [59]邹继军,常本康.杨智.指数掺杂GaAs光电阴极量子效率的理论计算[J].物理学报.2007,56(5):2992-2996.
    [60]DIRR.ICKX B, BOGAERTS J. NIR-enhanced image sensor using multiple epitaxial layers [C].Sensors and Camera Systems for Scientific, Industrial, and Digital Photog-raphy Applications V. CA, USA: SPIE, 2004, 5301:205-212.
    [61]MIYASHITA T, SUZUKI K. Experimental evaluation of depth-dependent, lateral standard deviation for various ions in a-Si from one-dimensional tilted implantation profiles [J]. IEEE Trans. Elec. Dev., 1999, 46(9):1824-1828.
    [62]SAKAMOTO H. et al. A surface potential model for bulk MOSFET which accurately reflects channel doping profile expelling fitting parameters [C].International Confer-ence on Simulation of Semiconductor Processes and Devices. Hakone, Japan: IEEE, 2008:273 - 276.
    [63]SZE S M. XG K K. Physics of Semiconductor Devices, 3rd Edition [M]. New Jersey, USA: Wiley, 2006: 49-51.
    [64]KOZIEL M. Development of radiation hardened pixel sensors for charged particle detection[D].[S.l.]: University of Strasbourg, 2011.
    [65]ANTONIO, BULGIIERONI. Results from the EUDET telescope with high resolution planes [J]. Nucl. lustrum. Methods Phys. Res. A, 2010, 623(1):399 - 101.
    [66]BULGHERONI A. First test beam results from the EUDET pixel telescope [C].IEEE Nucl. Sci. Symp. Couf. Rec. HI, USA: IEEE, 2007, 3:1878--1884.
    [67]DOROKHOV A, et al. High resistivity CMOS pixel sensors and their application to the STAR PXL detector [J]. Nucl. Instruin. Methods Phys. Res. A, 2011, 650(l):174- 177.
    [68]BREITKREUTZ H, WAGNER F M, RoHRMOSER A, et al. Spectral fluence rates of the fast reactor neutron beam MedApp at FRM II [J]. Nucl. Instrum. Methods Phys. Res. A, 2008, 593(3):466 -- 471.
    [69]DEVEAUX M, et al. Radiation tolerance of a column parallel CMOS sensor with high resistivity epitaxial layer [J]. Journal of Instrumentation, 2011, 6(02):C02004.
    [70]MASI R D, et al. Towards a 30 us, thin and high resolution pixelated CMOS sensor system for future vertex detectors [J]. Nucl. Instrum. Methods Phys. Res. A, 2011, 628(1):296-299.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700