奶牛体细胞的纯化与人COL1α1 cDNA转染及核移植胚胎发育研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳腺生物反应器(mammary gland bioreactor),或称动物个体乳腺表达系统,是指利用乳腺特异表达的乳蛋白基因调控序列构建表达载体,制作转基因动物,指导特定外源基因在动物乳腺中特异、高效率地表达,以期从分泌乳汁中获得外源活性蛋白。它具有产量高、生产成本低、易于纯化和产品活性高等优势。目前利用转基因乳腺生物反应器生产的药物蛋白有不少已经成功应用于临床治疗等多种相关领域。利用转基因克隆技术可以把对基因筛选的过程提前到细胞水平,保证出生的克隆个体是转基因动物。
     在高等动物体内,胶原广泛分布于结缔组织、皮肤、骨骼、内脏的间充质细胞及肌腔、韧带、巩膜等部位,角膜几乎完全由胶原蛋白组成。胶原是结缔组织及其重要的结构蛋白,起支撑器官、保护机体的功能,是决定结缔组织韧性的主要因素。胶原蛋白因具有高生物活性和低免疫原性,在医药、医疗、美容、食品领域被广泛应用。人源性胶原蛋白对人类更为重要和安全,但由于伦理和道德的限制不能直接获得,所以把人的胶原蛋白利用乳腺生物反应器的方法生产十分必要且安全可行。
     利用乳腺生物反应器生产人类胶原蛋白,首先要获得人胶原蛋白基因,并把此基因引入有效的乳腺表达载体中。其次把构建的载体通过适当的转基因方法转入靶细胞,从阳性靶细胞中获得可以无限扩增、遗传稳定的单细胞克隆系,并以此细胞为核移植供体细胞,利用核移植技术获得阳性胚胎,以期在此基础上最终获得阳性个体。
     为了获得携带有目的基因的乳腺表达载体,并考虑到表达出来的融合蛋白能进行有效提纯及对阳性细胞能进行有效的筛选,实验首先从人的包皮组织中提取mRNA,反转录获得人胶原蛋白cDNA片段,在cDNA的3’端连接上了6×His蛋白分离标签。然后以pBC1质粒为基础质粒,以β-casein启动子为调控元件,通过表达质粒的改造,构建了人Ⅰ型α1胶原cDNA基因乳腺特异性表达载体。最后,再分别将绿色荧光蛋白(EGFP)和新霉素抗性基因(Neor)作为双标记基因引入表达载体,完成了乳腺特异表达载体的改造和构建。合成的cDNA片段经过测序,Blast结果表明,获得的中国人的Ⅰ型α1胶原cDNA基因与Gene Bank中公布的相应基因序列一致。对构建的载体进行了PCR片段扩增分析,结果显示,构建的载体结构完整、无缺失。
     为了获得有效转染的单细胞克隆系,实验首先建立了成纤维细胞、卵丘颗粒细胞和输卵管上皮细胞系,并对这些靶细胞进行了脂质体转染和电穿孔转染实验,对转染的阳性细胞进行G418筛选并结合绿色荧光的表达对阳性细胞进行单细胞克隆的扩增培养。结果,用脂质体转染法对三种靶细胞进行转染后,成纤维细胞与卵丘颗粒细胞获得了成功转染,输卵管上皮细胞未能获得成功。之后对输卵管上皮细胞进行了电穿孔转染,通过一系列实验条件优化组合后,最后在90 mOsmo/kg低渗缓冲液、800V电压(2mm电穿孔管)下获得了20.8%的转染效率。通过对三种细胞进行G418耐受检测,得出了一致的检测结果,即三种细胞在G418浓度为800μg/mL左右时,能有效筛选出阳性细胞。获得初步筛选的细胞采用在绿色荧光下定位提取的方法将来自单细胞的阳性克隆细胞群进行了扩大,最后三种靶细胞都得到了遗传背景一致的单细胞克隆系。在实验中还发现,卵丘颗粒细胞在进行小分子量载体转染时能获得比大分子载体好的转染效果,成纤维细胞转基因细胞系的生长速度较非转基因的要慢3d左右。
     为了解在核移植中作为供体的细胞在体外培养时的细胞凋亡情况,用流式细胞术在不同时段对成纤维细胞、卵丘颗粒细胞、输卵管上皮细胞和乳腺上皮细胞进行了细胞凋亡的检测。结果发现,细胞在同一代生长周期中,一旦处于接触抑制或饥饿培养过程中,凋亡速度明显加快,细胞随着培养代数的增加,凋亡率也不断增加。四种测试细胞的凋亡趋势是乳腺细胞凋亡最快,其次是输卵管上皮细胞,卵丘颗粒细胞在15代以前比成纤维细胞凋亡率低,但15代之后却高于成纤维细胞。
     最后对三种转基因细胞核移植重构胚发育效果进行了比较,发现:1)成纤维细胞不同转基因细胞系之间的胚胎发育率没有显著差异(P>0.05);2)同种细胞转基因和非转基因细胞作为供体进行核移植重构胚发育,三种转基因细胞的融合率都出现了明显的下降(P<0.05),但在融合后的发育中,转基因和非转基因细胞在卵裂率和桑椹胚/囊胚率上的差异不明显;3)对三种转基因细胞进行平行比较发现,成纤维细胞和卵丘颗粒细胞的融合率明显比输卵管上皮细胞高,而且差异显著(P<0.05)。但在融合后的桑椹胚/囊胚形成率上,成纤维细胞又明显低于卵丘颗粒细胞和输卵管上皮细胞(P<0.05)。上述结果说明:1)同种细胞不同转基因系之间可能有插入位点和拷贝数的差异,但这种差异对核移植重构胚早期发育没有影响;2)转基因过程和筛选过程对供体细胞的细胞膜结构有一定的影响,造成在融合过程中转基因细胞的融合性差,但转基因细胞一旦与卵母细胞融合,其随后的重构胚发育效果与非转基因细胞相似;3)在融合过程中,输卵管上皮细胞的融合相对于成纤维细胞和卵丘细胞困难,融合后,卵丘细胞和输卵管上皮细胞的早期胚胎发育能力较成纤维细胞强。
     本文系统地进行了从载体的构建到细胞系的建立、细胞的转染、单细胞克隆系的筛选与扩大到各种转基因细胞的胚胎发育规律的研究,以期为转基因乳腺生物反应器的研究提供有益的参考。
Animal mammary gland bioreactor, also called individual animal mammary gland expression system, is the use of regulatory sequences of milk protein gene to construct expression vectors, produce transgenic animals and guide specific foreign genes expression.It has the advantages of high output, low cost, easy purification and high biological activity et al. Currently transgenic mammary gland bioreactor have been successfully used in clinical treatment and many other related fields. Transgenic cloning technology can screen genetic modified gene at cellular level, ensure that individuals are genetically modified cloned animals.
     In higher animals, collagen is widely distributed in connective tissue, such as skin, bones, organs mesenchymal cells, muscle cavity, ligaments and sclera et al. Cornea is entirely made of collagen. Collagen is an important structural proteins, play the function of supportive organ and protect the organism. Because of its high biological activity and low immunogenicity, in the areas of pharmaceutical, medical, beauty product, food industry, collagen have been widely used. Human collagen, in particular procollagen is more important for human to use, but because of ethical and moral constraints, it can not directly access. So, produce human collagen using mammary gland bioreactor approach is necessary, feasible and safe.
     Using mammary gland bioreactor to produce human collagen, first is to obtain collagen gene, then transfer this gene into the mammary gland expression vector. Second is to transfer the vector to target cells and obtain the positive target cells that is genetic stability and can be unlimited amplification. At last, using somatic nuclear transfer technology to obtain positive embryos.
     For the purpose of obtaining the mammary gland gene expression vector, experiments were firstly extracted mRNA from human foreskin, reverse transcription to obtain one of the collagen protein cDNA fragment. In the 3'end of the cDNA connect a 6×His protein separation tag. Then using pBCl plasmid as based vector, using (3-casein gene promoter as a regulatory element, reconstructed the expression vector that connect with human type I collagen al cDNA gene. Finally, with enhanced green fluorescent protein (EGFP) and neomycin resistance gene (Neo') as a double marker genes into expression vector, completing the transformation of mammary specific expression vector. Synthesized cDNA fragments were sequenced. Blast results showed that the Chinese cloned type I al collagen cDNA gene are very similarity comparision with Gene Bank. The fragments of the vector were amplified by PCR analysis,the result showed that the constructed vector structure was complete and correct.
     In order to obtain efficient transfectant of monoclonal cell lines, experiments established fibroblasts, cumulus granulosa cells and oviduct epithelial cell lines. These target cells were carried out liposome transfection and electroporation transfection. The results showed that fibroblasts and cumulus granulosa cells have been successful transfected by the method of liposome transfection, while oviduct epithelial cells is failed. But for the oviduct epithelial cells, after carrid out electroporation transfection, obtained 20.8% of transfection efficiency on the condition of 90 mOsmo / kg hypotonic buffer and 800V voltage electric tension (2mm electroporation tube). The three types of cells use G418 that concentration at 800μg/mL can effectively screen out the positive cells. The primary screened cells use EGFP as marker can further screen out transgenic positive clones that comes from one single cell and the monoclonal cell lines have the same genetic background.
     In order to understand the apoptosis of fibroblasts, cumulus granulosa cells, oviductal epithelial cells and mammary epithelial cells that cultured in vitro, the methods of flow cytometry are performed. The results showed that at the same growth cycle, once the cells at the condition of contact inhibition or plateau phase, the process of apoptosis is significantly faster. Also with the increase of cell generations, the apoptosis rate increased. Overall, the rate of apoptosis in mammary cells is the fastest, followed by the oviduct epithelial cells. Cumulus granulosa cells' apoptosis rate was lower than fibroblast before 15 generations, but after 15 generations the other way around.
     Finally, using the genetically modified cells as donors conducted nuclear transfer (NT) and the reconstructed embryos were compared. The comparison found that:1) The reconstructed embryonic development was no significant difference (P>0.05) between the different transgenic cell lines of fibroblasts; 2):Transgenic and non-transgenic cells as NT donors, their fusion rate has shown a significant (P<0.05) decrease, but their cleavage rate and morula/blastocyst rate was not significant; 3) Three types of genetically modified cells as NT donors, the results showed that the fusion rate of fibroblasts and cumulus granulosa cells was significantly (P<0.05) higher than the oviduct epithelial cells. However, the morulae/blastocyst formation rate of fibroblasts was significantly lower than cumulus granulosa cells and oviduct epithelial cells after fused (P<0.05). These results indicate that:1) Different transgenic lines of the same type of cells probably have different insertion site and copy number, but the early embryonic development had no significant difference; 2) Transgenic process and the selection process can give rise the membrane structure change to a certain extent and resulting the fusion rate was poorer; 3) In the process of fusion, oviduct epithelial cells was relative difficulty compared with fibroblasts and cumulus cells, but in the process of reconstructed embryonic early development, cumulus cells and oviduct epithelial cells have higher viability than fibroblasts.
     This thesis had a series of systemic study that include vector construct, cells transfection, monoclonal cell lines amplification and the genetically modified embryonic development laws. The finally purpose is to provide useful reference for the development of mammary gland bioreactor.
引文
[1]戎晶晶,刁振宇,周国华,大肠杆菌表达系统的研究进展.药物生物技术,2005,12(6):416-442
    [2]唐以杰,陈清池,利用大肠杆菌获取重组蛋白的研究进展.广东教育学院学报,2001,21(2):60-67
    [3]梁爱华,苏智广,李晓玲,等,东亚钳蝎神经毒素在大肠杆菌中的表达.中国生物化学与分子生物学报,1999,15(2):205-210.
    [4]Wacker M, Linton D, Hitchen P G, el al. N-Linked Glycosylation in Campylobacter jejuni and its Functional Transfer into E coli. Science,2002,298(5599):1790-1793
    [5]Zhang Z, Gildersleeve J, Yang Y Y, el al. A New Strategy for the Synthesis of Glycoproteins. Science,2004,303(5656):371-373
    [6]Brinkmann U., Mattes R.E. and Buckel P., High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the DNA Y gene product. Gene,1989,85:109-114
    [7]Seidel, H.M., Pompliano, el al. molecular cloning of the gene for phosphoenolpyruvate mutase from Tetrahymena pyriformis and overexpression of the gene product in Escherichia coli. Biochemistry,1992,31:2598-2608.
    [8]Kane, J.F., Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol.1995,6:494-500.
    [9]Kurland C. and Gallant J., Errors of heterologous protein expression Curr. Opin. Biotechnol.1996,7:489-493.
    [10]Rosenberg A.H., Goldman E., Dunn J.J., el al. Effects of consecutive AGG codons on translation in Escherichia coli, demonstrated with a versatile codon test system. Bacteriol.1993,175:716-722.
    [11]Del Tito B.J., Jr., Ward J.M., el al. Effects of a minor isoleucyl tRNA on heterologous protein translation in Escherichia coli. Bacteriol.1995,177: 7086-7091.
    [12]Novy, R., Drott, D., Yaeger, K. el al. Overcoming the codon bias of E. coli for enhanced protein expression. Innovations,2001,12:1-3.
    [13]Cereghino J.L. Cregg JM., Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev,2000,24(1):45-66
    [14]吴丽娟,蒋建新,朱佩芳等,酵母表达系统及其应用研究.生命的化学,2003,23(1):46-49
    [15]于平,巴斯德毕赤酵母表达系统研究进展.工业微生物,2005,35(3):50-54
    [16]Gach JS, Maurer M, Hahn R, el al. High level expression of a promising anti-idiotypic antibody fragment vaccine against HIV-1 in Pichia pastoris. J Biotechnol,2007,128(4):735-46.
    [17]Xie YF, Chen H, Huang BR, Expression, purification and characterization of human IFN-lambdal in Pichia pastoris. J Biotechnol,2007,129(3):472-480.
    [18]Clare J.J., Rayment FB, Ballantine SP, et al. High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Biotechnology,1991,9(5):455-460
    [19]Ohtani W., Ohtani W, Nawa Y, el al. Physicochemical and immunochemical properties of recombinant human serum albumin from Pichia pastoris. Anal. Biochem,1998,256:56-62
    [20]Dyck MK, Lacroix D, Pothier F, et al. Making recombinant proteins in animals-different systems, different applications. Trends Biotechnol,2003,21: 394-399
    [21]张达江,王亮,Ⅰ型胶原蛋白的结构、功能及其应用研究的现状与前景.生物技术通讯,2006,17(2):265-269
    [22]Smith G E, Summers M D, Fraser M J, Production of human beta-interferon in insect cells infected with a baculovirus expression vector. Molecμlar and Cellμlar Biology,1983,3:2156-2165
    [23]Macda S, Kawai T, Obinata M, el al. Characteristics of human interferon-alpha produced by a gene transferred by a Baculovirus vector in the silkworm. Bombyx mori, Proc Jpn Acad,1984,60:423-426
    [24]吕鸿声.昆虫病毒分子生物学,北京:中国农业科技出版社,1998,520-529,554-580
    [25]朱江,吴祥甫,昆虫杆状病毒表达系统研究进展及其应用展望.蚕业科学,2003,29(2):114-119
    [26]Granados R.R., Status and improvements in insect cell culture for protein production(A). Prospects for the Development of Insect Factories, Japan, Institute of Insect and Animal Science National Institute of Agro-biological science, 2001.45-48
    [27]Mckelma K A, Hong H, Van Nunen E, el al. Establishment of new Trichoplusia ni cell lines in serum-free medium for baculovirus and recombinant protein pmduction. J. Invertebr. Pathol,1998,71:82-90
    [28]Goodman C L, Mcintosh A H, El Sayed G N, et al. Production of selected baculoviruses in newly established lepidopteran cell lines. In Vitro Cell Dev Biol Anim,2001,37:374-379
    [29]Donaldson M S, Shμler M L. Effects of long-term passaging of BTI-Tn5B 1-4 insect cells on growth and recombinant protein production. Biotechnol Prog,1998,14: 543-547
    [30]Ikonomou L, Schneider Y J, Agathos S N. Insect cell culture for industrial production of recombinant proteins. Appl Microbiol Biotechno 1.2003.62:1-20
    [31]吴小锋曹翠平鲁兴萌,昆虫杆状病毒表达系统中重组蛋白质的降解及其对策.蚕业科学,2005,31(4):382-388
    [32]木村滋.昆虫生物工厂,日本:工业调查会,2000.124-127
    [33]Toshiki T, Chantal T, Corinne T, et al. Germline transformation of the silkworm Bombyx mori L using a piggyback transposon-drived vector. Nature Biotechol, 2000,18:81
    [34]Robert Ivarie, Avian transgenesis:progress towards the promise. TRENDS in Biotechnology,2003,21 (1):14-19
    [35]Tranter, H.S. and Board, R.B., The antimicrobial defense of avian eggs:biological perspective and chemical basis. J. Appl. Biochem.,1982,4,295-338
    [36]Harvey A. J., Speksnijder G., Baugh L.R., el al. Expression of exogenous protein in the egg white of transgenic chickens. Nat. Biotechnol.,2002,20,396-399
    [37]Dyck MK, Lacroix D, Pothier F, et al. Making recombinant proteins in animals-different systems, different applications. Trends Biotechnol,2003,21: 394-399
    [38]Badge L., Bygrave A. E., Bradley A., et al. Transformation of embryonic stem cells with the human type Ⅱ collagen gene and its expressionin chimeric mice, Cold Spring Harb. Sympo. Quant. Biol.,1985,50:707-711.
    [39]Gordon K, Lee E, Vitale J, el al. Production of human tissue plasminogen activator in transgenic mouse milk. Biotechnology,1987,5:1183-1187.
    [40]Wright G, Carver A, Cottom D, et al. High expression of active human Alphal-antitrypsin in the milk of transgenic sheep. Biotechnology,1991,9:830-834
    [41]Meade H, Gates L, Lacy E, et al. Bovine as1-casein gene sequence direct high level expression of human urokinase in mouse milk. Biotechnology,1990,300:511-515
    [42]Van Berkel P H, Welling M M, Geerts M, et al. Large scale production of recombinant human lactoferrin in the milk of transgenic Cows. Biotechnology,2002, 20:484-487
    [43]舒建洪,刘津,胡先春等,动物乳腺生物反应器研究进展.西北农林科技大学学报(自然科学版),2004,32(2):149-153
    [44]Echelard Y, Williams J L, Destrempes M M, et al. Production of recombinant albumin by a herd of cloned transgenic cattle. Transgenic Reaearch,2009,18(3):361-376.
    [45]王洪岩,仲跻峰,刘文浩,动物乳腺生物反应器的研究进展,山东农业科学,2004,3: 76-78
    [46]Houdebine I M. Production of pharmaceutical proteins by transgenic animals. Comparative Immunology Microbiologyand Infectious Diseases,2009, 32(2):107-121.
    [47]Zinovieva N, Lassnig C, Schams D, et al., Stable production of human insulin-like growth factor 1 (IGF-1) in the milk of hemi-and homozygous transgenic rabbits over several generations. Transgenic Res.,1998,7:437-447
    [48]Coμlibaly S, Besenfelder U, Fleischmann M, et al., Human nerve growth factor beta (hNGF-b):mammary gland specific expression and production in transgenic rabbits. FEBS Lett.,1999,444:111-116.
    [49]Devinoy E, Thepot D, Stinnakre MG, et al., High level production of human growth hormone in the milk of transgenic mice:the upstream region of the rabbit whey acidic protein (WAP) gene targets transgene expression to the mammary gland. Transgenic Res.,1994,3:79-89.
    [50]Lee WK, Kim SJ, Hong S, el al. Expression of a bovine β-casein/human lysozyme fusion gene in the mammary gland of transgenic mice. J. Biochem. Mo.l Biol.,1998,31:413-417
    [51]Platenburg GJ, Kootwijk EP, Kooiman PM, et al., Expression of human lactoferrin in milk of transgenic mice. Transgenic Res.,1994,3:99-108.
    [52]Massoud M, Attal J, Thepot D, et al., The deleterious effects of human erythropoietin gene driven by the rabbit whey acidic protein gene promoter in transgenic rabbits. Reprod. Nutr. Dev.,1996,36:555-563
    [53]Sohn BH, Kim SJ, Park H, et al., Expression and characterization of bioactive human thrombopoietin in the milk of transgenic mice. DNA Cell Biol.,1999,18: 845-852.
    [54]Rokkones E, Fromm SH, Kareem BN, et al., Human parathyroid hormone as a secretory peptide in milk of transgenic mice. J. Cell Biochem.,1995,59:168-176.
    [55]Prunkard D, Cottingham I, Garner I, et al., High-level expression of recombinant human fibrinogen in the milk of transgenic mice. Nature Biotech.,1996,14: 867-871
    [56]Stromqvist M, Houdebine LM, Andersson J, et al., Recombinant human extracellular superoxide dismutase produced in milk of transgenic rabbits. Transgenic Res.,1997, 6:271-278
    [57]Castilla J, Pintado B, Sola I, el al. Engineering passive immunity in transgenic mice secreting virus-neutralizing antibodies in milk. Nature Biotech.,1998,16:349-354.
    [58]付玉华,周秀梅,钱其军, 乳腺生物反应器的研究和产业化进展.中国畜牧兽医,2010,37(8):45-50
    [59]Bosze Z, Baranyi M, Whitelaw C B, Producing recombinant human milk proteins in the milk of livestock species, Adv Exp Med Biol,2008,606:357-393.
    [60]熊继红,江黎明,转基因技术在制备动物乳腺生物反应器中的应用与发展,生物技术通讯,2006,17(4):647-650.
    [61]王庆忠,李国荣,尹昆,等.乳腺生物反应器的研究现状和产业化前景,生命科学,2005,17(1):76-81.
    [62]邹贤刚,袁三平,鲜建等.转基因克隆奶山羊大量生产重组人的抗凝血酶Ⅲ蛋白质(rhATIH).生物工程学报,2008,24(1):117-123
    [63]Zhang Y L, Wan Y J, W ang Z Y, et al. Production of dairy goat embryos, by nuclear transfer, transgenic for hum an acid B—glucosidase. Theriogenology,2010, 73(5):681-690.
    [64]Zhao X, IA W, Lv Z, et al. iPS cells produce viable mice through tetraploid complementation. Nature,2009,461(7260):86-90
    [65]Kim M O, Kim S H, Lee S R, et al. Ectopic expression of tethered human follicle-stimulating hormone(hFSH)gene in transgenic mice. Transgenic Research, 2007,16(1):65-75.
    [66]Devinoy E, Thepot D, Stinnakre MG, et al., High level production of human growth hormone in the milk of transgenic mice:the upstream region of the rabbit whey acidic protein (WAP) gene targets transgene expression to the mammary gland. Transgenic Res,1994,3:79-89
    [67]Massoud M, Attal J, Thepot D, et al., The deleterious effects of human erythropoietin gene driven by the rabbit whey acidic protein gene promoter in transgenic rabbits. Reprod Nutr Dev,1996,36:555
    [68]Thepot D, Devinoy E, Fontaine ML, el al. Rabbit whey acidic protein gene upstream region controls high-level expression of bovinegrowth hormone in the mammary gland of transgenic mice. Mol Reprod Dev,1995,42:261-267
    [69]Pfeller A. Lentiviral transgenesis-a versatile tool for basic research and gene therapy. Curr Gene Ther,2006,6:535-542.
    [70]袁天杰,杜卫华,郝海生等.基因打靶与体细胞克隆技术制备乳腺生物反应器的研究进展.中国畜牧兽医,2009,36(4):65-68.
    [71]Park K W, Choi K M, Hong S P, et al. Production of transgenic recloned piglets harboring the human granulocyte-macrophagecolony stimulating factor(hGM-CSF)gene from porcine fetal fibroblasts by nuclear transfer. Theriogenology,2008,70:1431-1438.
    [72]王庆忠,李国荣,尹昆等,乳腺生物反应器的研究现状与产业化前景.生命科学,2005,17: 76-81
    [73]刘振江,王跃嗣,乳腺生物反应器表达载体和转基因方法的研究概况.上海畜牧兽医通讯,2004,1:16-18
    [74]Louis Marie Houdebine, Transgenic animal bioreactors. Transgenic Research,2000,9: 305-320
    [75]Gunzburg WH, Salmons B, Zimmermann B, el al. A mammary specific promoter directs expression of growth hormone not only to the mammary gland, but also to Bergman Glia cells in transgenic mice. Mol Endocri,1991,5:123-133.
    [76]Reddy VB, Vitale JA, Wei C, el al. Expression of human growth hormone in the milk of transgenic mice. Animal Biotech,1991,2:15-29.
    [77]Tojo H, Tanaka S, Matsuzawa A, el al. Production and characterization of transgenic mice expressing a hGH fusion gene driven by the promoter of mouse whey acidic protein (mWAP) putatively specific to mammary gland. J Reprod Dev, 1993,39:145-155
    [78]Sun Y.L, Lin C.S, Chou Y.C, Gene transfection and expression in a primary culture of mammary epithelial cells isolated from lactating sows. Cell Biology International, 200529:576-582
    [79]Ninomiya T, Hirabayashi M, Sagara J and Yuki A, Functions of milk protein gene 50 flanking regions on human growth hormone gene. Mol Reprod Dev,1994,37: 276-283
    [80]Wen J., Kawamata Y., Tojo H., el al. Expression of whey acidic protein (WAP) genes in tissues other than the mammary gland in normal and transgenic mice expressing mWAP/hGH fusion gene. Mol Reprod Dev,1995,41:399-406
    [81]Hirabayashi M, Kodaira K, Takahashi R, el al. Transgene expression in mammary glands of newborn rats. Mol Reprod Dev.,1996,43:145-149.
    [82]Houdebine LM, Transgenicanimal bioreactors.Transgenic Research,2000,.9: 305-320
    [83]Fujiwara Y, Takahashi R, Miwa M, et al., Analysis of control elements for position independent expression of human a-lactalbumin YAC. Mol Reprod Dev.,1999,54: 17-23.
    [84]Stinnakre MG, Soμlier S, Schibler L, el al. Position-independent and copy number related expression of a goat bacterial artificial chromosome a-lactalbumin gene in transgenic mice. Biochem J.,1999,339:33-36.
    [85]Fujiwara Y, Miwa M, Takahashi R, el al. High-level expressing YAC vector for transgenic animal bioreactors. Mol Reprod Dev.,1999,52:414-420
    [86]Giraldo P and Montoliu L., Size matters:use of YACs, BACs and PACs in transgenic animals.Transgenic Res.,2001,10 (2):83-103
    [87]Dobie KW, Lee M, Fantes JA, et al., Variegated transgene expression in mouse mammary gland is determined by the transgene integration locus. Proc Natl Acad Sci USA.,1996,93:6659-6664
    [89]Baer A and Bode J, Coping with kinetic and thermodynamic barriers:RMCE, an efficency strategy for the tagerted integration of transgenes. Curr. Opin. Biotechnol., 2001,12:472-480
    [90]Feng Y.Q., Seibler J., Alami R., el al. Site-specific chromosomal integration in mammalian cells:highly efficient CRE recombinase-mediated cassette exchange, 1999, J.Mol.Biol.,292:779-785
    [91]Schnieke A E, Kind A J, Ritchie W A, et al., Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science,1997,278: 2131-2133.
    [92]Baguisi A, Behboodi E, Melican DT, et al., Production of goats by somatic cell nuclear transfer. Nature Biotech,1999,17:456-461
    [93]Houdebine LM, Animal transgenesis:recent data and perspective.2002, Biochimie., 84:1137-1141
    [94]Ayares D, Gene targeting in livestock. Transgenic Research Conference, Tahoe City Aout 1999,20.
    [95]Templeton NS, Strategies for improving the frequency and assessment of homologous recombination. Methods Mol Biol,2000,133:45-60
    [96]Sarig R, Mezger-Lallemand V, Leibovitz S et al, Increased efficiency of homologous recombination in ES cells by cleavage at both ends of homology in the targeting Vector. Translgenie Res.,2000,9(2):79-80
    [97]Clark A.J, Burl S, Denning C, Gene targeting in livestock:a preview. Transgenic Res,2000,9(4-5):263-275
    [98]Bodnar AG,, OuelletteM, Frolkis M, et al, Extension of life-span by introduction of telomerase into human cells. Science,1998,279(5349):349-352
    [99]Dinnyes A, De Sousa P, King T, et al. Somatic cell nuclear transfer:Recent progress and challenges. Cloning Stem Cells,2002,4(1):81-90
    [100]林福玉,邓继先,杨晓,黄培堂,基因打靶方法制备乳腺生物反应器.中国生物工程杂志,2003,23(2):1-6
    [101]Chan A.W, Chong K.Y, Martinovich C, el al. Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science,2001,291:309-312
    [102]Qian J, Chang K, Jiang M, el al. Generation of transgenic pigs by sperm-mediated gene transfer using a linler protein(mAbC). Transgenic Res.,2002,92
    [103]Qian J, Liu Y, Jiang M, el al. A novel and highly effective method to generate transgenic mice and chickens:linker based sperm-mediated gene transfer. Transgenic Res,2002,92-93
    [104]T.弗里德曼,J.罗西.基因转移-DNA和RNA的转运与表达。科学出版社,2008年8月。
    [105]Zou X, Wang Y, Cheng Y, et al. Generation of cloned goats(Capra hircus) from transfected foetal Fibroblast cell, the efectof donor cell cycle. Mol Rep Dev,2001, 61(2):164-172.
    [106]Schnieke AE, Kind AJ, Ritchie WA, et al. Human factor IX transgenic sheep produced by transfer fetal fibroblasts. Science,1997,278:2130-2133.
    [107]Cibelli JB, Stice SL, Golueke PJ, et al. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 1998,280(5367):1256-1258.
    [108]岳文斌,杨国义,任有蛇等,动物繁殖新技术.中国农业出版社,2003.11月。
    [109]Wright G, Carver A, Cottom D, et al., High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep. Bio.Techno,1991,9:830-834.
    [110]Niemann H, Halter R, Espanion G, et al., Expression of human blood clotting factor VIII (FVIII) constructs in the mammary gland of transgenic mice and sheep. J. Anim. Breed Genet,1996,113:437-444
    [111]Paleyanda RK, Velander WH, Lee TK, et al., Transgenic pigs produce functional human factor VIII in milk. Nature Biotech,1997,15:971-975
    [112]Petitclerc D, Attal J, Theron MC, et al., The effect of various introns and transcription terminators on the efficiency of expression vectors in various cultured cell lines and in the mammary gland of transgenic mice. J. Biotechnol,1995,40:169-178
    [113]Horowitz DS and Krainer AR, Mechanisms for selecting 50 splice sites in mammalian pre-mRNA splicing. Trends Genet,1994,10:100-106
    [114]Furth, P. A., A. Shamay, el al. Gene transfer into somatic tissues by jet injection. Anal. Biochem.,1992,205:365
    [115]Pace J M, Corrado M, Missero C, Identification,characterization and expression analysis of a new fibrillar collagen gene-COL27Al. Matrix Biology 2003,22(1):3-4
    [1]6] 蒋挺大,胶原与胶原蛋白,第一版,北京:化学工业出版社,2006。
    [117]王镜岩,朱圣庚,徐长法,生物化学,第三版北京:高等教育出版社,2002。
    [118]Saga S, Nagata K, Chen WT, el al. PH-dependent function, purification, and intraculluar location of a major collagen- binding glycol-protein. J Cell Biol,1987, 105(1):517-527
    [119]Ferrira LR, Norris K, Smith T, el al. Hsp47 and other ER resident molecular chaperones from the heterocomplexes with each other and with collagen type Ⅳ chains, Connect Tiss. Res,1996,33(4):265-273
    [120]Satoh M, Hirayoshi K, Yokota S, el al . Intracellular interaction of collagen-specific stress protein Hsp47 with newly synthesized procollagen. J Cell Biol,1996,133(2): 469-483
    [121]Ferrira LR, Norris K, Smith T, el al. Association of Hsp47, Grp78, and Grp94 with procollagen supports the successive or coupled action of molecular chaperones. J Cell Biochem,1994,56(4):518-526
    [122]Gelse K, Poschl E. Aigner T. Collagen-structure, function, and biosynthesis. Adv Drug Delivery Rev,2003,55(42) 1531-1546
    [123]Cohen-Solal J, Castanet J, Meunier FJ, Glimcher MJ Proline hydroxylation of collagens synthesized at different temptures in vivo by two poikilothermic species. Comp Biochem Physiol,1986,83(2):483-486
    [124]Bateman JF, Lamande SR, Ramshaw Jam:Collagen superfamily, in Extracellular Matrix (vol 2):Molecular Components and Interaction, edited by Comper WD, Amsterdam, Harwood Academic,1996,22-67.
    [125]Kivirikko KI, Ryhanen L, Anttinen H, Bornstein P, Prockop DJ. Further hydroxylation of lysy hydroxylase in vitro, Biochemistry,1973,12(24):4966-4971
    [126]Lang K, Schmid FX, Fischer G., Catalysis of protein folding by prolyl isomerase. Nature,1987,329(6316):268-270
    [127]Steinmann B, Bruckner P, Superti-Furga A. Cyclosporin A slows collagen triple-helix formation in vivo:indirect evidene for a physiologic role of peptidyl-prolyl cis-trans-isomerase. J Biol Chem,1991,266(2):1299-1303
    [128]Nagai N, Hosokawa M, Itohara S, Adachi E, Matsushita T, Hosokawa N, Nagata K, Embryonic lethality of molecular chaperone Hsp47 knockout mice is associated with defects in collagen biosynthesis. J Cell Biol,2000,150(6):1499-1506
    [129]Sauk JJ, Norris K, Hebert C, Ordonez J, Reynolds M, Hsp47 binds to the KDEL receptor and cell surface expression is modulated by cytoplasmic and endosomal PH. Connect Tiss Res,1998,37(1-2):105-119
    [130]Lamande RS, Bateman JF. Procollagen folding and assembly:The role of endoplasmic reticμlum enzymes and molecular chaperons. Cell Deve Biol,1999, 10(5):455-464
    [131]Prockop DJ, Sieron AL, Li SW, Procollagen N-proteinases and procollagen C-proteinases, two unusual metalaproteinases that are essential for procollagen processing probably have important role in development and cell signaling. Matrix Biol,1998,16(7):399-408
    [132]Veis A, Payne K. Collagen fibrillogenesis, Nimni ME., Collagen Biochemistry, Boca Raton CRC Press,1988.
    [133]Silver D, Miller J, Harrison R, Prockop DJ. Helical model of nucleation and propagation to account for the growth of type I collagen fibrils from symmetrical pointed tips a special example of self assembly of rod like monomers. Proc Natl Acad Sci USA,1992,89(20):9860-9864
    [134]Rossert J, Crombrugghe B. Type I collagen structure, synthesis and regulation. Bilezkian JP, Raisz LG, Rodan GA. Principles in Bone Biology. Orlando Academic Press,2002,189-192
    [135]Vogel WF. Collagen-receptor signaling in health and disease, Eur J Dermatol,2001, 11(6):506-514
    [136]Yamaguchi Y, Mann DM, Ruoslathi E. Negative regulation of transforming growth factor-p by the proteoglycan decorin, Nature,1990,346(6281):281-284
    [137]Hay ED, Extracellular matrix, J Cell Biol,1981,91:205-223
    [138]Verrecchia F, Mauviel A, TGF-P and TNF-α antagonistic cytokines controlling type I collagen gene expression, J Cell Sig,2004,16(8):873-880
    [139]Kuivaniemi H, Tromp G, Prockop DJ. Mutations in collagen genes causes of rare and some common diseases in human, FASEB J,1991,5(7):2052-2060
    [140]李成章,樊明文,胚胎骨Ⅰ型胶原的提取与鉴定.生物化学与生物物理进展,1996,23(4):373-375
    [141]张达江,王亮,Ⅰ型胶原蛋白的结构、功能及其应用研究的现状与前景.生物技术通讯,2006,17(2):265-269
    [142]John D C, Watson R, Kind A J, Scott A R, Kadler K E, Bulleid N J., Expression of an engineered form of recombinant procollagen in mouse milk., Nature Biotechnol., 1999,17(4):385-389
    [143]Toman P.D., Pieper F., Sakai N., Karatzas C., Platenburg E., Wit.I, Samuel C., Dekker A., Daniels G., Berg R.and.Platenburg G, Production of recombinant human type I procollagen homotrimer in the mammary gland of transgenic mice, Transgenic Res.,1999,8:415-427
    [144]Naruse K., Yoo S.K., Kim S.M., Choi Y.J., Lee H.M. and Jin D.I, Analysis of Tissue-Specific Expression of Human Type II Collagen cDNA Driven by Different Sizes of the Upstream Region of the β-Casein Promoter, Biosci Biotechnol Biochem.,2006,70(1):93-98
    [145]萨姆布鲁克J,拉塞尔D.W.著,黄培堂等译。分子克隆:实验指南,第三版。北京科学出版社,2002,8,27-80.
    [146]PITARD B,AGUERRE O, AIRIAU M, et al, Virus-sized self-assembling lamellar complexes between plasmid DNA andcationic micelles promote gene transfer, proc Natl Acad Sci USA,1997,94(26):14412-14417.
    [147]CHALFIE M.TU Y, EUSKIRCHEN G, et al, Green fluorescent; protein as a marker for gene expression, Science,1994,263(5i48):802-805.
    [148]Cibelli JB, Stice SL, Golueke PJ, et al. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 1998,280(5367):1256-1258.
    [149]Zakhartchenko V, Mueller S, Alberio R, et al. Nuclear transfer in cattle with non-transfected and transfected fetal or cloned transgenic fetal and postnatal fibroblasts. Mol Reprod Dev 2001,60:362-369.
    [150]薛庆善主编,体外培养的原理与技术,北京:科学技术出版社,2001.)
    [151]关伟军,马月辉,丁鸿,等,小尾寒羊耳组织成纤维细胞系的建立与生物学特性研究.畜牧兽医学报,2005,36(5):511-516
    [152]Freshney RI, et al. Culture of animal cells:A manual of basic technique,4th ed. New York:Wileyliss,2000.149-175.
    [153]马月辉,周向梅,关伟军,等.用胶原酶消化法培养德保矮马耳缘组织成纤维细胞初探.中国农业科学,2005,38(6):1282-1288.
    [154]Zakhartchenko V, et al. Effects of serum starvation and recloning on the efficiency of nuclear transfer using bovine fetal fibroblasts. J Reprod Fertil,Suppl,1999,115:325
    [155]Chishima T, Yang M,Miyagi Y, et al. Governing step of metastasis visualized in vitro.Proc Natl Acad Sci US A,1997,94:11573-11576.
    [156]刘婷婷;王亮;吕自力等,人Ⅰ型胶原基因脂质体转染牛耳细胞克隆筛选方法,西北农业学报,2009,18(4):10-16.
    [157]钱锋,肖成祖,影响非洲绿猴肾细胞脂质体转染效率的因素.生物技术通报,1998,5:31-35.
    [158]李杨,吴凯峰,郭旭东,等.脂质体介导外源基因体外转染牛胎儿成纤维细胞条件的优化.遗传,2002,24(6):653-665.
    [159]Tseng WC, Haselton F R, Giorgio T D. Mitosis enhances transgene expression of plasmid delivered by cationic liposome. Biochim BilphysActa,1999,5(1):53-64.
    [160]Gill D R, Southern KW, Moford K A, et al. A placebo-controlled study of liposome-mediated gene transfer to the nasal epithelium of patients with cystic fibrosis.Gene Ther,1997,4(3):199-209.
    [161]Escriou V, Carriere M, Bussone F, et al. Critical assessment of the nuclear import of plasmid during cationic lipid-mediated gene transfer.J Gene Med,2001,3(2):179-187.
    [162]陈子江,人类生殖与辅助生殖,科学出版社,2005.
    [163]陈彦祥,乔卫红,刘栋良,等。阳离子脂质体的转染机制及转染效果影响因素,生物工程学报,2007,23(5):776-780
    [164]Guo X,Huang L. A novel cationic liposome reagent for efficient transfection of mammalian cells. Biochem Biophys Res Comm,1991,179:280-285.
    [165]陈彦祥,乔卫红,刘栋良,等。阳离子脂质体的转染机制及转染效率影响因素.生物工程学报,2007,23(5):776-780.
    [166]Zabner J, Fasbender AJ, Moninger T, et al. cellular and molecular barrier to gene transfer by a cationic lipid, J Biol Chem,1995,270(32):18997-19007.
    [167]Zelphati O, Francis C,Szoka, Liposome as a carrier for intracellular delivery of antisense oligonucleotides:a real or magic bullet?, J contro Rel,1996,41:99-119.
    [168]Kai K E, Heather M E, Nathan F B, et al. Dendritic cationic lipids with highly charged headgroups for efficient gene delivery, Bioconjugate Chem,2006, 17;877-888.
    [169]Felgner PL, gadek TR, Holm M, et al. Lipofectin:A highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci,1987,84(21):7413-7417.
    [170]Dodds E, Dunckley MG, Naujoks K, et al. Lipofection of cultured mouse muscle cells:a direct comparison of lipofectamine and DOSPER.Gene Ther,1998,5(4): 542-551.
    [171]Pouton CW, Seymour LW. Key issues in non-vired gene delivery. Adv Drug Deliv Rev,1998,34(1):3-19.
    [172]Gorlich D, Mattuj IW. Nucleocytoplasmic transport. Science,1996,271(5255): 1513-1518.
    [173]Kosuke S, Shigeru K, Yuriko H, et al. Novel histidine-conjugated galactosylated cationic liposomes dor efficient hepatocyte-selective gene transfer in human hepatoma HepG2 cells. Journal of Controlled Release,2007,118:262-270.
    [174]Jason C S, Heather M C, Mark A B, et al. Modification of liposomal concentration in liposome/adenoviral complexes allows significant protection of adenoviral vectors from neutralising antibody, in vitro. Journal of virological methods,2005, 126:31-36.
    [175]Gill D R, Southern K W, Moford K A, et al. A placebo-controlled study of liposome-mediated gene transfer to nasal epithelium of patients with cystic fibrosis. Gene Ther,1997,4(3):199-209.
    [176]Escriou V, Carriere M, Bussone F, et al. Critical assessment of the nuclear import of plasmid during cationic lipid-mediated gene transfer. J Gene Med,2001, 3(2):179-187.
    [177]Balhorn R, Hok S, Denardo S, et al. Hexa-arginine enhanced uptake and residualization of selective high affinity ligands by Raji lymphoma cells. Mol Cancer,2009,22:8-25.
    [178]Kato Y, Tani T, Tsunoda Y. Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows. Journal of reproduction and fertility. 2000,120(2):231-237.
    [179]Kato Y, Tani T, Sotomaru Y, et al. Eight calves clonedfrom somatic cells of a single adult. Science,1998,282(5396):2095-2098.
    [180]Gehl J. Electropomtion:theory and methods, perspectives for drug delivery, gene therapy and rsearch. Acta Physiologica Scandinavica,2003,177(4):437-447.
    [181]Bertling W. Transfection of a DNA/protein complex into nuclei of mammalian cells using polyoma capsids and electroporation. Biosci Rep.1987,7(2):107-112.
    [182]Potter H. Gene transfer by electroporation. Bio-Rad Bull,1988,1346.
    [183]Knutson JC, Yee D. Electroporation:parameters affecting the transfer of DNA into mammalian cells. Anal Biochem,1987,164(1):44-52.
    [184]Barry PA. Efficient electroporation of mammalian cells in culture. Methods Mol Biol,2004,245:207-214.
    [185]谷瑞环,李善刚,宋伟杰等,电穿孔介导外源基因转染兔成体成纤维细胞的初步研究。实验动物与比较医学,2010,30(4):241-245.
    [186]Fei Z, Wang S, Xie Y, et al. Gene transfection of mammalian Cells using membrane sandwich electroporation. Anal Chem,2007,79(15):5719-5722.
    [187]Wang M, Orwar O, Weber SG. Single-cell transfection by electroporation using all electrolyte/plasmid-filled capillary. Anal Chem,2009,81(10):4060-4067.
    [188]Yao S, Rana S, Liu D, et al. Electroporation optimization to deliver plasmid DNA into dental follicle cells. Biotechnol J.2009,4(10):1488-1496.
    [189]Ohyama H, McBride J. Wong DT. Optimized conditions for gene transfection into nle human eosinophilic cell line EoL-1 by electroporation. J Immunol Methods, 1998,215(1-2):105-111.
    [190]Jordan ET, Collins M, TerefeJ, et al.Optimizing electroporation conditions in primary and other difficult-to-transfect cells.J Biomol Tech,2008,19(5):328-334.
    [191]Barry P, Pratt-Lowe E, Lueiw PA. Electroporation of T-cell and macrophage cell Lines. Methods in electroporation. Richmond:Bio. Rad Laboratories 1988.
    [192]Dinnyes A, Dai Y, Barber M, et al. Development of cloned embryos from adult rabbit fibroblasts:effect of activation treatment and donor cell preparation. Biol Reprod,2001,64(1):821-827.
    [193]李向臣,任芳丽,张涌,山羊乳腺上皮细胞的分离、培养与超微结构的观察.畜 牧兽医学报,2005,36(2):121-126
    [194]Finch LM, Craig VA, Kind AJ, et al. primary culture of ovine mammary epithelial cells, Biochem Soc Trans.,1996,24(3):369
    [195]Kumura H, Tanaka A, Abo Y, et al. Primary culture of porcine mammary epithelial cells as a model system for evaluation of milk protein expression, Biosci.Biotechnol.Biochem,2001,65(9):2098-2101
    [196]Ehmann U K, Peterson JR W. D, Misfeledt D. S. To Grow Mouse Mammary Epithelial Cells in Culture, The journal of cell biology,1984,98:1026-1032
    [197]陈建晖,高学军,李庆章.奶牛乳腺上皮细胞体外培养技术研究进展.东北农业大学学报,2009,40(7):132-135.
    [198]王亨,韩超,邱昌伟,等.体外培养奶牛乳腺上皮细胞的形态学观察.中国兽医杂志,2007,43(6):15-17.
    [199]Situ ZQ, Wu J Z. Cell culture. World Publishing Corporation,1997.
    [200]Baxa DM, Luo x, Yoshimura FK. Genistein induces apoptosis in T lymphoma cells via mitochondrial damage. Nntr Cancer,2005,51(1):93
    [201]李超,伏圣博,刘华玲等。细胞凋亡研究进展,世界科技研究与发展,2007,29(3):45-53.
    [202]Richa A, Moushami M, Subhash C L. Heat shock genes-integrating cell survival and death. J Biosci,2007,32(3):595-610
    [203]Lee C K, Koo B S, Park C H,et al. Improved development of bovine nuclear transfer embryos by the treatment of nuclear donor cells with apoptosis inhibiors during serum starvation. Reproduvtion, Fertility and Development,2005,17(2):171-172.
    [204]张果平,黄庆华,王可等。山羊转基因克隆胚在体内和体外发育的研究。江西农业学报2010,22(8):125-128。
    [205]张向阳.细胞凋亡检测方法.济宁医学院学报,2008,31(3):258-260.
    [206]Edinger AL, Thompson CB. Death by design:apoptosis, necrosis and autophagy. Curr Opin Cell Biol,2004,16(6):663-669
    [207]Wilmut, I., Schnicke, A.J., McWhir, et al. Viable offspring from fetal and adult mammalian cell, Nature,1997,385,810-813.
    [208]Schnieke AE, Kind AJ, Ritchie WA, et al. Human fector ⅠⅩ transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science,1997,278:2130-2133.
    [209]Fan J, Watanabe T. Transgenic rabbits as therapeutic protein bioeators and human disease models. Pharmacology Therapeutics.2003,99:261-282.
    [210]Niemann H, Kues WA. Application of transgenesis in livestock for agriculture and biomedicine. Animal Reproduction. Science,2003,79:291-317.
    [211]Webb RL, Findlay KA, Green MA, et al. Efficient activation of reconstructed rat embryos by cyclin-dependent kinase inhibitors. PLoS One,2010 Mar 19; 5(3):e9799.
    [212]Meng Q, Polgar Z, Liu J, et al. Live birth of somatic cell-cloned rabbits following trichostatin A treatment and contransfer of parthenogenetic embryos. Cloning Stem Cells,2009 Mar; 11(1):203-208.
    [213]Kato Y, Tani T, Sotomaru Y, et al. Eight calves cloned from somatic cells of a single adult. Science,1998,282(5396):2095-2098.
    [214]Kato Y, Tani T, Tsunoda Y. Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows. Journal of Reproduction and Fertility,2000,120(2):231-237.
    [215]Williams J B, Shin T. Liu L, et al. Cloning of exotic/endangered species:desert bighorn sheep. Methods Mol Biol, 2006,348:169-182.
    [216]杨亚萍,陶勇,章孝荣.哺乳动物异种核移植的研究进展.动物医学进展.2006,27(8):18-22.
    [217]杨素芳,石德顺,韩杰,等.供体核种类对水牛核移植效果的影响.广西农业生物科学,2004,23(3):233-237.
    [218]Keefer C L, Keyston R, Lazaris A, et al. Production cloned goats after nuclear transfer using adult somatic cells. Biology of Reproduction,2002,66:199-203.
    [219]Enright B P, Jeong B S, Yanget x, et al. Epigenetic characteristics of bovine donor ceils for nuclear transfer:levels of histone acetylation. Biology of Reproduction, 2003,69(5):1525-1530.
    [220]Yang FK, Hao R, Kessler B, et al. Rabbit somatic cell cloning :effects of donor cell type, histone acetylation status and chimeric embryo complementation. Society for Reproduction and fertility,2007,133:219-230.
    [221]胡艳秋,李文蓉,罗淑萍.供核细胞对体细胞核移植效率的影响.生物技术,2006,16(3):58-60.
    [222]龚国春,戴蕴平,樊宝良等.以不同类型的转基因细胞为核供体生产牛的转基因克隆胚胎.中国科学:c辑,2003,33(6):532-538.
    [223]Cibelli JB, Stice SL, Golueke PJ, et al. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science,1998,280:1256-1258.
    [224]McCreath KJ, Howcroft J, Campbell KH, et al. Production of gene-targeted sheep bynuclear transfer from cultured somatic cells. Nature,2000,405:1066-1069.
    [225]Clark AJ, Burl S, Denning C. Genetic modification of sheep by nuclear transfer with gene-targeted somatic cells. Methods Mol Biol.2006;348:199-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700