用户名: 密码: 验证码:
多梁式钢—混凝土组合小箱梁桥受力特性及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,钢-混组合结构在桥梁工程领域中逐步被使用,但对有关多梁式钢-混组合小箱梁桥的研究甚少,现行钢-混组合结构设计规范也未就其作出具体规定。为此本文对多梁式钢-混组合小箱梁桥的受力特性及行为进行研究,以为其在今后设计和运营后的管养提供参考。
     首先通过对十四个推出试件及两片组合箱梁模型的静载试验、数值模拟及国内外规范的对比,研究钢-混杂纤维混凝土组合梁的力学特性,给出了混杂纤维混凝土焊钉剪力件的荷载-滑曲线表达式及极限承载力计算方法,探讨了钢-混杂纤维混凝土组合箱梁在弹性状态和破坏状态的力学行为,并对钢-混杂纤维混凝土组合箱梁极限承载力的设计方法提出了建议。同时,试验研究和理论分析结果表明钢-混杂纤维混凝土组合箱梁在韧性和抗裂性等方面力学性能更优越于普通混凝土组合箱梁。
     其次,基于Newmark组合梁滑移模型,通过引入不同次幂抛物线翘曲函数来描述组合箱梁顶底板应力横向非均匀分布,建立一个能够同时考虑界面滑移、剪切变形和翼板剪力滞三重效应的钢混组合箱梁模型,推导了简支组合箱梁在均布荷载和集中荷载作用下的解析解。参数分析表明,随着混凝土板厚和钢梁高度的增加,在跨中腹板和顶板中部处剪力滞系数下降;当组合箱梁宽跨比减少时,在腹板处剪力滞系数下降,而在顶板中部处剪力滞系数略增加;与均布荷载相比,各因素变化在集中荷载作用下,对组合箱梁跨中截面的剪力滞系数影响较明显;滑移刚度变化对剪力滞系数的影响可以忽略不计。在上述理论分析及设计加工的试验模型基础上,进一步对典型的两片组合箱梁模型进行了剪滞试验研究,结果表明,理论分析与试验测试结果吻合很好,验证了理论模型和解析解的正确性。
     从实用设计方法出发,考虑多梁式钢-混组合小箱梁桥界面滑移效应,分别用传统的多梁式桥的偏心压力法、刚接梁法,推导了考虑界面滑移效应影响的偏心压力法、刚接梁法修正计算公式。通过实际工程算例表明,采用本文所提出的修正理论算法结果与有限元方法的计算结果吻合较好,表明所提出的修正刚接梁法适用于计算多梁式钢-混组合小箱梁桥跨中横向分布系数,当满足窄桥条件时,也可采用考虑滑移的修正偏心压力法。参数研究表明,在进行多梁式钢-混组合小箱梁桥设计时,为减少桥梁的偏载效应,建议采用不完全剪力连接形式。
     最后,基于比拟板法,在竖向荷载作用下具有多道横隔梁的多梁式钢混组合小箱梁桥通过纵横向刚度离散,同时考虑混凝土与钢梁间焊钉的滑移影响,将其比拟成一个正交异性板,利用薄板理论建立了多梁式钢混组合小箱梁桥整体分析的微分方程组,简化后求出在均布荷载下的滑移方程和挠度方程。通过算例与有限元数值结果及已有研究进行比较,验证其正确性。结果表明,剪力连接件的刚度变化对组合梁挠度影响可以忽略,而对滑移量影响较为明显。
In recent years, steel-concrete composite structure is applied in bridge engineering step by step. At present, the researches of multi-beam steel-concrete composite box-girder bridge are few in the references and specifications. In order to provide the causes of the design and management, this paper has studied the mechanical properties of multi-beam steel-concrete composite box-girder bridge.
     The mechanical properties of steel concrete composite girders in hybrid-fiber are studied through the tests, numerical simulation and specification comparison of14push-out tests and two steel concrete composite girders. The load-slip formula and the calculation method of bearing capacity of the stud connector in hybrid-fiber concrete and the mechanical properties of steel concrete composite girders in hybrid-fiber in elastic state and failure state are gotten. Then the advised design method of bearing capacity of steel concrete composite girders in hybrid-fiber concrete is obtained. Compared with steel concrete composite girders in normal concrete, the toughness and durability of the steel concrete composite girders in hybrid-fiber concrete are better.
     A theory model is proposed for steel-concrete composite girders with the slip between the steel beam and concrete slab, shear deformation in the steel beam and the shear lag effect in the concrete slab. Different parabolic warping shape function accounting for the non-uniform transverse distribution of longitudinal displacements in the concrete slab and steel floor and transverse shear deformation of the girder web are introduced into Newmark's model. Then analytical solutions for the cases of simply supported composite girder under uniform distribution load and end concentrated load are derived. The analytical solutions agree with the test results. The shear lags coefficient decrease at the web and middle of concrete slab in the mid-section when increasing thickness of concrete slab and height of steel beam. While the ratio between the width and span of composite girder declines, the shear lag coefficient decreases at the web and increases at the middle of concrete slab in the mid-section. It is also indicated that the shear lag effect is more apparently varying with different factors under end concentrated load compared with uniform distribution load. The variation of the slip stiffness has a negligible effect to the shear lag coefficient.
     The eccentric-pressed method and rigid jointed girder method are modified considering the interface slippage's effect of multi-beam composite small box-girder bridge. The results obtained from FEM validated by experiments are compared with the modified theoretical algorithm, and the result shows that slippage considered rigid jointed girder method is applicable for calculating mid-span load transverse distribution of multi-beam composite small box-girder bridge. For narrow bridges, it is better to use slippage considered eccentric-pressed method. Furthermore, when designing multi-beam composite small box-girder bridge, the author suggests using incomplete shear connection form to reduce the bridge of the partial load effect.
     In the end, the analysis model about multi-beam steel-concrete composite box girder bridge is built and the integral analysis of the differential equations are obtained under the uniform load by the simulation plate method. Then the slip equation and deflection equation are obtained under the uniform load by simplified method. The analytical solutions agree with the FEM and other research results through the example. Finally, the stiffness variation of the shear connector has a neglected effect on the defection and an obvious effect on the slip.
引文
[1-1]GB50017-2012钢结构设计规范[S].2012.
    [1-2]JTJ025-86公路桥涵钢结构设计规范[S].1986.
    [1-3]Slutter R G, Driseoll G C, Flexural strength of steel-concrete composite beams[J], Journal of the Structural Division, ASCE,1965,91(2)71-99.
    [1-4]Viest I M, Investigation of stud shear connector for composite concrete and steel T-beams[J], Journal of American Concrete Institute,1956,27(2):875-891.
    [1-5]Thurlimann B, Fatigue and static strength of stud shear connectors[J], Journal of American Concrete Institute,1959,30(12):1287-1302.
    [1-6]Buttry K E, Behavior of stud shear connectors in lightweigh and normal-weight concrete [D], Msc thesis, University of Missouri,1965.
    [1-7]Champan J C, Balakrishman S, Experiments on composite bemas[J], The Structure Engineer,1964, 42(11):369-383.
    [1-8]Davies C, Small-Scale push-out tests on welded stud shear connectors[J], Concrete,1967, (3):311-316.
    [1-9]Johnson R P, Greenwood R D, Van Dalen K, Stud shear-connectors in hogging moment regions of composite beams[J], The Structure Engineer,1969,47(9):345-350.
    [1-10]Dennis Lam, M. Asce, Ehabellobody. Behavior of headed stud shears connectors in composite beam [J]. Journal of Structural Engineering,2005, Vol.131(1):96-107.
    [1-11]Huu Thanh Nguyen, Seugn Eock Kim. Finite element modeling of push-out tests for large stud shears connectors [J]. Journal of Constructional Steel Research,2009, Vol.65:1909-1920.
    [1-12]Li An, Krister Ccederwall. Push-out tests on studs in high strength and normal strength concrete [J]. Journal of Constructional Steel Research,1996, Vol.36(1):15-29.
    [1-13]Dongyan Xue Yuqing Liu Zhen Yu. Static behavior of multi-stud shear connectors for steel-concrete composite bridge [J]. Journal of Constructional Steel Research,2012,74:1-7
    [1-14]Pil-Goo Leea,Chang-Su Shimb,Sung-Pil Change. Static and fatigue behavior of large stud shear connectors for steel-concrete composite bridges[J]. Journal of Constructional Steel Research 2005,61:1270-1285.
    [1-15]Isabel B.Valente Paulo J.S.Cruz. Experimental analysis of shear connection between steel andlightweight concrete[J]. Journal of Constructional Steel Research,2009,65:1954-1963.
    [1-16]Luis Pallares, Jerome F. Hajjar. Headed steel stud anchors in composite structures, Part I:ShearfJ]. Journal of Constructional Steel Research,2010,66:198-212.
    [1-17]Wendel M. Sebastian. Ductility requirements in connections of composite exural structures [J]. International Journal of Mechanical Sciences 2003,45:235-251.
    [1-18]Samy Guezouli, Alain Lachal. Numerical analysis of frictional contact effects in push-out tests [J]. Engineering Structures 2012,40:39-50.
    [1-19]M. H. Shen, K. F. Chung. An Investigation into Shear Resistances of Headed Shear Studs in Solid Concrete Slabs With Local Aggregates in Hong Kong [J]. Procedia Engineering 2011,14:1098-1105.
    [1-20]Stefan Ernst, Russell Q, Bridge, Andrew Wheeler. Push-out tests and a new approach for the design of secondary Composite beam shear connections [J]. Journal of Constructional Steel Research,2009,65: 44-53.
    [1-21]Deric John OehlerS. Design and assessment of shear connectors in composite bridge beams[J]. ASCE,1995; 121 (2):214-224.
    [1-22]聂建国,沈聚敏,袁彦声.钢-混凝土组合梁剪力连接件实际承载力的研究[J].建筑结构学报,1996,17(2):21-28.
    [1-23]刘殿忠.钢-轻骨料混凝土组合梁计算方法与试验研究[D].吉林大学博士学位论文,
    [1-24]丁敏,薛伟辰,王骅.钢—高性能混凝土组合梁焊钉连接件抗剪性能的试验[J].工业建筑,2007,37(8):9-13.
    [1-25]唐琎,叶梅新.钢与混凝土组合结构密集型剪力钉群的受力状态[J].长沙铁道学院学报,1999;17(4):68-73.
    [1-26]肖林.钢混组合结构中剪力连接件试验研究[D].西南交通大学硕士学位论文,2008.
    [1-27]宗周红,车惠民.剪力连接件静载和疲劳试验研究[J].福州大学学报,1999;27(6):61-66.
    [1-28]贾艳东,刘玉臣,孙志屏等.钢与钢纤维混凝土组合梁焊钉连接件的性能试验[J].兰州理工大学学报,2008,34(4):141-144.
    [1-29]C. Dale Buckner, Ivan M. Viest. Composite construction in steel and concrete[M].New York: Published by the American Society of Civil Engineers Composite Construction in Steel and Concrete, 1988.
    [1-30]N.M.Newmark, C.P.Siess, I.M.viest. Test and analysis of composite beams withincomplete interaction[J]. Experimental Stress Analysis,1951,9(6):896-901.
    [1-31]G.Fabbrocino, GManfredi, E.Cosenza. Analysis of continuous composite beams Including partial interaction and bond[J] Journal of Structural Engineering,2000,126(11):1288-1294.
    [1-32]Nabeel Abdulrazzaq Jasim, Abdulamer Atalla. Deflections of partially composite continuous beams: A simple approach[J].Journal of Constructional Steel Research,1999, (49):291-301.
    [1-33]V.A.Oven,I.w.Burgess et al. An analytical model for the analysis of composite beams with Partial interaction[J].Computers & Structures,1997,62(3):493-504.
    [1-34]Y.C.Wang. Deflection of steel-concrete composite beams with partial shear interaction[J].Journal of Structural Engineering,1998,124(10):1159-1165.
    [1-35]Nabeel Abdulrazzaq Jasim. Deflections of partially composite beams with linear connector density [J]. Journal of Constructional Steel Research,1999, (49):241-254.
    [1-36]Roman Lackner, Herbert A. Mang, F.ASCE. Scale transition in steel-concrete interaction, I: Model[J].Journal of Structural Engineering,2003,129(4):393-402.
    [1-37]R.Seracino, D.J.Oehlers, M.F.Yeo. Partial-interaction flexural stresses in composite steel and concrete bridge beams [J].Engineering Structures,2001, (23):1186-1293.
    [1-38]N.K.Subedi, N.R.Coyle. Improving the strength of fully composite steel-concrete-steel beam elements by increased surface roughness-an experimental study [J].Engineering Structures,2002, (24):1349-1355.
    [1-39]M.Reza Salaril Enrico Spacone et al. Analysis of steel-concrete composite frames with bond-slip [J]. Journal of Structural Engineering,2001,127(11):1243-1250.
    [1-40]Omri Rand. Interlaminar shear stresses in solid composite beams using a complete out-of-plane shear deformation model [J]. Computers & Structures,1998,66(6):713-723.
    [1-41]Deric J.Oehlers, Ninh T.Nguyen, et al. Partial interaction in composite steel and concrete beams with foll shear connection [J]. J. Construct. Steel,1997,41(2):235-248.
    [1-42]J.Q.Ye.Interfacial shear transfer of RC beams strengthened by bonded composite plates [J]. Cement & Concrete composite,2001, (23):411-417.
    [1-43]Luigino Dezi, Graziang Leoni, et al. Time-dependent analysis of prestressed composite beams[J].ASCE,1995:121 (4):621-633.
    [1-44]GFabbrocino, G.Manfredi, E. Cosenza. Modeling of continuous steel-concrete. Composite beams:computational aspects [J]. Computers and Structures,2002, (80):2241-2251.
    [1-45]Rudolf Seracino, Chow T. Lee, et al. Partial interaction stresses in continuous composite beams under serviceability loads[J].Journal of Constructional Steel Research,2004, (60):1525-1543.
    [1-46]聂建国,沈聚敏,袁彦声.钢-混凝土简支组合梁变形计算的一般公式[J].工程力学,1994;11(1):21-27.
    [1-47]聂建国,沈聚敏,余志武.考虑滑移效应的钢-混凝土组合梁变形计算的折减刚度法[J].土木工程学报,1995;28(6):11-17.
    [1-48]王挺,聂建国,樊健生.钢-压型钢板混凝土组合梁极限抗弯承载力的试验研究[J].建筑结构学报,2001;22(2):61-64.
    [1-49]聂建国,王挺,樊健生.钢-压型钢板混凝土组合梁计算的修正折减刚度法[J].土木工程学报,2002;35(4):1-11.
    [1-50]张石波.考虑滑移效应的钢-混凝土组合结构桥梁力学行为研究[D].博士学位论文,铁道科学研究院,2012.
    [1-51]罗旗帜.基于能量原理的薄壁箱梁剪力滞理论与试验研究[D].博士学位论文,湖南大学,2005.
    [1-52]项贻强.梯形截面箱梁桥剪力滞效应的分析及其试验研究[M]:硕士学位论文,湖南大学,1985.
    [1-53]吴亚平,赖远明,朱元林等.考虑剪滞效应的薄壁曲梁有限单元法[J]:工程力学,2002,19(4):85-89.
    [1-54]甘亚南,周广春.薄壁箱梁纵向剪滞翘曲函数精度选择的研究[J]:工程力学,2008,25(6):100-106.
    [1-55]蔺鹏臻,周世军.基于剪切变形规律的箱梁剪力滞效应研究[J].铁道学报,2011,33(4):100-104.
    [1-56]蔺鹏臻,周世军,刘凤奎.抛物线型剪滞翘曲位移函数引起的附加轴力分析[J].工程力学,2010,27(8):90-94.
    [1-57]孙飞飞,李国强,考虑滑移、剪力滞后和剪切变形的钢-混凝土组合梁解析解[J].工程力学,2005,22(2):1-8.
    [1-58]Sun F F,Bursi O S.A displacement-based formulation for steel-concrete composite beams with shear lag[A]. Computational Modelling of Concrete Structures[C], A.A.Balkema Publishers, Lisse,2002.827-838.
    [1-59]李法雄,聂建国.钢-混凝土组合梁剪力滞效应弹性解析解[J].工程力学,2011,28(9):96-103.
    [1-60]张彦玲,李运生,季文玉.简支组合箱梁在横向对称荷载作用下的解析解及剪力滞研究[J].石家庄铁道学院学报(自然科学版),2009,22(01):5-14.
    [1-61]Adekola A O. On shear lag effects in orthotropiccomposite beams [J].International Journal of SolidsStructures,1974,10(4):735-754.
    [1-62]Gjelsvik A. Analog-beam method for determiningshear-lag effects [J]. Journal of Engineering Mechanics-ASCE,1991,117(7):1575-1594.
    [1-63]Dezi L, Gara F, Leoni G. Time-dependent analysis of shear-lag effect in composite beams [J]. Journal of Engineering Mechanics-ASCE,2001,127(1):71-79.
    [1-64]S. Schnabl, M. Saje, G. Turk and so on. Locking-free two-layer Timoshenko beam element with interlayer slip. Finite Elements in Analysis and Design,2007,43:705-714
    [1-65]S. Schnabl, M. Saje, G. Turk and so on. Analytical Solution of Two-Layer Beam Taking into account Interlayer Slip and Shear Deformation. Journal of Structural Engineering,6(2007):886-894.
    [1-66]M. Fragiacomo, C. Amadio, L. Macorini. Finite-element model for collapse and long-term analysis of steel-concrete composite beams[J].Journal of Structural Engineering,2004,130:489-497.
    [1-67]周凌字.钢—混凝土组合箱梁受力性能及空间非线性分析[D].博士学位论文,中南大学,2005.
    [1-68]李佳,余志武.钢-混凝土组合梁界面滑移研究[J].中南大学学位论文,2001.
    [1-69]周凌宇,余志武,蒋丽忠.组合梁滑移和剪切变形双重效应的有限元分析[J].中国铁道科学,2004;25(3):61-66.
    [1-70]周凌宇,余志武,蒋丽忠.钢-混凝土组合梁界面滑移剪切变形的双重效应分析[J].工程力学,2005;22:104-109.
    [1-71]聂建国,王宇航.基于ABAQUS的钢-混凝土组合结构纤维梁模型的开发及应用[J].工程力学,2012,29(1):70-80.
    [1-72]聂建国,孙国良.钢-混凝土组合梁槽钢剪力连接件的试验研究[J].郑州工学院学报,1985;6(2):10-17.
    [1-73]钢-混凝土组合结构科研组.钢-混凝土组合梁的试验研究[J].郑州工学院学报,1982;3(2):22-28.
    [1-74]张少云.焊钉剪力连接件的试验研究[D].郑州工学院硕士学位论文,1988.
    [1-75]崔玉萍.部分剪力连接钢-混凝土组合梁强度和变形的试验研究[D].北京市市政工程研究院硕士学位论文,1996.
    [1-76]宗周红等.预应力钢-混凝土组合梁静动载试验研究专题报告[R].成都:西南交通大学,1997.
    [1-77]宗周红.预应力钢-混凝土组合梁静动载行为研究[D].西南交通大学博士学位论文,1997.
    [1-78]宗周红.预应力组合板梁桥的弹塑性分析[J].桥梁建设,1996;(2):50-52.
    [1-79]宗周红,车惠民.预应力钢-混凝土组合梁有限元非线性分析[J].计算力学学报,1997;14(增刊):45-49.
    [1-80]宗周红,车惠民,房贞政.预应力钢-混凝土组合梁有限元非线性分析[J].中国公路学报,2000;13(2):48-51.
    [1-81]叶梅新,张晔芝.桁梁结合梁及其剪力连接件试验研究[J].铁道学报,1999;21(1):68-71.
    [1-82]罗如登,叶梅新.组合梁钢与混凝土板相对滑移及焊钉受力状态研究[J].铁道学报,2002;24(3):57-61.
    [1-83]聂建国,王洪全,谭英等.钢-高强混凝土组合梁的试验研究[J].建筑结构学报,2005,25(1):58-62.
    [1-84]陈建兵,万水,喻文兵等.波形钢腹板EF组合箱梁弯曲性能理论分析与试验研究[J].武汉理工大学学报,2004,28(1):14-19.
    [1-85]狄谨,周绪红,孔祥福等.波形钢腹板预应力混凝土组合箱梁试验[J].长安大学学报(自然科学版),2009,29(5):64-70.
    [1-86]吴文清,叶见曙,万水等.波形钢腹板组合箱梁在对称加载作用下剪力滞效应的试验研究[J].中国公路学报,2003,16(2):48-52.
    [1-87]胡少伟,叶祥飞.部分剪力连接预应力组合箱梁受弯性能试验研究[J].建筑结构学报,2011,32(10):19-24.
    [1-88]胡少伟,陈亮,胡汉林.预应力钢箱高强混凝土组合箱梁抗弯承载能力研究[J].土木工程学报,2011,44(6):26-33.
    [1-89]胡少伟,陈亮.预应力钢箱高强混凝土组合梁受扭性能全过程分析[J].工程力学,2011,28(2):129-1.
    [1-90]H.Y.Loh.B.Uy,M.A.Bradford. The effects of partial shear connection in the hogging moment regions of composite beams. Part I:Experimental study[J].Journal of Constructional Steel Research,2004, (60):897-919.
    [1-91]H.Y.Loh.B.Uy,M.A.Bradford. M.A.Bradford. The effects of partial shear connection in the hogging moment regions of composite beams. Part Ⅱ:Analytical study [J] Journal of Constructional Steel Research,2004, (60):921-962.
    [1-92]Gaetano Manfredi, Giovanni Fabbrocino, and Edoardo Cosenza.Modeling of steel-concrete composite beams under negative bending[J].Journal of Structural Engineering,1999,125(6):654-662.
    [1-93]Jianguo Nie, Jiansheng Fan, and C.S.Cai. Stiffness and deflection of steel-concrete composite beams under negative bending[J].Jounral of Structural Engineering,2004,130(11):1842-1851.
    [1-94]Tevfik S., Arda and Nermin Mengene. Strength of composite beams with web concrete under negative bending[J].Journal of Structural Engineering,1995,121(8):1170-1174.
    [1-95]R.Ian Gilbert, Mark Andrew Bradford. Time-dependent behavior of continuous composite beams at service loads[J].ASCE,1995;121 (2):319-327.
    [1-96]Hyung-Keun Ryu, Young-Jin Kim, Sung-Pil Chang. Crack control of a continuous composite two-girder bridge with prefabricated slabs under static and fatigue loads [J]. Engineering Structures, 2007,27:851-864.
    [1-97]Hyung-Keun Ryu, Sung-Pil Chang, Young-Jin Kim et al. Crack control of a steel and concrete composite plate girder with prefabricated slabs under hogging moments [J]. Engineering Structures, 2005,27:1613-1624.
    [1-98]Kang Su Kim, Deuck Hang Lee. Flexural behavior of prestressed composite beams with corrugated web:Part Ⅱ. Experiment and verification [J]. Composites:Part B,2011,42:1617-1629.
    [1-99]Wojciech Lorenc, Ernest Kubica. Behavior of composite beams prestressed with external tendons: experimental study [J]. Journal of Constructional Steel Research,2006,62:1353-1366.
    [1-100]朱聘儒.钢-混凝土组合梁设计原理[M].北京:中国建筑工业出版社,1989.
    [1-101]聂建国,刘明,叶列平.钢-混凝土组合梁结构[M].北京:中国建筑工业出版社,2005.
    [1-102]劳埃.扬[英].钢-混凝土组合结构设计[M].张培信译.上海:同济大学出版社,1991.
    [1-103]周起敬,姜维山,潘泰华.钢与混凝土组合结构设计施工手册[M].北京:中国建筑工业出版社,1994.
    [1-104]黄侨,周志祥.桥梁钢-混凝土组合结构设计原理[M].北京:人民交通出版社,2004.
    [1-105]张建华.钢-混凝土简支组合梁承载力研究[D].河海大学硕士学位论文,2001.
    [1-106]姚玲森.桥梁工程[M].北京:人民交通出版社,2008.
    [1-107]李国豪.公路桥梁荷载横向分布计算[M].北京:人民交通出版社,1990.
    [1-108]项贻强,杨万里,潘仁泉等.拱索体系加固的刚架拱桥荷载横向分布[J].中国公路学报,2007,20(4):91-95.
    [1-109]项贻强,李新生,申永刚等.空间梁拱组合式桥梁的分析理论及试验研究[J].中国公路学报,2002,15(1):67-71.
    [1-110]项贻强,桥梁结构的数值分析方法[M].北京:人民交通出版社,1993.
    [1-1 11]聂鑫,樊健生,付裕.箱形截面连续组合梁桥的荷载横向分布[J].清华大学学报(自然科学版),2010,49(12):1930-1933.
    [1-112]聂建国,张晓光,樊健生等.钢-混凝土组合梁加宽混凝土梁桥的横向分布系数[J].清华大学学报(自然科学版),2010,50(6):805-809.
    [1-113]聂建国,张晓光,樊健生.钢-混凝土组合梁加宽混凝土旧桥试验[J].中国公路学报,2010,23(5):35-48.
    [1-114]李正良,陈科昌.公路桥荷载横向分布简化计算[M].北京:人民交通出版社,1982.
    [1-115]王晖,项贻强.拱梁组合式连续梁桥横向分布研究[J].公路交通科技,2006,23(12):99-101.
    [1-116]李新生,申永刚,项贻强.空间梁拱组合体系桥梁的荷载横向分布计算[J].武汉理工大学.学报(交通工程与科学版),2001,25(4):489-492.
    [1-117]贺栓海,谢仁物.公路桥梁荷载横向分布计算方法[M].北京:人民交通出版社,1996.
    [1-118]CECS 13:89,4冈纤维混凝土试验方法[S].1989.
    [1-119]CECS 38:92,钢纤维混凝土结构设计与施工规程[S].1992.
    [1-120]YB/T 151-1999,混凝土用钢纤维[S].1999.
    [1-121]JT/T 525-2004,公路水泥混凝土纤维材料:钢纤维[S].2004.
    [1-122]M.A.Sanjuan, C.Andrade, A.Bentur. Effect of crack control in mortars containing polypropylene fibers on the corrosion of steel in a cementitious matrix [J], ACI Materials Journal,1997,94(2):134-141.
    [1-123]A.Bentur, S.Mindess. Fibre reinforced cementitious composites, Elsevier Applied Science, London, UK,1990.
    [1-124]Sorelli L G,Meda A M,Plizzari G A.Bending and uniaxial tensile testson concrete reinforced with hybrid steel fibers.Journal of Materialsin Civial Engineering.2005,17(5):519-527.
    [1-125]Qian C X,Stroeven P.Development of hybrid polyprolene steel fibre reinforced concrete. Cement and Concrete Research.2000,30(1):63-69.
    [1-126]杨松霖,刁波,叶英华.钢筋超高性能混合纤维混凝土梁力学性能试验研究[J].建筑结构学报,2011,32(2):17-23.
    [1-127]韦金峰,黄真.混合纤维混凝土力学性能试验研究[J].混凝土2010,245(3):67-71.
    [1-128]权莉,陶文祥.混杂钢-聚丙烯纤维混凝土弯曲韧性试验研究[J].混凝土2011,246(10):25-27.
    [1-129]Banthia N,Nandakumer N.Crack growth resistance of hybrid fiber reinforced cement composites. Cement&Concrete Composites.2003,25:3-9.
    [1-130]Yang S L, M illard S G, SoutsosM N, et a.l Influence of aggregate and curing regime on the m echanical properties of ultra-high performance fiber reinforcedconcrete (UHPFRC) [J]. Construction and Building Materials,2009,23(6):2291-2298
    [1-131]M indess S. Fiber reinforced cementitious composites [M]. Abingdon, Oxon:Taylor & Fran is,2007.
    [1-132]Banthia N, Sappakittipakorn M. Toughness enhancement in steel fiber reinforced concrete through fiber hybridization [J]. Cement and Concrete Research,2007,37(9):1366-1372.
    [1-133]白玲.超静定组合结构桥梁受力特性的3D-FEM模拟分析[D].博士学位论文,铁道科学研究院,2003.
    [1-134]汪劲伟.大跨度预弯组合梁式桥施工技术研究[D].硕士学位论文,同济大学,2006.
    [1-135]杜亚凡.结合梁桥的混凝土桥面板设计[J].国外桥梁,1998(2):39-41.
    [1-136]杨义东,李涛.钢—混凝土组合结构桥在日本的发展趋势[J].国外桥梁,1998(4):39-42.
    [1-137]Jean-Paul Lebet, Jean-Marc Ducret. Experimental and Theoretical Study of the Behaviour of Composite Bridges During Construction [J]. Journal of Constructional Steel Research,1998,46:69-70.
    [1-138]Hyo-Gyoung Kwak, Young-Jae Seo, Chan-Mook Jung, effects of the slab casting sequences and the drying shrinkage of concrete slabs on the short-term and long-term behavior of composite steel box girder bridges [J]. J Engineering Structures,2000,23:1453-1466.
    [1-139]毛学明.钢—混凝土组合梁界面特性分析与加劲钢板—混凝土组合板荷载分布宽度试验研究[D].博士学位论文,西南交通大学,2006.
    [1-140]刘冬.高性能混合纤维混凝土力学性能研究[D].硕士学位论文,上海交通大学,2010.
    [1-141]杨成蛟.混杂纤维混凝土力学性能及耐久性能试验研究[D].硕士学位论文,大连理工大学,2007.
    [1-142]卢彭真.钢—混凝土组合箱梁空间分析理论与应用研究[D].博士学位论文,西南交通大学,2009.
    [1-143]项贻强,何余良,陈勇彪等.多梁式组合小箱梁桥荷载横向分布计算的修正刚接梁法[J].第二十届全国桥梁学术会议论文集(上),2012,86-91.
    [1-144]项贻强,何余良,刘丽思等.考虑滑移的多梁式组合小箱梁桥荷载横向分布[J].哈尔滨工业大学学报,2012,44(8):113-118.
    [1-145]邵长宇.组合结构桥梁—国际发展与国内展望[J].第十八届全国桥梁学术会议论文集(上),2008,158-166.
    [1-146]郭志毅.钢—混凝土简支组合梁抗弯性能的试验与理论研究[D].硕士学位论文,西安建筑科技大学硕士论文,2007.
    [1-147]付果.考虑界面滑移及掀起影响的钢—混凝土组合梁试验与理论研究[D].博士学位论文,西安建筑科技大学博士论文,2008.
    [2-1]Li An, Krister Ccederwall. Push-out tests on studs in high strength and normal strength concrete [J]. Journal of Constructional Steel Research,1996, Vol.36(1):15-29.
    [2-2]Dongyan Xue Yuqing Liu Zhen Yu. Static behavior of multi-stud shear connectors for steel-concrete composite bridge [J]. Journal of Constructional Steel Research,2012,74:1-7.
    [2-3]Pil-Goo Leea,Chang-Su Shimb,Sung-Pil Change. Static and fatigue behavior of large stud shear connectors for steel-concrete composite bridges[J]. Journal of Constructional Steel Research 2005,61:1270-1285.
    [2-4]Isabel B.Valente Paulo J.S.Cruz. Experimental analysis of shear connection between steel andlightweight concrete[J]. Journal of Constructional Steel Research,2009,65:1954-1963.
    [2-5]Luis Pallares, Jerome F. Hajjar. Headed steel stud anchors in composite structures, Part I:Shear[J]. Journal of Constructional Steel Research,2010,66:198-212.
    [2-6]Wendel M. Sebastian. Ductility requirements in connections of composite exural structures [J]. International Journal of Mechanical Sciences 2003,45:235-251.
    [2-7]M. H. Shen, K. F. Chung. An Investigation into Shear Resistances of Headed Shear Studs in Solid Concrete Slabs With Local Aggregates in Hong Kong [J]. Procedia Engineering 2011,14:1098-1105
    [2-8]Stefan Ernst, Russell Q, Bridge, Andrew Wheeler. Push-out tests and a new approach for the design of secondary Composite beam shear connections [J]. Journal of Constructional Steel Research,2009,65: 44-53.
    [2-9]M.A.Sanjuan, C.Andrade, A.Bentur. Effect of crack control in mortars containing polypropylene fibers on the corrosion of steel in a cementitious matrix [J], ACI Materials Journal,1997,94(2):134-141.
    [2-10]A.Bentur, S.Mindess. Fibre reinforced cementitious composites, Elsevier Applied Science, London, UK, 1990.
    [2-11]Sorelli L G,Meda A M,Plizzari G A.Bending and uniaxial tensile testson concrete reinforced with hybrid steel fibers.Journal of Materialsin Civial Engineering.2005,17(5):519-527.
    [2-12]C.X. Qian, P. Stroeven. Development of hybrid polypropylene-steel fiber-reinforced concrete [J]. Cement and Concrete Research,2000,3:63-69.
    [2-13]权莉,陶文祥.混杂钢-聚丙烯纤维混凝土弯曲韧性试验研究[J].混凝土2011,246(10):25-27.
    [2-14]Banthia N,Nandakumer N.Crack growth resistance of hybrid fiber reinforced cement composites. Cement & Concrete Composites.2003,25:3-9.
    [2-15]Oehlers, D.J & Johnson,R.P. The strength of stud shear connections in composite beams. Struct. Engr, 65b(2).198744-48.
    [2-16]Eurocode-4. EN 1994. Design of composite steel and concrete structures.Part 1-1 General Rules for buildings. Brussels:Cen-European Committee For Standardisation;2004.
    [2-17]AASHTO LRFD, Bridge Design Specifications.3RD ED. WASHINGTON, D.C:American Association of State Highway And Transportation Officials; 2012.
    [2-18]Ollgaard H G, Slutter R G, Fisher J D. Shear Strength Of Stud Connectors In Lightweight And Normal-Weight Concrete [J], Journal Of American Institute Of Steel Construction,1971,8(2):55-64.
    [2-19]Buttry K E. Behavior of stud shear connectors in lightweight and normal-weight concrete [D], Masc. thesis, University of Missouri,1965.
    [2-20]Dennis Lam, M.ASCE, Ehab E1-Lobody. Behavior of headed stud shear connectorsin composite beam, journal of structural engineering, vol.131, no.1,2005,96-107.
    [2-21]Huu Thanh Nguyen, Seung Eock Kim. Finite element modeling of push-out tests for large stud shear connectors, journal of constructional steel research, vol.65,2009,1909-1920.
    [2-22]Samy Guezouli, Alain Lachal. Numerical analysis of frictional contact effects in push-out tests [J]. Engineering Structures.2012,40:39-50.
    [2-23]王新敏ANSYS工程结构数值分析[M].北京:人民交通出版社.
    [2-24]刘冬.高性能混合纤维混凝土力学性能研究[D].硕士学位论文,上海交通大学,2010.
    [2-25]杨成蛟.混杂纤维混凝土力学性能及耐久性能试验研究[D].硕士学位论文,大连理工大学,2007.
    [3-1]Hyung-Keun Ryu, Young-Jin Kim, Sung-Pil Chang. Crack control of a continuous composite two-girder bridge with prefabricated slabs under static and fatigue loads [J]. Engineering Structures,2007,27: 851-864.
    [3-2]Hyung-Keun Ryu, Sung-Pil Chang, Young-Jin Kim et al. Crack control of a steel and concrete composite plate girder with prefabricated slabs under hogging moments [J]. Engineering Structures,2005,27: 1613-1624.
    [3-3]Kang Su Kim, Deuck Hang Lee. Flexural behavior of prestressed composite beams with corrugated web: Part II. Experiment and verification [J]. Composites:Part B,2011,42:1617-1629.
    [3-4]Wojciech Lorenc, Ernest Kubica. Behavior of composite beams prestressed with external tendons: experimental study [J]. Journal of Constructional Steel Research,2006,62:1353-1366.
    [3-5]Jean-Paul Lebet, Jean-Marc Ducret. Experimental and Theoretical Study of the Behaviour of Composite Bridges During Construction [J]. Journal of Constructional Steel Research,1998,46:69-70.
    [3-6]Hyo-Gyoung Kwak, Young-Jae Seo, Chan-Mook Jung, effects of the slab casting sequences and the drying shrinkage of concrete slabs on the short-term and long-term behavior of composite steel box girder bridges [J]. J Engineering Structures,2000,23:1453-1466.
    [3-7]Valente, Isabel B. Cruz Paulo J. S. Experimental analysis on steel and lightweight concrete composite beams [J]. Steel and Composite Structures,2010,2(10):169-185.
    [3-8]K.M.A. Sohel, J.Y. Richard Liew, J.B. Yan, M.H. Zhang. Behavior of Steel-Concrete-Steel sandwich structures with lightweight cement composite and novel shear connectors [J]. Composite Structures,2012, 94:3500-3509.
    [3-9]聂建国,王洪全,谭英等.钢-高强混凝土组合梁的试验研究[J].建筑结构学报,2004,1(25):58-62.
    [3-10]M.A.Sanjuan, C.Andrade, A.Bentur. Effect of crack control in mortars containing polypropylene fibers on the corrosion of steel in a cementitious matrix [J], ACI Materials Journal,1997,94(2):134-141.
    [3-11]A.Bentur, S.Mindess. Fibre reinforced cementitious composites, Elsevier Applied Science, London, UK, 1990.
    [1-12]Sorelli L QMeda A M,Plizzari G A.Bending and uniaxial tensile testson concrete reinforced with hybrid steel fibers.Journal of Materialsin Civial Engineering.2005,17(5):519-527.
    [3-13]C.X. Qian, P. Stroeven. Development of hybrid polypropylene-steel fiber-reinforced concrete [J]. Cement and Concrete Research,2000,3:63-69.
    [3-14]Banthia N, Nandakumer N.Crack growth resistance of hybrid fiber reinforced cement composites. Cement and Concrete Composites.2003,25:3-9.
    [3-15]GB50017-2003钢结构设计规范[S].2012.
    [3-16]权莉,陶文祥.混杂钢—聚丙烯纤维混凝土弯曲韧性试验研究[J].混凝土2011,246(10):25-27.
    [3-17]GB 50152-92,混凝土结构试验方法标准[S].1992.
    [3-18 CECS 13:89,钢纤维混凝土试验方法[S].1989.
    [3-19]GB/T 50081-2002,普通混凝土力学性能试验方法标准[S].2003.
    [3-20]AASHTO LRFD. Bridge design specifications.3rd ed. Washington, D.C:American association of state highway and transportation officials; 2012.
    [3-21]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社.
    [3-22]周凌宇.钢—混凝土组合箱梁受力性能及空间非线性分析[D].博士学位论文,中南大学,2005.
    [4-1]孙飞飞,李国强.考虑滑移、剪力滞后和剪切变形的钢-混凝土组合梁解析解[J].工程力学,2005,22(2):1-8.
    [4-2]Sun F F,Bursi O S.A displacement-based formulation for steel-concrete composite beams with shear lag[A]. Computational Modelling of Concrete Structures[C], A.A.Balkema Publishers, Lisse,2002.827-838.
    [4-3]Newmark N M,Seiss C P,Viest I M.Test and analysis of composite beams with incomplete interaction[J]. Proc. Society for Experimental Stress Analysis,New York,1951,9(1):75-92.
    [4-4]李法雄,聂建国.钢-混凝土组合梁剪力滞效应弹性解析解[J].工程力学,2011,28(9):96-103.
    [4-5]张彦玲,李运生,季文玉.简支组合箱梁在横向对称荷载作用下的解析解及剪力滞研究[J].石家庄铁道学院学报(自然科学版),2009,22(01):5-14.
    [4-6]Adekola A O. On shear lag effects in orthotropiccomposite beams [J].international journal of solids structures,1974,10(4):735-754.
    [4-7]Gjelsvik A. Analog-beam method for determiningshear-lag effects [J]. Journal of engineering mechanics-asce,1991,117(7):1575-1594.
    [4-8]Dezi L, Gara F, Leoni G. Time-dependent analysis of shear-lag effect in composite beams [J]. Journal of Engineering Mechanics-ASCE,2001,127(1):71-79.
    [4-9]蒋丽忠,余志武,李佳.均布荷载作用下钢-混凝土组合梁滑移及变形的理论计算[J].工程力学,2003,20(2):133-137.
    [4-10]张士铎,邓小华,王文州.箱形薄壁梁剪力滞效应[M].第一版.北京:人民交通出版社,1998.
    [4-11]蔺鹏臻,周世军.基于剪切变形规律的箱梁剪力滞效应研究[J].铁道学报,2011,33(4):100-104.
    [4-12]蔺鹏臻,周世军,刘凤奎.抛物线型剪滞翘曲位移函数引起的附加轴力分析[J].工程力学,2010,27(8):90-94.
    [4-13]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社.
    [5-1]姚玲森.桥梁工程[M].北京:人民交通出版社,2008.
    [5-2]李国豪.公路桥梁荷载横向分布计算[M].北京:人民交通出版社,1990.
    [5-3]项贻强,桥梁结构的数值分析方法[M].北京:人民交通出版社,1993.
    [5-4]项贻强,杨万里,潘仁泉等.拱索体系加固的刚架拱桥荷载横向分布[J].中国公路学报,2007,20(4):91-95.
    [5-5]项贻强,李新生,申永刚等.空间梁拱组合式桥梁的分析理论及试验研究[J].中国公路学报,2002,15(1):67-71.
    [5-6]聂鑫,樊健生,付裕.箱形截面连续组合梁桥的荷载横向分布[J].清华大学学报(自然科学版),2010,49(12):1930.-1933.
    [5-7]聂建国,张晓光,樊健生等.钢-混凝土组合梁加宽混凝土梁桥的横向分布系数[J].清华大学学报(自然科学版),2010,50(6):805-809.
    [5-8]Newmark, N.M., Siess, C.P., Viest, I.M.,1951. Test and analysis of composite beams with incomplete interaction. Proceedings of Society for Experimental Stress and Analysis 9 (1),75-92.
    [5-9]聂建国,张晓光,樊健生.钢-混凝土组合梁加宽混凝土旧桥试验[J].中国公路学报,2010,23(5):35-48.
    [5-10]聂建国,沈聚敏,袁彦声.钢-混凝土简支组合梁变形计算的一般公式[J].工程力学,1994,11(1):21-27.
    [5-11]聂建国,沈聚敏,余志武.考虑滑移效应的钢-混凝土组合梁变形计算的折减刚度法[J].土木工程学报,1995,28(6):11-17.
    [5-12]同济大学路桥教研组.公路桥梁荷载横向分布计算[M].北京:人民交通出版社,1977.
    [5-13]Goodman, J.R.,1967. Layered wood systems with interlayer slip, Ph.D. thesis, University of California, Berkeley, California.
    [5-14]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社.
    [5-15]项贻强,何余良,陈勇彪等.多梁式组合小箱梁桥荷载横向分布计算的修正刚接梁法[J].第二十届全国桥梁学术会议论文集(上),2012,86-91.
    [5-16]项贻强,何余良,刘丽思等.考虑滑移的多梁式组合小箱梁桥荷载横向分布[J].哈尔滨工业大学学报,2012,44(8):113-118.
    [6-1]Newmark, N.M., Siess, C.P., Viest, I.M. Test and analysis of composite beams with incomplete interaction. Proceedings of Society for Experimental Stress and Analysis,1951,9 (1):75-92.
    [6-2]S. Schnabl, M. Saje, G. Turk and so on. Locking-free two-layer Timoshenko beam element with interlayer slip. Finite Elements in Analysis and Design,2007,43:705-714
    [6-3]S. Schnabl, M. Saje, G. Turk and so on. Analytical Solution of Two-Layer Beam Taking into account Interlayer Slip and Shear Deformation. Journal of Structural Engineering,6(2007):886-894
    [6-4]聂建国,沈聚敏,袁彦声.钢-混凝土简支组合梁变形计算的一般公式[J].工程力学,1994,11(1):21-27.
    [6-5]聂建国,沈聚敏,余志武.考虑滑移效应的钢—混凝土组合梁变形计算的折减刚度法[J].土木工程学报,1995,28(6):11-17.
    [6-6]蒋丽忠,余志武,李佳.均布荷载作用下钢-混凝土组合梁滑移及变形的理论计算[J].工程力学,2003,20(2):133-137.
    [6-7]聂建国,李法雄.钢-混凝土组合板的弹性弯曲及稳定性分析[J].工程力学,2009,26(10):59-66.
    [6-8]中国科学院北京力学研究所固体力学研究室板壳组,夹层板壳的弯曲、稳定和振动[M].北京:科学出版社,1977.
    [6-9]董石麟,钱若军.空间网格结构的分析理论与计算方法[M].北京:中国建筑工业出版社,2000.
    [6-10]王磊,李家宝.结构分析的有限差分法[M].北京:人民交通出版社,1986.
    [6-11]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700