纳米复合光催化剂的制备及其在印染废水中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
印染废水因其毒性大、成分复杂、不易降解等特点,其降解处理已成为废水处理领域中的一大难题。以半导体材料为催化剂的光催化氧化法是近年来兴起的一种水处理技术,与传统方法相比,具有高效、稳定、无二次污染以及对各类有机污染物尤其是难生物降解的有毒污染物进行深度、彻底氧化的突出特点,还具有可直接利用太阳能进行光化学转换的独特优势,因而成为世界各国研究的热点。TiO_2是一种较为理想的光催化剂,但普通TiO_2存在电荷分离效率差、光催化活性低等缺点,致使它的应用受到限制。为了提高TiO_2的光催化活性,通过贵金属Ru对TiO_2进行改性,研究复合光催化剂的制备方法,并以直接耐晒黑G和直接红棕为模型反应物,评价所制催化剂的光催化活性,具体研究工作如下:
     1.光催化剂的制备及结构表征
     采用Sol-gel-immersion法制备了复合光催化剂RuO_2/TiO_2和RuO_2/La_2O_3/TiO_2,并借助XRD、TEM等测试手段进行了结构表征。结果表明本文所制备的复合催化剂平均粒度为10~20nm,热处理温度升高导致TiO_2由锐钛矿相向金红石相转变。500℃热处
    
    摘要
    理所得催化剂中TIOZ主要为锐钦矿相。
     2.光催化降解实验
     利用自行设计的光催化反应装置,系统地研究了复合光催化剂对偶氮染料直接耐
    晒黑G和直接红棕的光催化降解性能,探讨了影响光催化反应的各种因素,确定了有
    利一于光催化反应的最佳条件:
     尸
     (l)RuoZ汀10:光催化体系:RuoZ掺杂量0.16%、锻烧温度500℃、投加量sg/L、
    通气量300 mL/min、初始pH值5.05、光源为高压汞幻一时,30min直接耐晒黑G降解
    率97.6%;降解过程服从Langmuir一Hinshehwood动力学模型,并求得反应速率常数
    胜4 .94x 10一3
    ·m in)
    了,吸附常数K一’4.22 L.mmol一’;催化剂粉体回收实验表明,
    其光催化
    ,乡年一百分点,可重复利用。
     (2)RuOZ/LaZo3/Tio:光催化体系:①降解直接耐晒黑G(somg/L):RuO:掺杂址
    o一6%、锻烧温度500oC、投加量3g/L、通气量300 mL/min、初始pH值7.32、光源
    为高压汞灯时,吸收光谱表明4Omin可见区有色基团己基本降解,6Omin在20Onm一
    7O0nm范围吸光度接近零,表明其己完全降解;不论哪种复合光催化剂,其光催化活
    性都比纯TIOZ高(约提高1 .2倍以上),三元复合光催化剂RuOZ/L aZO3汀io:比二元
    复合光催化剂RuoZ厅io:催化活性高。②降解直接红棕(80m叭):Ruo:掺杂散0.12
    %、锻烧温度500,C、投加量3g/L、通气量100 mL/min、初始pH值8.98、光源为高
    压汞灯,30min降解率达100%,测得反应速率常数k=0.206min‘,,半衰期为337而n。
    添加HZOZ可明显提高降解速率。
     (3)实际印染废水降解:将RuOZ/TIOZ光催化降解体系应用于实际印染废水(初
    始值:色度10000、CODer2614 mg/L),经12omin光催化降解其色度及CoDer分别
    降低99.2%和97.6%。
As poisonous and complicated of chemical composition of printing and dyeing wastewater, the degradation and treatment of them is a very difficult problem in the field of wastewater treatment. Photocatalytic oxidation of water contaminants with semiconductors has been reported as one of more promising remediation technologies for complete mineralization of undesirable organic contaminants, particularly toxic and unbiodegradable organic compounds. TiO2 has been shown to be an excellent photocatalyst owing to its stable chemical characteristics and low price, etc. However, due to its low reaction rate and narrow range of available spectrum, photocatalytic oxidation is almost unindustrialized in wastewater treatment. In order to improve the photocatalytic activity and extend energy range of photo-excitation, expensive metal (Ru) was deposit for amend photocatalytic activity of TiO2 in this thesis.
    1. Preparation and structural characterization of photocatalyst
    RuO2/TiO2 and RuO2/La2O3/TiO2 were prepared by Sol-gel-immersion method. The structure and morphology of catalysts were characterized by means of XRD and TEM. The results indicated that the average particle size of catalysts was below 20nm and anatase TiO2 transformed to rutile TiO2 with increase of calcinations temperature. The percent of anatase TiO2 was about 100% at the calcinations temperature of 500C for 2h.
    2. Photocatalytic degradation experiments
    The photocatalytic activity of multi-photocatalyst was evaluated by the photodegradation of Direct Fast Blank G and Direct Fast Brown, and the effects of various conditions on the photocatalytic characteristics were investigated. The experimental results were as follows:
    
    
    
    (1) Photodegradation system of RuO2/TiO2: when addition of RuO2 0.16%, calcinations temperature 500C , amount of photocatalyst 5g/L, air flow rate 300 mL/min, initial pH 5.05, mercury lamp as light source, Direct Fast Blank G was degraded 97.6% in 30min.The results showed that the degradation reaction of the Direct Fast Blank G almost followed Langmuir-Hinshehwood model, and the reaction was the apparent first order. The reaction rate constant k and the absorption constant K were determined to be 4.94x10-3 mmol (L min)-1 and 14.22L mmol-1 respectively. The photocatalytic activity of used photocatalyst declined less than 3 percentage when compared with unused,'so it could be used repeatedly.
    (2) Photodegradation system of RuO2/La2O3/TiO2: (1) Degradation of Direct Fast Blank G: addition of RuO2 0.16% , calcinations temperature 500C , amount of photocatalyst 3g/L, air flow rate 300 mL/min> initial pH 7.32, mercury lamp as light source, the groups of visible spectrum were degraded in 40min, and the absorption spectrum from 200nm to 700nm were almost zore in 60min, this result indicates that the dye has been degraded completely. Compared with single nanosized TiO2, activity of multi-photocatalyst promoted 1.2 times. The half-degradation period by RuO2 /La2O3 /TiO2 been cut down 5min than RuO2/TiO2. (2) Degradation of Direct Fast Brown: addition of RuO2 0.12%, calcinations temperature 500C,amount of photocatalyst 3g/L, air flow rate 100 mL/min, initial pH 8.98, mercury lamp as light source, the degraded efficiency was 97.6% in 30min, and absorption constant k=0,206min-1,t1/2=3.37 min. The degraded rate improved obviously when addition of H2O2 to the system of RuO2/La2O3/TiO2 photocatalyt
    ic degradation.
    (3) Degradation of real printing and dyeing wastewater: By using of RuO2/TiO2 photocatalytic degradation system, the photocatalytic degradation of the real printing and dyeing wastewater (the value of initiation Chromaticity: 10000, CODCr value: 2614mg/L) was carried out for 120min, the results showed that the Chromaticity and CODCr value were reduced to be 99.2% and 97.6%, respectively.
引文
[1] 李家珍.染料、染色工业废水处理.北京:化学工业出版社,1997.
    [2] 王振东,张志祥.印染废水的污染与控制[J].环境科学与技术,2001,(1):19-23.
    [3] Denisova T I, Meleshevich S I, Sheka I A. Sorption of anionic dyes by silicopoly (methyl siloxanes). Zh. Prikl. Khim, 62(5),1989:1182—1184.
    [4] Subbotina E A, Tarasevich Y I, Orazmuradov A O. Adsorption of direct dyes on organically substituted montmorillonite. Izu. Akad Nauk Turkm. SSR, Ser. Fiz.-Tekh.,Khim. Geol. Nauk 1985, (3): 105-108.
    [5] 余颖,庄源益,邹其猛等.有机絮凝剂对水中染料的絮凝作用探讨明.环境化学,2000,19(2):142-147.
    [6] 宫世国,陶秀成,方金—新型混凝脱色剂((ASD-Ⅱ)的研制及其在印染废水处理中的应用[J].T-业水处理,1993,13(5):16-19.
    [7] 尚国平,袁月梅,龚广参等.改进的电解一气浮法处理印染废水[J].化工环保,1993,13(5):285-288.
    [8] 陈鸿林,张长寿,苏静.混凝沉淀一二氧化氯氧化法处理印染废水明.化工环保,1999 19(4):223-225
    [9] Fujishima A, Honda K. Electrochemical Photocatalysis of Water at a Semicondutor Electrode[J]. Nature, 1972,37(1): 238-245.
    [10] Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous at TiO_2 power[J]. J.Am. Chem. Sot., 1977, 99(1): 303-304.
    [11] Pruden A L,Ollis D F.J.Catal.1983,82:404.
    [12] Matthews R W.J.Solar Energy. 1992,49(6):507-513.
    [13] 魏子栋,殷菲,谭君等.TiO_2光催化氧化研究进展.化学通报,2001,(2):76-80.
    [14] 贺北平,王占生,张锡辉.半导体光催化氧化有机物的研究现状及发展趋势.环境科学,1994,15(3):80-83.
    [15] 魏宏斌,李田,严煦世.水中有机物的光催化氧化.环境科学进展,1994,2(3):50-57.
    
    
    [16] 高铁,钱朝勇.TiO_2光催化氧化水中有机污染物进展.工业水处理,2000,20(4):10-14.
    [17] 薛向东,金奇庭.TiO_2光降解水中污染物的研究进展.中国给水排水,2001,17(6):26-29.
    [18] 游道新,鲍明亮.亲水性染料日光催化脱色的初步研究[J].水处理技术,1992,18(2):90-99.
    [19] 黄惠莉,黄妙良,蔡阿娜等.二氧化钛光催化降解处理染料废水.化工环保,2002,22(2):84-87.
    [20] 蒋伟川,俞传明,王琪全.半导体光催化降解实际印染废水的研究.工业水处理,1994,14(2):25-27.
    [21] 姚清照,刘止宝.光电催化降解染料废水工业水处理,1999,9(6):15-16.
    [22] 陈士夫,赵梦月,陶跃武.光催化降解有机磷农药废水的研究.工业水处理,1996,16(1):17-19.
    [23] 赵进才,张风雷二氧化钛微粒存在下表面活性剂光催化分解机理的研究.感光化学与光化学1996,14(3):269-273
    [24] Hidaka H, Asai Y, Zhao J, et al Photoelectrochemical decomposition of surfactants on a TiO_2/TCO particulate film electrode assembly [J]. J Phys Chem, 1995,99(20):8244-8248.
    [25] Pelizzetti E, Pramauro E, Monero C, et al Photocatalysis and Environment, Trends and Application [M].Netherlands: Kluwer Acadermic Publishers, 1988: 469-497.
    [26] Oilisdf, Pelizzeetti E, Serpone N. Photocatalyzed destruction of water contaminants [J]. Environ Sci Technol, 1991, 25(10):1523-1528.
    [27] Calza P, Minero C, Pelizzeetti E.Photocatalytic transformations of chlorinated methanes in the presence of electron and hole scavengers[J].J Chem Soc, Faraday, 1997, 93(2):3765-3771.
    [28] Stanfford U, Gray K A. Gray, Kamat P V. Photocatalytic degradation of 4-chlorophenol:the effects of verified TiO_2 concentration and light wave
    
    length[J]. J Catal, 1997, 167:25-32.
    [29] Berry R J, Mueller M R. Photocatalytic decomposition of crude oil slicks using Tio_2 on a floating substrate[J]. Microchemical Journal,1994,50:28-32.
    [30] 方佑龄,赵文宽,赵国华.用浸涂法制备漂浮附载型TiO_2薄膜光催化降解辛烷[J].环境化学1997,16(5):413-417.
    [31] Heller A. Degradation of oil pollutant on the surface of water with titania coated on the floating beads [A].Abstracts of the First International Conference on TiO_2 Photocatalytic Purification and Treatment of Water and Air[C]. London: Ontario, 1992:17-27.
    [32] 戴遐明,陈永华,李庆丰等.半导体氧化物超细粉末对cr(Ⅵ)的光催化还原·作用研究.环境科学,1996,17(6):34-36.
    [33] Hidaka H. et al. J. Phys.Chem.96,2226,1992.
    [34] 王怡中,符雁,汤鸿霄.甲基橙溶液多相光催化降解研究.环境科学,1998,19(1):1-4.
    [35] 雷乐成,汪大翌.水处理高级氧化技术.北京:化学工业出版社,2001.
    [36] 孙德智,于秀娟,冯玉杰.环境工程中的高级氧化技术.北京:化学工业出版社,2002.
    [37] 郑红,汤鸿霄,王怡中.有机污染物半导体多相光催化氧化机理及动力学研究进展.环境科学进展,1996,4(3):2-16.
    [38] 崔高峰,王伯勇,王磊等.纳米TiO_2的光催化现象及其在环保领域的应用工业水处理,2000,20(12):1-5.
    [39] 孙晓君,蔡伟民,井立强等.二氧化钛光催化技术研究进展.哈尔滨工业大学学报,2001,33(4):534-541.
    [40] 李晓平,徐宝琨,刘国范等.纳米TiO_2光催化降解水中有机污染物的研究与发展.功能材料,1999,30(3):242-245.
    [41] Rafagopalan Venkataclr, Robert W. peter. Ultraviolet Light Hydrogen Peroxide, Fenton Reagent, and Titanium Dioxide-Assisted Photocatalysis. Hazardous Waste&Hazardous Materials, Vol. 10, No.2,1993
    
    
    [42] Gerald Ruppert and Reaction Bauer. UV-O_3, UV-H_2O_2, UV-TiO_2 and the photo-Fenton Reaction-Comparison of Advanced Oxidation Processes for Wastewater Treatment. Chemosphere, Vol.28, No8, 1994.
    [43] R.Bauer, G.Waldner. The Photo-Fenton Reaction and TiO_2/UV Process for Waste Water Treatment-Novel Development. Catalysis Today, 53(1999).
    [44] J M Winterbottom, Z Khan, A P Boyes, S Raymahasay. Photocatalyzed oxidation of phenol in water using a Cocurrent Downflow Contactor Reactor (CDCR). Environmental Progress, Vol. 16,No.2,1997:125.
    [45] Bahanemann D, Bockelmann D, Goslich R. Solar Ener. Mater. 1991,24:564-583.
    [46] 王怡中,胡春,汤鸿霄.在TiO_2催化剂上苯酚光催化氧化反应研究.环境科学学报,1995,15(4):472-478.
    [47] Shiva umar, llen P Davis. Heterogeneous photocatalytic oxidation of nitrotoluenes.Water Environment Research, Vol.69, No.7,1997:1238.
    [48] Ajay K Ray, Antonie A C M Beenackers. Novel photocatalytic reactor for water purification. American Institute of Chemical Engineers, Vol.44, No.2,1998:477.
    [49] R Asahi, T Morikawa, T Ohwaki, K Aoki, Y Taga. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science,Washington,Vol.293, No.5528, 2001: 269-271.
    [50] E Sahle-DemessieJ, Enriquez G Gupta. Attenuation of methyl tert-butyl ether in water using sunlight and a photocatalyst. Water Environment Research; Alexandria, Mar/Apr; Vol.74, No.2,2002:122.
    [51] Z Shen, W Wang, J Jia, X Feng, et al Catalytically assisted electrochemical oxidation of dye acid Red B. Water Environment Research; Alexandria, Vol.74, No.2,2002:117.
    [52] 高濂,郑姗,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社、 材料科学与工程出版中心,2002.
    [53] Okamoto K, Yamamoto Y, Tanaka H, et al. Bull. Chem. Soc. Jpn. 1982,
    
    58:2023-2027
    [54] 张敏,金振声.在TiO_2上CO的光催化氧化.感光科学与光化学,2000,18(4):329-335.
    [55] 水淼,岳林海,徐铸德.稀土镧掺杂二氧化钛的光催化特性.物理化学学报,2002,16(5):459-463.
    [56] 颜秀茹,宋宽秀,霍明亮等.TiO_2/SiO_2的制备及其光催化降解敌敌畏.应用化学,1999,16(4):94-96.
    [57] 金华峰,李文戈,向纪明.Fe~(3+)/TiO_2/SiO_2复合纳米微粒的合成及光催化降解NO_2.应用化学,2001,18(8):636-639.
    [58] Hoffmann M R,Martin S T, Choi Wetal.Environmental application of semiconductor photocatalysis.Chemical Review, 95(1), 1995:69-96.
    [59] Rothenberg G, Moser J, Gratzeln M, et al. Charge carrier trapping and recombination dynamics in small semiconductor particles.J Am Chem Soc, 107(35), 1985:8054-8057.
    [60] 郭新章,邓南圣.TiO_2、WO_2对活性染料的水溶液的光催化降解.工业水处理,1992,12(2):22-25.
    [61] 席北斗,孔欣,刘纯新等.加铂修饰型催化剂光催化氧化五氯酚.环境化学.2001 20(1):27-30.
    [62] 董庆华.半导体光催化.感光科学与光化学[J].1993,11(2):76-81.
    [63] Bockeimann D, Gostich R, Weichgrehe D et al. Photocatalytic purification andtreatment of water and air[M]. Elsevier: Amsterdam, 1993, 771
    [64] 蒋伟川,谭湘萍.载银TiO_2半导体催化剂降解染料水溶液的研究.环境科学,1995,16(2):15-18.
    [65] Fu X, Zeltner W A, Anderson M A. Appl. Catal .B : Environ., 1995,6:209.
    [66] Harade K, HisanagaT, TanakaK. War. Res., 1990, 24: 1415.
    [67] 王传义,刘春艳,沈涛.半导体光催化剂的表面修饰.高等学校化学学报,,12 (19),1998:20113-20119.
    
    
    [68] Choi W, Termin A, Hoffmann M R. The Role of Metal Ion Dopants in QuantumSized TiO_2: Correlation Between Photoreactivity and charge Carrier Recombination Dynamics [J]. Phys. Chem. 1994,98:13669-13679.
    [69] 张玉红,熊国兴,杨维慎等.溶胶.凝胶法制备复合M_xO_y/TiO_2光催化剂.物理化学学报,2001,17(3):273-277.
    [70] 孙奉玉,吴鸣,李文钊等.二氧化钛尺寸与光催化活性的关系.催化学报,1998,19(3):229-233.
    [7l] 符小荣,张校刚,宋世庚等.TiO_2/Pt/glass纳米薄膜的制备及对可溶性染料的光电催化降解.应用化学,1997,14(4):77-79.
    [72] 王艳芹,张莉,程虎民等.掺杂过渡金属离子的TiO_2复合纳米粒子光催化剂——罗丹明B的光催化降解.高等学校化学学报.2000,21(6):958-960.
    [73] 李旦振,郑宜,付贤智.微波法制备SO_4~(2-)/TiO_2催化剂及其光催化氧化性能.物理化学学报,2001,17(3):270-272.
    [74] 金华峰,李文戈,向纪明等.Fe~(3+)/TiO_2/SiO_2复合纳米微粒的合成及光催化降解NO_2.应用化学.2001,18(8):636-639.
    [75] 唐玉朝,胡春,王怡中.无机阴离子TiO_2/SiO_2对光催化降解酸性红B活性的影响.环境化学,2002,21(4):376-379.
    [76] 纳米TiO_2-ZnO复合材料的合成/结构与光催化性能.丁士文,王利勇,张绍岩等.无机化学学报,2003,19(6):632-635.
    [77] 李芳柏,古国榜,黎永津.WO_3/TiO_2复合半导体的光催化性能研究.环境科学,1999,(4):75-78.
    [78] 郝恩才,孙轶鹏,杨柏等.CdS/TiO_2复合纳米微粒的原位合成及性质研究.高等学校化学学报,1998,19(8):1191-1194.
    [79] 施利毅,李春忠,古宏晨等.SnO_2-TiO_2复合颗粒的形态结构及其光催化活性.化学物理学报,2000,13(3):336-341.
    [80] 付贤智,丁正新,苏文悦等.二氧化钛基固体超强酸的结构及其光催化氧化性能.催化学报,1999,20(3):322-324.
    
    
    [81] 余家国,赵修建,陈文梅等.TiO_2/SiO_2纳米薄膜的光催化活性和亲水性.物理化学学报,2001,17(3):261-264.
    [82] 刘平,周廷云,林华香等.TiO_2/SnO_2复合光催化剂的耦合效应.物理化学学报,2001,17(3):265-269.
    [83] 黄惠中等.纳米材料分析.北京:化学工业出版社,2003.
    [84] 梁延荣,姚秉华,卞文娟.水中硝基酚的纳米TiO_2光催化降解.分析测试学报.2002,21(1):1-4.
    [85] 杨莉.纳米光催化剂的制备及其在环境治理中的应用.西安理工大学硕士学位论文,2003.
    [86] Matsuoka M, Anpo M.J. Photochem. Photobiol.C: Photochem. Rev, 2003, 3:225
    [87] Asahi R, Morikawa T, Ohwaki, T Aoki K, Taga Y .Sci-ence,2001,293:269.
    [88] Kahn S U M, Al- Shahry M, Ingler Jr W B. Science.,2002,297:2243

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700