表面含钛MCM-41的表面有机金属化学制备、表征及性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体类固体氧化物作为光催化剂已经被广泛的研究,其光催化作用通常采用半导体光电转化理论来解释。最近的一些研究发现,分子筛表面或骨架中存在高度分散的过渡金属离子也会表现出明显的光催化活性,由于光催化活性较难从半导体能带理论的观点理解,一些作者推测这与金属原子周围的局部结构有关。然而,迄今没有实验证据直接证明。本文借助表面金属有机化学的方法在MCM-41介孔分子筛表面制备出了具有确定结构组成的表面新戊基钛,通过进一步水解、氧化得到表面含钛MCM-41介孔分子筛。采用in situ FTIR研究了MCM-41表面新戊基钛的制备过程,并结合小分子探针反应、气体产物定量分析和固体元素分析确定其结构组成;进一步通过IR、DRS、XAFS、N2吸附法、XRD和HRTEM等表征方法研究了Ti在分子筛表面的存在状态和含钛MCM-41介孔分子筛的结构特性;并以光催化氧化乙烯为模型反应,考察了表面含钛MCM-41介孔分子筛的气固相光催化性能。据此探讨了分子筛表面Ti的局部结构与光催化活性之间的联系。
    论文得到了如下主要结论:(1) 发现TiNp4可以在室温下与MCM-41表面的孤立硅羟基定量发生反应,1mol的TiNp4与2mol的(SiOH反应可生成双接枝产物(≡Si-O)2TiNp2;(2) 证实表面化合物(≡Si-O)2TiNp2在室温下非常活泼,可与CH3OH反应生成(≡Si-O)2Ti(OCH3)2;可与H2O反应水解生成(≡Si-O)2Ti(OH)2;可与O2发生氧插入反应得到(≡Si-O)2Ti(ONp)2;(3) 通过对表面接枝产物(≡Si-O)2TiNp2的进一步水解和氧化可在MCM-41分子筛表面制备出具有孤立四面体配位的Ti-O结构单元,发现其具有明显的光催化氧化乙烯活性;(4) 论文通过DRS和XAFS等表征对所制样品结构与光催化性能的关系进行了探讨,推断表面孤立的四面体配位Ti原子可能是光催化作用的活性中心。光催化活性的高低与这些活性位的数目有关,当Si/Ti=11时乙烯转化率最高为72%,进一步增加钛含量到Si/Ti=7时,乙烯转化率反而下降到64%,其原因是在较低钛接枝量下,Ti在分子筛表面是以孤立的四面体配位状态存在,随着接枝钛含量的增加,这些孤立的Ti原子之间会发生缩合,形成了六配位的Ti-O-Ti氧化物。
    本论文的创新点在于:(1) 首次采用表面金属有机化学的方法在MCM-41表面制备出具有光催化氧化活性的钛氧化物,并详细研究了其性质;(2) 首次通过实验证实表面孤立存在的Ti-O四面体物种与其光催化活性有关,为Anpo等人关于孤立的四配位Ti是光催化反应的活性位的观点提供了直接证据。结果表明,通过与Ti金属有机分子的定量反应可在分子筛的表面制备出特殊结构的钛化合物,这为新型分子筛型光催化剂的设计和开发提供了一条新途径。
The semiconductor oxides were widely used in the field of photocatalysis. The mechanisms of photocatalysis were explained by the classic semiconductor theory. Recently, some studies showed that zeolites involving transition metal ions on the zeolite surface or within the framework also exhibited evident photocatalytic activity, which was difficult to explain by the semiconductor theory. Some research workers supposed that it may be related to the surrounding of the metal ions. However, there was no direct evidence to prove that so far. In this paper, we had prepared a well-defined surface neopentyl titanium on the surface of MCM-41 mesoporous molecular sieves by surface organometallic chemistry. The Ti-MCM-41 was prepared through the hydrolysis and oxidation of the surface neopentyl titanium. The reaction of tetraneopentyltitanium with the surface hydroxyl groups was studied by in situ FTIR. The structure and component of surface neopentyl titanium were investigated by probe reaction, gas analysis and element analysis. The states of the surface Ti and the structure of Ti-MCM-41 were characterized by IR, DRS, XAFS, N2 adsorption, XRD and HRTEM. In this study, highly dispersed titanium oxides on the surface of MCM-41 were used as photocatalyst for the oxidation of C2H4.
    The results showed that: (1) the TiNp4 could react quantitatively with the surface hydroxyl groups. 1mol TiNp4 could react with 2mol (SiOH to produce bigrafted complexes (≡Si-O)2Ti(CH2CMe3)2; (2) The (≡Si-O)2Ti(CH2CMe3)2 readily reacted with CH3OH, H2O and O2 to produce (≡Si-O)2Ti(OCH3)2, (≡Si-O)2Ti(OH)2 and (≡Si-O)2Ti (OCH2CMe3)2 at room temperature, respectively. (3) The surface isolated Ti-O units can be prepared by the hydrolysis and oxidation of (≡Si-O)2Ti(CH2CMe3)2 and had evident photocatalytic activity for C2H4 oxidation. (4) The relations between surface complexes stucture and photocatalytic activity were studied by DRS and XAFS. We infered that the surface isolated tetrahedral coordination Ti is the active center of photocatalysis. The photocatalysis was relate to the number of active centers.
    
    
    The conversion of C2H4 is 72% when the Si/Ti is 11, but it decreased to 64% if the Si/Ti is 7. The main reason was that Ti was in the state of isolated tetrahedral at low content, but some might convert to hexa-coordinated Ti-O-Ti oxides with the increasing content.
    The innovations of this study are: (1) the surface Ti oxides which had evident photocatalytic activity were prepared by surface organomatellic chemistry for the first time and the characteristics were studied in detail; (2) the relations between isolated tetrahedral Ti on the surface and its photocatalytic activity were studied and offered some direct evidence to surpport the opinion of Anpo. The results showed that the special Ti complexes on the surface of molecular sieves could be prepared by the quantitative reaction of neopentyltitanium with the surface hydroxyl groups. This open a new door to design and explore new type of photocatalysts.
引文
1、Yu. I. Ermakov, B. N. Kuznetsov, V. A. Zakhorov, Stud. Surf. Sci. Catal., 1981, 8, 59
    2、L. Murrell, Immobilization of transition metals: complex catalyst on inorganic supports, in ?Advanced Material in catalysis?, J. J. Burton, R. L. Garten, Eds. Acad. Press, New-York, 1977, 235-265.
    3、D. C. Bailey, S. H. Langer, Chem. Rev. 1981, 81, 109-148.H
    4、M. Ichikawa, Adv. Catal., 1992, 38, 283-400.
    5、A. Zecchina, C. O. Arean, Catal. Rev. Sci. Eng., 1993, 35, 261-317.
    6、J. M. Basset, B. C. Gates, J. P. Candy, et al. Surface Organometallic Chemistry: Molecular Approaches to Surface Catalysis, Kluwer Acad. Pub., the Netherlands, 1988, p1-34.
    7、J. M. Basset, J. P. Candy, J. P. Choplin, et al. Surface Organometallic Chemistry on oxides, on zeolite and on metals, in “Perspective in Catalysis”, J. A. Thomas, K. I. Zamaraev, Eds. Blackwell Scientific Pubs. Oxford, 1992, p125-145.
    8、S. L. Scott, J. M. Basset, J. Mol. Catal., 1994, 86, 5-22.
    9、S. L. Scott, J. M. Basset, F. Quignard, et al. New. J. Chem., 1994, 18, 115-122.
    10、F. Lefebvre, J. P. Candy, A. de Mallmann, et al. L’Act. Chem.(Ec), 1996, 7, 47-50.
    11、J. M. Basset, F. Lefebvre, Coord. Chem. Rev. 1998, 178-180, 1703-1723.
    12、F. Lefebvre, J. M. Basset, J. Mol. Catal. A: Chem. 1999, 146(1-2), 3-12.
    13、C. Copéret, M. Chabanas, R. P. Saint-Arroman, et al., Angew.Chem.Int.Ed. 2003, 42, 156-181.
    14、C. Ne′dez, A. Theolier, F. Lefebvre, et al., J. Am. Chem. Soc. 1993, 115, 722–729.
    15、C. Ne′dez, F. Lefebvre, A. Choplin, et al., J. Am. Chem. Soc. 1994, 116, 8638–8646.
    16、F. Quignard, C. Lecuyer, C. Bougault, et al., Inorg. Chem. 1992, 31, 928–930.
    17、J. Blu¨mel, J. Am. Chem. Soc. 1995, 117, 2112–2113.
    18、M. Adachi, F. Lefebvre, J. M. Basset, Chem. Lett. 1996, 221–222.
    19、B. Didillon, C. Houtman, T. Shay, et al. J. Am. Chem. Soc. 1993, 115, 9380-9388.
    
    20、P. Lesage, O. Clause, J. Catal. 1995, 155(2), 238-248.
    21、F. Z. Bentahar, J. P. Cardy, J. M. Basset, et al., J.Catal. 2001, 66, 303 -308.
    22、N. N. Nichio, M. L. Casella, G. F. Santori, et al. Catal. Today. 2000, 62, 231-240.
    23、Y. A. Ryndin, J. P. Candy, B. Didillon, et al. J. Catal. 2001, 198, 103-108.
    24、E. M. Crabb, R. Marshall, Appl. Catal. A, 2001, 217, 41-53.
    25、E. Tena, J. P. Candy, M. Spagnol, et al. J. Mol. Catal. A:Chem. 2002, 182-183, 303-307.
    26、F. Lefebvre, A. de Mallmann, J. M. Basset, Eur. J. Inorg. Chem. 1999, 361-371
    27、A. Théolier, E. Custodero, A. Choplin, et al., Angew. Chem. Int. Ed. Engl. 1990, 29, 805
    28、C. Ne′dez, A. Choplin, J. Corker, et al., J. Mol. Catal. 1994, 239
    29、A. Choplin, J. Mol. Catal. 1994, 86, 501.
    30、E. Benazzi, S. De Tavernier, P. Beccat, et al., ChemTech 1994, 13.
    31、C. Ne′dez, A. Théolier, F. Lefebvre, et al., Micorporous Mater. 1994, 2, 51. (a)
    32、A. Théolier, A. Choplin, J. M. Basset, et al., Stud. Surf. Sci. Catal. 1994, 84, 1293.
    33、M. Adichi, F. Lefebvre, C. Schotte , et al. Appl. Surf. Sci. 1997, 121-122, 355-360.
    34、E. F. Vansant, Pore Size Engineering in Zeolites, John Wiley & Sons, New York, 1990
    35、E. F. Vansant, Stud. Surf. Sci. Catal. 1988, 37, 143.
    36、M. Adachi, F. Lefebvre, C. Schott-Darie, et al., Appl. Surf. Sci. 1997,121-122, 355
    37、J. S. Beck, J. C. Vartuil, J. W. Roth, et al., J. Am. Chem. Soc. 1992, 114, 10834
    38、王绪绪, 赵慧霞,付贤智,无机化学学报,2001,17,83.E
    39、A. Borvornewattananont, K. Moller, and T. Bein, Chem. Commun., 1990, 28.
    40、A. Borvornewattananont, K. Moller, and T. Bein, Mat. Res. Soc. Symp. Proc., 1991, 233, 195.
    41、A. Borvornewattananont, K. Moller, and T. Bein., J. Phys. Chem. 1992, 96, 6713.
    42、A. Borvornewattananont, K. Moller, and T. Bein., J. Phys. Chem., 1992, 96, 447.
    43、C. Huber, C.-G. Wu, K. Moller and T. Bein, Stud. Surf. Sci. Catal., 1995, 98, 138.
    44、C. Huber, K. Moller and T. Bein, Chem. Commun., 1994, 2619.
    45、M. E. Bartram, T. A. Michalske, J. W. Rogers, Jr., J. Phys. Chem. 1991, 95, 4453.
    46、J. Corker, F. Lefebvre, C, Lécuyer, et al. Science. 1996, 271(16), 966-969.M.
    
    
    Estermann, L. B.
    47、S. L. Scott, J. M. Basset, J. Am. Chem. Soc. 1994, 116, 12069–12070.
    48、C. Lecuyer, F. Quignard, A. Choplin, et al. Angew. Chem. Int. Ed. Engl. 1991, 30, 1660-1661.
    49、C. Rozier, G. P. Niccolai, J. M. Basset, J. Am. Chem. Soc. 1997, 119, 12408.
    50、S. A. Hholmes, F. Quignard, A. Choplin, R.Teissier, J. Kervennal, J. Catal. 1998, 176, 173.
    51、L. d’Ornelas, S. Reyes, F. Quigard, A. Choplin, J. M. Basset, Chem. Lett. 1993, 1931.
    52、J. Amor Nait Ajjou, S. L. Scott, Organometallics 1997, 16, 86.
    53、V. Dufaud, G. P. Niccolai, J. Thivolle-Cazat, J. M. Basset, J. Am. Chem. Soc. 1995, 117, 4288.
    54、R.Buffon, M. Leconte, A. Choplin, J. M. Basset, J. Chem. Soc. Chem. Commun. 1993, 361.
    55、R.Buffon, M. Leconte, A. Choplin, J. M. Basset, J. Chem. Soc. Dalton Trans. 1994, 1723.
    56、L. Lefort, M. Chabanas, O. Maury, et al., J. Organomet. Chem. 2000, 593-594,96.
    57、R.Petroff Saint-Arroman, M. Chabanas, A. Baudouin, et al., Angew. Chem. 2001, 113, 4625; Angew. Chem. Int. Ed. 2001, 40, 4493.
    58、M. Chabanas, A. Baudouin, C. Coperet, et al., J. Am. Chem. Soc. 2001, 123, 2062.
    59、M. Chabanas, A. Baudouin, C. Coperet, et al., J. Am. Chem. Soc. 2003, 125, 492
    60、J. Amor Nait Ajjou, S. L. Scott, V. Paquet, J. Am. Chem. Soc. 1998, 120, 415.
    61、J. Amor Nait Ajjou, S. L. Scott, V. Paquet, J. Am. Chem. Soc. 1998, 120, 13436.
    62、V. Vidal, A. Theolier, J. Thivolle-Cazat, et al., J. Am. Chem. Soc. 1996, 118, 4595.
    63、F. Quignard, A. Choplin, J. M. Basset, J. Chem. Soc. Chem. Commun. 1991, 1589;
    64、F. Quignard, C. Lecuyer, A. Choplin, et al., J. Mol. Cat. 1992, 74, 353?;
    65、F. D. Mango, J. W. Hightower, A. T. James, Nature 1994, 368, 536
    66、V. Dufaud, J. M. Basset, Angew. Chem. Int. Engl. 1998, 806-810;
    67、V. Vidal, A. Théolier, J. Thivolle-Cazat, J. M. Basset, Science 1997, 276, 99-102.
    68、V. Vidal, A. Théolier, J. Thivolle-Cazat, et al., J. Chem. Soc.,Chem. Commun. 1995, 991-992.
    
    69、X. S. Zhao, G. Q. (max) Lu, and G. J. Millar, Ind. Eng. Chem. Rew. 1996, 35, 2075.
    70、E. F. Vasant, “Pore Size Engineering in zeolite”, Ohn Wiley & Sons, New York, 1990.
    71、D. E. De Vos, P. P. Knops-Gernts, R. F. Farton, et al., J. Inclus. Phenom. Mol. Recogn. Chem. 1995, 21, 185.
    72、G. A. Ozin and C. Gil, Chem. Rev. 1989, 89, 1749
    73、K. J. Balkus, Jr and A. G. Gabrielov., J. Inclus Phenom. Mol. Recogn. Chem. 1995, 21, 159.
    74、H. K. Beyer, “Catalysis by zeolite”, Ed. By B. Imelik et al. 1980.p.203,
    75、M. W. Anderson, et al. Chem. Commun. 1984, 1596.
    76、J. N. Armor, Stud. Surf. Sci. Catal. , 1994, 92, 51.
    77、N. Herron, G. D. Stacky, and C. A. Tolman, Inorg. Chim. ACTA, 1985, 100, 135.
    78、S. Feast and J. A. Lercher, Stud. Surf. Sci. Catal., 1996, 102, 363.
    79、J. B. Paris, et al. Inorg. Chem., 1988, 27, 221.
    80、J. O.Williams, Adv. Mater., 1989, 8, 282.W. M. Barrer,“Hydrothermal Chemistry of zeolite”,
    81、M. Niwa, S. Kato, T. Hottori, Y. Murakami, J. Chem. Soc. Faraday Trans. 1984, 80, 3135.
    82、M. Niwa, S. Kato, T. Hottori, Y. Murakami, J. Phys. Chem., 1986, 90, 6233.
    83、T. Hibino, M. Niwa, Y. Murakami, et al., J. Phys. Chem. 1989, 93, 7847.
    84、K.Asakura, M. Aoki, Y. Iwasawa, Catal. Lett.,1988, 1, 395.
    85、C. Dossi, R. Psato, Z.C. Zhang, W. M. H. Sachtler, J. Catal., 1994, 92, 149.
    86、R. Burch, N. Cruise, D. Gleeson and S. C. Tsang, Chem.Commun., 1996, 8, 9519.
    87、C. P. Mehner and J. Y. Ying, Chem. Commun., 1997, 2215.
    88、M. Anpo, in: P. Tuundo, P. Anastas (Eds.), Green Chemistry, Oxford University Press, 2000, p. 1.
    89、M. Anpo, in: A. Corma, F. V. Melo, S. Mendioroz, J. L. G. Fierro (Eds.), Proceedings of the 12th International Congress on Catalysts, Granada, Studies in Surface Science and Catalysis, vol. 130, 2000, p. 157.
    90、D. F. Ollis, H. AlEkabi (Eds.), Photocatalytic Purification and Treatment of Water
    
    
    and Air, Elsevier, Amsterdam, 1993.
    91、E. Pelizzetti, M. Schiavello (Eds.), Photochemical Conversion and Storage of Solar Energy, Kluwer Academic Publishers, Dordrecht, 1991.
    92、Y. Yoshida, M. Matsuoka, S. C. Moon, et al., Res. Chem. Intermed. 2000, 26, 567.
    93、S. C. Moon, H. Mametsuka, E. Suzuki, M. Anpo, Chem. Lett. 1998, 117.
    94、A. Fujishima, K. Hashimoto, T. Watanabe, TiO2 Photocatalysis:Fundamentals and Applications, BKC, Inc., 1999.
    95、A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobio. C: Photochem. Rev., 2000, 1, 1-21.
    96、H. Yamashita, Y. Ichihashi, M. Anpo, et al., J. Phys. Chem. 1996,100, 16041.
    97、J. L. Zhang, Y. Hu, M. Matsuoka, et al., J. Phys.Chem. B 2001, 105, 8395.
    98、H. Yamashita, S. Kawasaki, Y. Ichihashi, et al., J. Phys. Chem. B 1998, 102, 5870.
    99、H. Yamashita, M. Honda, M. Harada, et al., J. Phys. Chem. B 1998, 102, 10707.
    100、M. Anpo, T. Suzuki, E. Giamello, et al., New Developments in Selective Oxidation, Elsevier, Amsterdam, 1990, p. 683.
    101、M. Anpo, T. Suzuki, Y. Kubokawa, F. Tanaka, S. Yamashita, J. Phys. Chem. 1984, 88, 5778.
    102、M. Anpo, M. Kondo, S. Coluccia, C. Louis, m. Che, J. Am. Chem. Soc. 1989, 111, 8791.
    103、K. Ikeue, S. Nozaki, M. Ogawa, M. Anpo, Catal. Lett. 2002, 80, 111.
    104、K. Ikeue, S. Nozaki, M. Ogawa, M. Anpo, Catal. Today 2002, 74, 241.
    105、T. Inui, D. Medhanavyn, P. Praserthdam, et al., J. Phys. Chem. 1989, 93, 1187.
    106、S. G. Zhang, M. Ariyuki, S. Higashimoto, et al., Microporous Mater. 1998, 96, 2617.
    107、S. Higashimoto, S. G. Zhang, H. Yamashita, et al., Chem. Lett.
    108、C. Louis, M. Che, M. Anpo, J. Catal. 1993, 141, 453.
    109、H. Yamashita, K. Yoshizawa, M. Ariyuki, et al., J. Chem. Soc. Chem. Commun. 2001, 435.
    110、H. Yamashita, M. Ariyuki, S. Higashimoto, et al., J. Synchrotron Radiat. 1999, 6, 453.
    111、D. Wei, N. Yao, G. L. Haller, Stud. Surf. Sci. Catal. 1999, 121, 239.
    
    112、B. M. Weckhuysen, A. A. Verberckmoes, A. L. Buttiens, et al., J. Phys. Chem. B 1994, 98, 579.
    113、T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature 1979, 277, 673.
    114、M. Anpo, K. Chiba, J. Mol. Catal. 1992, 74, 207.
    115、H. Yamashita, N. Kamada, H. He, K. Tanaka, S. Ehara, M. Anpo, Chem. Lett. 1994, 855.
    116、F. Saladin, L. Forss, I. Kamber, J. Chem. Soc., Chem. Commun. 1995, 533.
    117、M. Anpo, N. Aikawa, Y. Kubokawa, J. Chem. Soc., Chem. Commun. 1984, 644.
    118、M. Anpo, H. Yamashita, K. Ikeue, et al., Catal. Today 1998, 44, 327.
    119、H. Yamashita, Y. Fujii, Y. Ichihashi, et al., Catal. Today. 1998, 45, 221.
    120、S. G. Zhang, Y. Fujii, H. Yamashita, et al., Chem. Lett. 1997, 659.
    121、M.A NPO, m. Matsuoka, Y. Shioya, et al., J. Phys. Chem. 1994, 98, 5744.
    122、H. Yamashita, M. Matsuoka, K. Tsuji, et al., J. Phys. Chem. 1996, 100, 397.
    123、M. Anpo, M. Che, Adv. Catal. 2000, 44, 119.
    124、M. Matsuoka, E. Matsuda, K. Tsuji, et al., Chem. Lett. 1995, 375.
    125、M. Matsuoka, E. Matsuda, K. Tsuji, et al., J. Mol. Catal. 1996, 107, 399.
    126、Andrew K H, Andrew J K, J. Organomet. Chem. 1997, 109: 539
    127、Wang X X, Lefebvre F, Patarin J, Basset J M, Microporous and Mesoporous Mater. 2001, 42: 269
    128、Wu Y D, Peng, Z H, Kyle W K, Liu, X Z, Albert A, Xue Z L, Organometallics, 1999, 18, 2081-2090
    129、Chen J S, Li Q H, Xu R R, Xiao F S, Angew. Chem. Int. Ed. Engl. 1995, 34: 23
    130、Rosier C, Niccolai G P, Basset J M, J. Am. Chem. Soc. 1997, 119: 12408
    131、Davidson P J, Lappert M F, Pearce R, J. Organometallic. Chem. 1973, 57: 269
    132、Jinwoo Cheon, Deborah M. Rogers, and Gregory S. Girolami J.Am.Chem.Soc. 1997, 119, 6804-6813
    133、韩世同,习海玲,史瑞雪,等. 化学物理学报,2003,16,339
    134、Hoffmann M, Martin S T, Choi W Y, Bahnemann D W, Chem. Rev. 1995, 95: 69
    135、Kato, Y.; Yoshida, H.; Satsuma, A.; Hattori, T. Microporous and mesoporous mater., 2002, 51:223
    136、Matsuoka, M.; Anpo, M. J. Photochem. Photobiol. C: Photochem. Rev., 2003, 3:
    
    
    225
    137、Zheng, Y.; Wang, X.; X.; Fu, X. Z.; Wei, K. M. Chinese J. Struct. Chem. 2003, 22: 373
    138、王绪绪,付贤智,物理化学学报(Wuli Huaxue Xuebao), 2001, 17:165
    139、Lewis K E, Parifitt G D, Trans. Faraday Soc., 1966, 62: 204
    140、Jackson P, Parfitt G D, Trans. Faraday Soc., 1971, 67: 2469
    141、Blasco T, Corma A, Navarro M T, Pariente J P, J. Catal. 1995, 156: 65
    142、Ahn W S, Lee D H, Kim T J, Kim J H, Seo G, Ryoo R, Appl. Catal. 1999, 181: 39
    143、Klein S, Weckhuysen B M, Martens J A, Majer W F, Jacobs P A, J. Catal. 1996, 163: 489
    144、Klaas J, Schulz-Ekloff G, Jaeger N I, J. Phys. Chem. B 1997, 101: 1305
    145、Zhang W, Froba M, Wang J, Tanev P T, Wong J, Pinnavaia T J, J. Am. Chem. Soc., 1996, 118: 9164
    146、L. Marchese, T. Maschmeyer, E. Gianotti, S. Coluccia, J. M. Thomas, J. Phys. Chem. B 1997, 101, 8836
    147、寇元,石油化工,2000,29,712-722
    148、Richard, D. O., Gopinathan, S., John, M. T., Dogan, O., J. Phys. Chem. B 1998, 102, 1849-1855
    149、Poumelec, B., Lagnel, F., Marucco, J. F., Touzelin, B., Phys. Status Solid B 1986, 133, 371
    150、Maria, D. A., Luan, Z. H., Klinowski, J., J. Phys. Chem. 1996, 100, 2178-2182
    151、Fischer, K., Z. Kristallogr. 1969, 129, 222
    152、Canillo, E., Mazzi, F., Rossi, G., Acta Crystallogr. 1966, 21, 200
    153、Moore, P. B., Louisnathan, S. J., Z. Kristallogr. 1969, 130, 439
    154、Wu, K. K., Brown, I. D., Acta Crystallogr. Sect. B 1973, 29, 2009
    155、Duumas, T., Petiau, J., J. Non-Cryst. Solids 1986, 81, 201
    156、Blasco, T., Camblor, M. A., Corma, A., Perez-Pariente, J., J. Am. Chem. Soc. 1993, 115, 11806
    157、Alba M, Luan Z H, Klinowski J, J. Phys. Chem. 1996, 100: 2178

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700