TiO_2薄膜的电泳法制备及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化钛光催化剂薄膜的制备是光催化研究中的重要问题之一。现今开发的各种膜化技术,如溶胶-凝胶、悬浮浆料、气相沉积等方法都不同程度地存在缺陷,开发方便、实用和低成本的薄膜制备方法对光催化技术的广泛应用具有重要的实际意义。本论文以溶胶-凝胶法制备的TiO2溶胶为前驱体,采用电泳沉积法在铝合金片基底上制备出了TiO2薄膜,与其它方法相比,电泳法能快速实现TiO2在基底上大量均匀负载。采用乙烯为模型反应物,研究了电泳条件对薄膜光催化性能的影响,并与提拉法制备的TiO2薄膜进行对比;采用SEM、AFM、XRD、DRS等手段评价了TiO2薄膜的表面形貌、尺寸、晶型、吸收带边等物化性能;特别是通过给电泳液中添加助剂制备出了性能优异的光催化薄膜,并通过测定溶胶中TiO2粒子尺寸和迁移率及溶胶的粘度和zeta电势探讨助剂改善膜性能的原因。
    实验结果表明:(1)在前驱体溶胶温度25℃、两电极直流电压2V和通电3min条件下可实现TiO2膜在铝合金基底上的有效电泳负载,得到薄膜经500℃焙烧1小时(升温速率2℃/min)表现出优良的光催化性能。(2)电泳法制备的TiO2薄膜(简称电泳膜)比提拉法制备的TiO2薄膜(简称提拉膜)对乙烯的光催化氧化转化率在相同反应时间内高近3倍。但由于电泳膜有较高的TiO2沉积量、且结构致密、TiO2的粒径较大,其比活性(单位面积上单位质量TiO2的光催化活性)却比提拉膜的低。(3)添加适量非离子型表面活性剂聚乙二醇(PEG)6000可以有效地改善电泳膜的光催化性能。研究表明随着溶胶中PEG浓度的改变,所制备的电泳膜对乙烯的光催化氧化转化率出现先增大再减小的变化。当给溶胶中添加50 g/L PEG时,可得到高比光催化活性的TiO2薄膜,其对乙烯的光催化活性比未加PEG时得到的电泳膜的活性高8倍多。为理解添加PEG影响电泳膜活性的原因,测定了溶胶的性质。结果表明添加PEG后可降低溶胶的ζ电位,胶粒电迁移率和TiO2胶粒径尺寸,导致溶胶沉积机制的改变,使得膜的致密程度降低,同时PEG高温分解后在膜表面留下空隙,提高了膜的比表面积,从而提高了电泳膜的光催化活性。
    本论文的主要创新点包括:(1)系统研究TiO2薄膜的电泳沉积条件,并比较了电泳膜与提拉膜的结构和性能差别;(2)首次通过添加PEG利用电泳法制备出了性能优良的TiO2薄膜;(3)从助剂对溶胶电动性质的影响考察并探讨了助剂在TiO2电泳沉积制备中的作用。该研究为制备高活性的实用型TiO2光催化薄膜提供了一种新的方法,为TiO2的产业化研究开辟了一条新途径。
The preparation of TiO2 film is one of the most important questions in the field of photocatalysis research. Traditional techniques of preparation of TiO2 film such as dip coating from suspension, sol gel related methods and vapor deposition have a variety of limitations. So the development of convenient, effective and low-cost preparation method has important significance for the extensive application of photocatalysis technology. In this work, TiO2 positive sol particles prepared by a sol-gel technique were immobilized on aluminum alloy plates by electrophoretic deposition (EPD). EPD can give thick and uniform film within a short time compared with other techniques. The effect of electro- phoretic condition for the photocatalytic activity of TiO2 film was evaluated using ethylene as reactant, and the photocatalytic activity of TiO2 film prepared by EPD and dip coating was compared. The physical and chemical properties including the crystal and morphological structure of the film,the size and band-gap-edge of TiO2 particles were characterized by XRD, SEM, AFM, DRS. TiO2 film with high photocatalytic efficiency was obtained by adding an additive to the precursor TiO2 sol. The reason why the addition of the additive to TiO2 sol can improve the photocatalytic activity was discussed by determining the size and mobility of TiO2 particles and the viscosity and zeta potential of sol.
    The results showed (1) TiO2 film with high photocatalytic activity was immobilized on aluminum alloy plates by EPD on condition that the temperature of TiO2 sol was 25℃,the potential applied for electrophoresis was 2V and lasted for 3min , and the resulting film was calcinated at 500℃ for 1h. (2) the conversion of ethylene over TiO2 film prepared by EPD (called EP-film) was 3 times higher than that over TiO2 film prepared by dip coating (called DC-film). But a more compact film with higher loading and larger size of TiO2 but lower specific photocatalytic efficiency (ethylene conversion over unit mass TiO2 and unit area of TiO2 film) was obtained by EPD compared with dip coating method. (3) the addition of non-ion surfactant polyethylene glycol (PEG) to TiO2 sol could effectively improve the specific photocatalytic activity over the EP-film. The conversion of ethylene of EP-film changed with the change of the concentration of PEG. Optimum specific photocatalytic activity was found in the film prepared by EPD from TiO2 sol
    
    
    containing 50g/L PEG, which was 9 times more than that of the film prepared from sol without PEG. To investigate the effect of the addition of PEG on the property of TiO2 sol, the properties of sol were measured. It was found that the addition of PEG reduced the zeta potential of TiO2 sol, the mobility and size of TiO2 particles, which leaded to the change of mechanism of EPD and lowered the EP-film packing density. And the specific area of the film was enhanced for the decomposition of PEG at high temperature.
    The innovations of this work include: (1) investigating the conditions of EPD of TiO2 film systemically, and comparing the morphological structure and properties of EP-film with those of DC-film. (2) preparing TiO2 film with high photocatalytic activity by EPD from the TiO2 sol containing PEG for the first time. (3) discussing the effect of PEG in the process of preparation by measuring the electrokinetic properties of TiO2 sol. Here we provide a new method for the preparation of effective TiO2 film with high photocatalytic activity and develop a new approach for the application research of TiO2 technology.
引文
Fujishima A., Honda K., Electrochemical Photolysis of water at a semiconductor electrode. Nature, 1972, 37: 238.
    黄汉生. 日本二氧化钛光催化剂环境净化技术开发动向. 现代化工,1998,18(12): 39.
    Fu X., Zeltner W. A., Anderson M. A.. Application in Photocatalysic Purification of Air. In : P.V. Kamat, D. Meisel. (eds.) . Semiconductor Nanoclusters , Studies in Surface and Catalysis. Vol 13. 1996:445-461.
    Hoffmann M. R., Martin S. T., et. al. Environmental Applications of Semiconductor Photocalysis, Chem. Rev.,1995,95: 69-96.
    付贤智,刘平,林华香等. 臭氧光催化空气净化器. 中国专利:98216682.6
    付贤智,刘平,陈旬等. 表面覆盖有纳米光催化膜的外墙瓷砖. 中国专利:02239603.9
    方佑龄,赵文宽,尹少华等. 纳米TiO2在空心陶瓷微球上的固定化及光催化分解辛烷. 应用化学,1997,14: 81-83.
    吴合进,吴鸣,谢茂松等. 增强型电场协助光催化降解有机污染物. 催化学报,2000,21(5): 399-403.
    Alemany L. J., Banares M. A., Pardo E., et.al . Photodegradation of phenol in water using silica supported titania catalysts. Appl.Catal. B: Environ. ,1997, 13: 289-297.
    Ding Z., Hu X-J, Lu G. Q., et.al. Novel Silica Supported TiO2 Photocatalyst Synthesized by CVD Method. Langmuir, 2000, 16: 6216-6222.
    Ding Z., Hu X-J, Yue P. L., et.al. Synthesis of anatase TiO2 supported on porous solids by chemical vapor deposition. Catal. Today, 2001,68: 173-182.
    Matos J., Laine J., Herrmann J-M, et.al. Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon . Appl.Catal. B: Environ., 1998, 18: 281-291.
    Loddo V., Marci G., Martin C.. et. al. Preparation and characterization of TiO2 (anatase) supported on TiO2 (rutile) catalysts employed for 4-nitrophenol photodegradation in aqueous medium and comparison with TiO2 (anatase) supported on Al2O3. Appl.Catal. B: Environ., 1999, 20: 29-45.
    Choi W. Y.,Ko J. Y., Park H., et.al. Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone. Appl.Catal. B: Environ., 2001, 31: 209-220.
    Iengo P., Aprile G., Serio M. D.. et.al. Preparation and properties of new acid catalysts obtained by grafting alkoxides and derivatives on the most common supports. Part Ⅲ-graftingt itanium alkoxides and sulphate derivatives on silica. Appl.Catal. A: General, 1999, 178: 97-109.
    Pilkenton S., Hwang S-J, Raftery D.. Ethanol Photocatalysis on TiO2-coated Optical
    
    
    Microfiber, Supported Monolayer, and Powdered Catalysts: An in Situ NMR Study. J. Phys. Chem. B,1999,103(50): 11152- 11160.
    Ohko Y., Fujishima A.. Kenetic Analysis of the Photocatalytic Degradation of Gas-Phase 2-Propanol under Mass Transport-Limited Condition with a TiO2 Film Photocatalyst. J. Phys. Chem. B, 1998, 102: 1724-1729.
    Yamashita H., Honda M., Harada M.. et.al. Preparation of Titanium Oxide Photocatalystz Anchored on Porous Silica Glass by a Metal Ion-Implatation Method and Their Photocatalytic Reactivities for the Degradation of 2-Propanol Diluted in Water. J. Phys. Chem. B, 1998, 102: 10707-10711.
    Yamashita H.,Harada M.,Tanii A., et.al. Preparation of efficient titanium oxide photocatalysts by an ionized cluster beam (ICB) method and their photocatalytic reactivities for the purification of water. Catal. Today, 2000, 63: 63-69.
    Herrmann J-M., Tahiri H., Ait-Ichou Y., et.al. Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag- TiO2 coatings on quartz. Appl.Catal. B: Environ., 1997, 13: 219-228.
    Kato K., Tsuzuki A.,Torii Y.. et.al Morphology of thin anatase coatings prepared from alkoxide solutions containing organic polymer, affecting the photocatalytic decomposition of aqueous acetic acid. J.Mater. Sci. 1995, 30, 837-841.
    Roberto L.,Baltanas M. A., Cassano A. E.. Towards a precise assessment of the performance of supported photocatalysts for water detoxification processes. Catal. Today, 1999, 54: 143-157.
    Peill N. J., Hoffmann M. R.. Chemical and physical characterization of a TiO2-coated fiber optic cable reactor. Environ. Sci. Technol., 1996, 30(9), 2806-2812.
    刘鸿,成少安,张鉴清等. 泡沫镍载二氧化钛光催化降解磺基水杨酸. 中国环境科学,1998,18(6): 548-551.
    P. Sawunyama, Jiang L., Fujishima A., et.al. Photodeposition of a langmuir-blodgept film of spearic acid on TiO2 film observed by in situ atomic force microscopy and FT-IR. J.Phys. Chem. B 1997, 101, 11000-11003.
    Kominami H., Kumamoto H., Kera Y., et. al. Immobilization of highly active titanium(Ⅳ) oxide particles A novel strategy of preparation of transparent photocatalytic coatings. Appl.Catal. B: Environ. 2001, 30, 329-335.
    冷文华,张莉,成少安等. 环境科学,2000,6: 46-50.
    Hofstadler K., Bauer R. New Ractor Design for Photocatalytic Wastewater Treatment with Immobilized on Fused-Silica Glass Fibers: Photomineralization of 4-Chlorophenol. Environ. Sci. Technol., 1994, 28: 670-674.
    Herrmann J-M. Matos J., Disdier J., et.al. Sollar photocalytic degradation of 4-chlorophenol using the synergistic effect between titania and activated carton in aqueous suspension. Catal. Today, 1999, 54: 131-141.
    
    颜秀茹,郭伟巍,宋宽秀等. 新型光催化剂TiO2/SiO2的制备和催化性能研究. 化学工业与工程,2000,17(6),330-335.
    Takeda N., Ohtani M., Torimoto T., et.al. Evaluation of diffeusibility of absorbent photocatalyst films from its photodecomposition rate. J. Phys. Chem. B, 1997,101: 2644-2649.
    Takeda N., Iwata N., Torimoto T., et.al. Influence of Carbon Black as an Adsorbent Used in TiO2 Photocatalyst Films on Photodegradation Behaviors of Propyzamide. J. Catal. 1998, 177: 240-246.
    Torimoto T., Ito S., Kuwabata S., et.al. Effects of Adsorbents Used as supports for Titanium Dioxide Loading on Photocatalytic Degradation of Propyzamide. Environ. Sci. Technol. 1996,30,1275-1281.33 .
    Uchida H., Ito S., Yoneyama H.. Photocatalytic Decomposition of Propyzamide Using TiO2 Suppoted on Activated Carbon. Chem. Lett.,1993,1995-1998.
    Alberici R. M., Canela M. C., Eberlin M. N., et.al. Catalyst deactivation in the gas phase destruction of nitrogen-containing organic compounds using TiO2/UV-Vis.
    吴凤清,阮圣平,李晓平等. 一种新型纳米TiO2 涂膜及其光催化性能研究. 高等学校化学学报,2000,21(10): 1578-1580.
    崔鹏,范益群,徐南平等. TiO2 负载膜的制备、表征及光催化性能. 催化学报,2000,21(5): 494-496.
    陶咏,陈爱平,戴智铭等. 新颖玻璃弹簧负载化TiO2光催化剂. 中国粉体技术,2001,7(2): 23-27.
    郑宜,李旦振,付贤智. C2H4的微波场助气相光催化氧化. 高等学校化学学报,2001,22(3),443-445.
    李旦振,郑宜,付贤智等,微波法制备SO42-/ TiO2催化剂及其光催化氧化性能. 物理化学学报,2001,17(3),270-272.
    陈亦琳,李旦振,付贤智. 苯在Pt/SO42-/TiO2 上的光催化降解 见:21世纪太阳能新技术-2003年中国太阳能学会学术年会论文集,上海:上海交通大学,2003:990-991.
    张雯,王绪绪,付贤智. Pt/ TiO2催化剂上苯的光催化降解. 福州大学学报(自然科学版),2004,32(2),232-234.
    沈杭燕,唐新硕,管敏远等. 负载型TiO2催化剂的制备及光催化丙酮蒸汽的降解性能研究.分子催化,1999,13(6): 435-440.
    Sopyan I., Watanabe M., Murasawa S., et. al. A film-type photocatalyst incorporating highly active TiO2 powder and fluororesin binder: photocatalytic activity and long-term stability. J. Electoanal. Chem., 1996, 415: 183-186.
    Matsumoto Y., Ishikawa Y.. A New Electrochemical Method To Prepare Mesoporous Titanium(Ⅳ) oxide Photocatalyst Fixed on Alumite Substrate. J. Phys. Chem. B, 2000,104: 4204-4209.
    
    Yoneyama H., Torimoto T.. Titanium dioxide/adsorbent hybrid photocatalysts for photodesruction of organic substances of dilute concentrations. Catal. Today , 2000, 58: 133-140.
    Takeda N., Torimoto T., Sampath S., et.al. Effect of Inert Spports for Titanium Dioxide loading on Enhancement of Photodecomposition Rate of Gaseous Propionaldehyde. Phys. Chem. B, 1995, 99: 9986-9991.
    古政荣,陈爱平,戴智铭等. 活性炭-纳米二氧化钛复合光催化空气净化网的研制. 华东理工大学学报,2000,26(4): 361-371.
    Wang K-H, Tsai H-H, Hsieh Y-H. The kinetics of photocatalytic degradation of trichloroethylene in gas phase over TiO2 supported on glass bead. Appl.Catal. B: Environ., 1998, 17: 313-320.
    苏文悦,付贤智,魏可镁. SO42- 表面修饰对TiO2结构及其光催化性能的影响. 物理化学学报,2001,17(1): 28-31.
    Masaaki Y., Akinori Y., Isao M. Low-temperature selective catalytic reduction of NOx by metal oxides supported on active carbon fibers. Appl.Catal. A: General 1998, 173, 239-245.
    Anpo M.. Utilization of TiO2 photocatalysts in green chemistry. Pure Appl. Chem. [J] , 2000, 72 (7): 1265.
    Negishi N, Takeuchi K, Ibusuki T. The surface structure of titanium dioxide thin film photocatalyst. Appl. Surf. Sci., 1997,121/122:417.
    刘平,林华香,付贤智. 掺杂TiO2光催化膜材料的制备及其灭菌机理. 催化学报, 1999, 20(3): 325.
    Wang R., Hashimoto K., Fujishima A., et.al. Ligh-induced amphiphilic surfaces Nature[J], 1997, 388, 431.
    Fujishima A., Rao T. N., CTryk D. A.. Titanium dioxide photocatalysis. J.Photochem.and Photobio C:Photochemistry Reviews[J],2000,1: 1-21.
    Obee T. N., Satyapal S., Photocatalytic decomposition of DMMP on titania J.Photochem.Photobiol.A:Chem, 1998, 118:45.
    光清洁革命,参考消息,2002,Nov.22
    Fujishima A.. Recent Progress in titanium dioxide photocatalysis. 2002’全国光催化学术会议(NCP-2002)论文),北京:2002: 1.
    Yoneyama H., Torimoto T.. Titanium dioxide/adsorbent hybrid photocatalysts for photodesruction of organic substances of dilute concentrations. Catal. Today , 2000, 58: 133-140.
    韩世同,习海玲,史瑞雪等. 半导体光催化研究进展与展望. 化学物理学报,2003,16(5): 339-349.
    邱健斌,曹亚安,马颖等. 担载材料对TiO2薄膜光催化活性的影响. 物理化学学报,2000,16(1)?: 1-4.
    
    Ma Y., Q J-B, Cao Y-A. Photocatalytic activity of TiO2 films grown on different substrates . Chemosphere, 2001, 44?: 1087-1092.
    刘平,王心晨,付贤智. 光催化自清洁陶瓷的制备及其特性.无机材料学报,2000,15(1)?: 88
    赵青南,余家国,赵健修等,TiO2薄膜孔结构对其光催化性能的影响陶瓷学报,1999,20(3):177.
    张彭义,余刚,蒋展鹏. 中国环境化学,2000,20(5):436.
    藤山岛, 桥本和仁. 光触媒ぉょびその制造方法. 日本: 公开特许公报,平7-171408, 1995-07-11.
    西方聪, 西村智明, 北野功. 污染物质除去用の光触媒ツート. 日本:公开特许公报, 平9-57096, 1997-03-04.
    Torimoto T., Ito S., Kuwabata S., et.al. Effects of Adsorbents Used as supports for Titanium Dioxide Loading on Photocatalytic Degradation of Propyzamide. Environ. Sci. Technol. 1996,30,1275-1281.
    Lu M-C, Chen J-N, Chang K-T, Effect of adsorbents coated with titanium dioxide on the photocatalytic degragation of propoxur. Chemophere, 1999, 38(3):617.
    杨阳,陈爱平,古宏辰等,以膨胀珍珠岩为载体的漂浮型TiO2光催化剂降解水面浮油. 催化学报,2001,22(2),177-180.
    姚建年,管自生. 光助溶胶-凝胶法制备钛溶胶-凝胶的特性. 见2000’ 全国光催化学术会议 中国 福州. 2000,10,87-88.
    江立文,李耀中,周岳溪等. 负载型TiO2固定相光催化氧化剂固定化技术研究. 工业水处理,2000,20(9),8-10.
    胡春,王怡中. 凹凸棒负载TiO2对偶氮染料和纺织废水光催化脱污. 环境科学学报,2001,21(1),123-125.
    Nagaoka S., Hamasaki Y., Ishihara S-I, et.al. Preparation of carbon/ TiO2microsphere composites from cellulose/ TiO2 microsphere composites and their evaluation. J. Mole. Catal.A: Chem. 2002,177,255-263.
    Beydoun D., Amal R.. Novel Photocatalyst: Titania-coated Magnetite, Activity and Photodissolution. J. Phys. Chem. B ,2000,104,4387-4396.
    Byme J A, Eggins B R, Brown N M D, et.al. Immobilisation of TiO2 powder for the treatment of polluted water. Appl. Catal. B:Environ.[J], 1998 ,17: 25-36.
    Kang M., Lee J.H., Lee S-H. J. Mole. Catal. A: Chemical [J], 2003, 193: 273.
    陈德明,王亭杰,雨山江等. 纳米TiO2的性能、应用及制备方法. 材料工程[J],2002,11,42-47.
    陈龙武,盛闻超,甘礼华. TiO2 功能薄膜的制备及影响其光催化活性的因素. 功能材料,2002,33(3),246-249.
    吴锦雷,吴全德. 几种新型薄膜材料[M]. 北京:北京大学出版社,1999:263.
    
    董昊,张永熙,杨锡良等. 直流反应磁控溅射制备二氧化钛薄膜的光催化性研究. 真空科学与技术[J], 2000, 20(4): 252.
    Asahi R., Morikawa T., Ohwaki T., et.al. Visible-Light Phoyocatalysis in Nitrogen-Doped Titanium Oxides. Science, 2001, 293:269-271.
    沈钟,王果庭. 胶体与表面化学. 北京:化学工业出版社,1997,97. 54-73.
    Boccaccini A. R., Zhitomirsky I., A pplication of electrophoretic and electrolytic deposition techniques in ceramics processing. Current Opinion in Solid State and Materials Science 2002,6:251–260.
    Zhitomirsky I. Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects. Advances in Colloid and Interface Science 2002 ,97: 279-317.
    Boccaccini A. R., Kaya C., Chawla K. K., Use of electrophoretic deposition in the processing of fibre reinforced ceramic and glass matrix composites: a review. Composites :Part A,2001,32,997-1006.
    Fernandez A., Lassaletta G., Jimenez V. M.. et al. Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass,quartzand stainless steel) comparative studies of photocatalytic activity in water purification. Appl. Catal. B:Environ.[J], 1995?,7?: 49-63.
    Byrne J. A., Eggins B. R.. Photoelectrochemistry of oxalate on particulate TiO2 electrodes. J. Electro. Chem. 1998, 457, 61–72.
    Dunlop P.S.M., Byrne J. A., Manga N., et.al. The photocatalytic removal of bacterial pollutants from drinking water. J. Photochem. Photobio. A: Chem. 2002,148, 355–363.
    Byrne J. A., Eggins B. R.. Photoelectrochemistry of oxalate on particulate TiO2 electrodes. J. Electroanaly. Chem. 1998,457, 61–72.
    Morand R., Lopez C., Koudelka-Hep M. et al. Photoelectrochemical Behavior in Low-Conductivity Media of Nanostructured TiO2 Films Deposited on Interdigitated Microelectrode Arrays. J. Phys. Chem. B,2002, 106, 7218-7224.
    Nawi, M. A.,Kean L. C., Tanaka K., et.al. Fabrication of photocatalytic TiO2-epoxidized natural rubber on Al plate via electrophoretic, Appl. Catal. B: Environ.2003,46(1),165-174.
    Dougami N., Takada T.. Modification of metal oxide semiconductor gas sensor by electrophoretic deposition. Sensors and Actuators B 2003,93,316–320.
    张学敏编著,涂装工艺学,北京:化学工业出版社,2002,195.
    周义编著,电泳涂装新工艺,北京:地质出版社,1999,48.
    苏文悦,傅贤智,魏可镁,TiO2光催化剂的光谱研究. 光谱学与光谱分析,2001,21(1),32-34.
    高濂,郑珊,张青红著,纳米氧化钛光催化材料及应用,北京:化学工业出版社,2002,6.
    Solomentsev Y., Bohmer M., Anderson J. L., Particle Clustering and Pattern Formation
    
    
    during Electrophoretic Deposition: A Hydrodynamic Model. Langmuir, 1997, 13, 6058-6068.
    Scott A. G., Solomentsev Y. , J. L. Anderson, Aggregation of pairs of particles on electrodes during electrophoretic deposition. Powder Tech., 2000, 110, 90-97.
    Solomentsev Y., Guelcher S. A., Bevan M., J. L. Anderson, Aggregation Dynamics for Two Particles during Electrophoretic Deposition under Steady Fields. Langmuir, 2000, 16, 9208-9216.
    Giersig M., Mulvaney P. Preparation of Ordered Colloid Monolayers by Electrophoretic Deposition. Langmuir, 1993, 9, 3408-3413.
    Trau M., Saville D. A., Aksay I. A.. Assembly of Colloidal Crystals at Electrode Interfaces. Langmuir, 1997, 13, 6375-6381.
    Bohmer M. In Situ Observation of 2-Dimensional Clustering during Electrophoretic Deposition. Langmuir, 1996, 24(12), 5747-5750.
    Giersig M., Mulvaney P.. Formation of Ordered Two-Dimensional Gold Colloid Lattices by Electrophoretic Deposition. J. Phys. Chem. 1993,97, 6334-6336.
    殷好勇,金振声,张顺利等, TiO2 膜的亲水性丧失原因及其光催化再生的研究. 2002’全国光催化学术会议,北京:2002,49-50.
    余家国,赵修建. 多孔TiO2薄膜自清洁玻璃的亲水性和光催化性能. 高等学校化学学报 [J],2000,21(9):1437-1440
    M'pandou A., Siffert B.. Polyethyleneglycol Adsorption at the TiO2-H20 Interface: Distortion of Ionic Structure and Shear Plane Position. Colloids and Surfaces[J], 1987,24: 159-172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700