莫来石晶须的制备、生长机理及其在陶瓷增韧中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
莫来石具有耐高温、抗氧化、热膨胀系数小、高温强度高以及抗热震性能好等优点,是一种重要的工程材料。莫来石晶须作为一种潜在的陶瓷基、金属基、聚合物基复合材料的增强增韧材料,可广泛用于高温结构材料、摩擦材料等领域。莫来石的晶体结构为斜方晶系,在其结构内部共棱联结的A106八面体和共角顶联结的(Si,A1)04四面体沿c轴方向形成八面体链和四面体双链,晶体结构沿c轴结晶学方向具有较高的生长速率,导致莫来石晶体的高度各向异性。
     论文以不同原料分别采用气相法、氧化物助熔剂法制备了莫来石晶须,并将其用于陶瓷增韧。具体工作包括:(1)分别以蓝晶石、高岭土矿物为原料,氟化铝为助剂制备莫来石晶须,研究了助剂用量、煅烧温度、煅烧时间等工艺制度对莫来石化行为以及晶须生长的影响。(2)以硝酸铝、硅溶胶、氨水为原料,采用溶胶-凝胶法制备了莫来石前驱体粉体;分别以V205、Mn02、CoO作为助熔剂,制备莫来石晶须,研究了助剂用量、温度、压力等对莫来石化行为的影响,并对不同助剂下莫来石各向异性生长的动力学及热力学行为进行了分析。(3)从不同工艺制备的莫来石晶须的形貌及微观结构出发,对莫来石的形核,晶须的连续生长机理,晶体生长的本征形态进行了深入研究。(4)分别采用外加和原位自生两种方法制备了莫来石晶须增韧陶瓷基复合材料,对晶须增韧陶瓷的机理进行了初步探讨。
     论文主要得到如下结论:
     1.莫来石晶须的制备
     蓝晶石、高岭土均可作为制备莫来石晶须的原料,相比较而言,蓝晶石比高岭土更适合用作制备莫来石晶须的原料,制备出来的晶须长度较大,直径细小,长径比大。XRD及TG-DSC分析结果表明,蓝晶石在1160℃左右莫来石化,莫来石化过程属于放热反应。氟化铝可以降低莫来石化温度,莫来石化温度随着氟化铝用量的增加而降低。增加氟化铝用量,有助于莫来石晶粒的生长,在A1F3·3H20用量为4-6%时,莫来石晶体的各向异性生长速率差异较大,莫来石晶须的直径较小,长径比较大;继续增加氟化铝用量,会引起莫来石晶须的横向快速生长,晶须由针状转变为柱状。反应温度的增加会加快莫来石晶粒生长速率,反应温度为1500℃时,可获得长径比较大的莫来石晶须。TEM分析结果表明,莫来石晶须为单晶,莫来石的晶体生长方向为[001]方向,即沿着莫来石晶体结构的c轴方向,这与莫来石晶体内部八面体链和四面体双链结构有关。
     2.莫来石晶须各向异性生长的动力学及热力学行为
     XRD分析及TG-DSC分析结果表明,无定型前驱体粉体的晶化温度约为1225℃,助熔剂V205、Mn02、CoO的引入可以降低莫来石化温度,其中Mn02对莫来石化温度的影响最大,V2O5次之,CoO最次。助熔剂降低莫来石化温度的机理是形成Al2O3-SiO2-MOx三元体系,三元体系的共熔点较低,在体系内部形成局部液相区域降低了莫来石化温度。V2O5、MnO2、CoO均可促进莫来石晶粒的各向异性生长,随着助熔剂用量的增加,体系内部三元液相体系含量增加,莫来石晶粒各向异性生长速率增加;煅烧温度的提高可促进莫来石晶粒的各向异性生长。
     在V2O5含量为3%,成型压力为20MPa时,莫来石晶粒各向异性生长动力学符合经验公式Gn-G0n=kt,沿c轴方向的晶粒生长动力学指数为3~4,横向生长动力学指数约为6,这主要是由于晶粒的轴向生长主要受到扩散机制控制,而横向生长要受到界面扩散、固相传质、液相传质等多种因素的影响与制约。晶粒生长属于热力学活化过程,生长速率常数可以用Arrhenius公式描述。晶体颗粒轴向生长的活化能约501.5KJ/mol,横向生长的活化能为554.3KJ/mol,晶体沿不同方向生长的活化能的差异是造成莫来石晶体各向异性生长的热力学本质。在1600℃时,莫来石晶体轴向生长速率常数为6.8,而横向生长速率常数仅为0.1,由此可见莫来石晶体轴向生长速率明显优于横向生长速率。
     在MnO2含量为3%,成型压力为20MPa时,莫来石晶粒各向异性生长动力学符合经验公式Gn-G0n=kt,沿c轴方向的晶粒生长动力学指数为2-3,横向生长动力学指数约为5~8。这主要是由于晶粒的轴向生长主要受到扩散机制控制,而横向生长要受到界面扩散、固相传质、液相传质等多种因素的影响与制约。晶粒生长属于热力学活化过程,生长速率常数可以用Arrhenius公式描述。晶体颗粒轴向生长的活化能约622.9KJ/mol,横向生长的活化能为748.7KJ/mol,晶体沿不同方向生长的活化能的差异是造成莫来石晶体各向异性生长的热力学本质。在1600℃时,莫来石晶体轴向生长速率常数为1.4,而横向生长速率常数仅为0.1。由此可见莫来石晶体轴向生长速率明显优于横向生长速率。
     在CoO含量为3%,成型压力为20MPa时,莫来石晶粒各向异性生长动力学符合经验公式Gn-G0n=kt,沿c轴方向的晶粒生长动力学指数为2~3,横向生长动力学指数约为3~5。这主要是由于晶粒的轴向生长主要受到扩散机制控制,而横向生长要受到界面扩散、固相传质、液相传质等多种因素的影响与制约。晶粒生长属于热力学活化过程,生长速率常数可以用Arrhenius公式描述。晶体颗粒轴向生长的活化能约978.3KJ/mol,横向生长的活化能为1125.3KJ/mol,晶体沿不同方向生长的活化能的差异是造成莫来石晶体各向异性生长的热力学本质。在1600℃时,莫来石晶体轴向生长速率常数为3.4,而横向生长速率常数仅为1.0。由此可见莫来石晶体轴向生长速率明显优于横向生长速率。
     莫来石晶体各向异性生长速率的巨大差异可以用固液界面的粗糙度和生长机理在不同方向上的差异来解释。不同方向上的相对粗糙度与源于晶体结构的晶界能密切相关。因此莫来石晶粒的各向异性生长是由于晶体结构本身是各向异性的,另外MnO2、V2O5、CoO的引入提供了低粘度的外部自由生长环境。
     3.莫来石晶须的生长机理
     以蓝晶石为原料制备莫来石晶须时,由于蓝晶石熔点及相变温度较高,蓝晶石在莫来石化时,蓝晶石仍保持晶态,莫来石晶核附着于蓝晶石晶体表面,体系中不存在液相,形成的晶核润湿角较大,形成的莫来石晶核直径极小,生长所得的莫来石晶须的直径也较小。以高岭土为原料制备莫来石晶须时,高岭土失水,结构发生破坏形成了非晶质的熔体,体系中由于杂质的原因,存在一定量的液相,莫来石晶核依附于固液界面,晶核与界面的润湿角较小,形成的初始莫来石晶核的直径也较大,生长所得的莫来石晶须直径也较大。氧化物助熔剂法制备莫来石晶须时,莫来石形核于A1203-SiO2-Mq三元液相体系与周围的固相之间的固液界面,晶核与界面的润湿角较大,形成的初始莫来石晶核的直径较大,是莫来石晶须产品直径较大的原因之一。
     蓝晶石制备莫来石晶须时,晶须生长过程存在一定的弯曲与扭折,部分晶须顶端残留有液滴,证实部分晶须的生长按照VLS机理生长;另外部分晶须顶端棱角分明,晶面清晰可辨,同时在部分晶须尖端观察到晶体二次生长,证实部分晶须是按照Frank轴向螺旋位错生长机理生长。以高岭土为原料制备莫来石晶须时,在晶须顶端观察到生长螺纹,证实莫来石晶须是按照Frank轴向螺旋位错的生长机理生长。氧化物助熔剂法制备莫来石晶须时,莫来石晶粒生长环境为液相,在莫来石晶须侧面留下清晰的生长台阶,晶须的生长机理为台阶生长。
     以BFDH模型为基础,计算了莫来石晶体生长的本征形态,莫来石晶须的本征形态应该为{200}单形与其它单形形成的多面体柱状晶体聚形,在晶须的顶部应为{001}单形,或{001}单形与{111}单形的聚形,晶体生长的实际形态与BFDH模型计算模拟结果相吻合。
     4.莫来石晶须增韧陶瓷
     外加莫来石晶须可以明显的改善陶瓷的韧性。对普通陶瓷而言,莫来石晶须质量分数为30%时,增韧效果最佳,陶瓷基复合材料的断裂韧性从1.1MPa-m1/2增大到约2.0MPa-m1/2。对于莫来石陶瓷来说,莫来石晶须质量分数为10%时,增韧效果最佳,陶瓷复合体的断裂韧性从1.8MPa·m1/2增大到2.4MPa·m1/2。原位自生晶须可以明显改善陶瓷的韧性,煅烧温度及煅烧时间会影响陶瓷内部的气孔率、晶须的直径,莫来石陶瓷的断裂韧性最大可达3.0MPa·m1/2。
     在晶须增韧陶瓷内部,晶须纵横交错分散于陶瓷基体中,由于晶须的强度和弹性模量较高,应力作用下产生的初始裂纹的扩展会引起裂纹扩展过程中的偏转与扭折。晶须的断裂以及裂纹偏转引起的晶须拔出和桥联作用是晶须增韧陶瓷的主要机理,晶须以及陶瓷内部气孔的尺寸及分布均会严重影响陶瓷材料断裂过程中的裂纹扩展行为,即影响陶瓷材料的断裂韧性。
Mullite is an attractive potential engineering ceramic because it has mechanical strength and high creep resistance at low and high temperatures, excellent thermal shock, a low thermal expansion coefficient, and good chemical and thermal stability. Mullite Whiskers has attracted attention as a possible reinforcement for ceramic matrix, metal matrix, and polymer matrix composites. It could be used as high temperature structural materials and friction materials. The stable crystal structure of mullite is orthorhombic, and it consists of edge-shared AlO6octahedral chains aligned in the c-direction and cross-linked by corner-shared (Si,Al)O4tetrahedral. Thus, the crystal growth may be faster in crystallographic direction parallet to the c-axis than in any other, resulting in a high degree of orientation.
     Mullite whiskers were prepared by two different method of vapor-phase reaction and flux growth method with different raw materials, and applied it to the ceramics toughening. Firstly, the mullite wishkers were prepared by vapor-method by using kyanite and kaolin as the raw materials respectively, and the aluminum fluoride as the addition agent. The influences of technologcial conditions such as content of addition agent, sintered temperature and sintered time on the mullitization and grain growth behavior were discussed. Second, the mullite precursor powder was prepared by sol-gel method using aluminum nitrate, silica sol and ammonia as raw materials. The mullite whiskers were prepared using vanadic oxide, manganese oxide, cobalt oxide as the flux agent respectively. The influences of addition of agent, temperature and pressure on the mullitization behavior were discussed. The anisotropic grain growth kinetic and thermo dynamical behavior were studied. Thirdly, the morphology and microstructure of mullite whiskers were observed. Nucleation, growth mechanism and the intrinsic crystal morphology of the mullite whiskers were discussed. Fourthly, mullite whiskers enhancement the ceramic matrix composites was prepared by the external addition and in-situ growth method, and discussed the toughening mechanism.
     The main achievements of the dissertation are as following:
     1. Preparation of the mullite whiskers
     Kyanite and kaolin all could be used as the raw materials to prepared the mullite whiskers, and the kyanite was best than the kaolin. The length of the whiskers was long, and the diameter was thickness, the aspect ratio was higher. The results of the XRD and TG-DSC shown that the mullitization of kyanite was began at1160℃, and the process belonged to the exothermic reaction. Increase in the amount of aluminum fluoride favored the growth of the mullite grains. As the amount of aluminum fluoride for4-6%, there was the greatest difference of the anisotropic grain growth rates and the highest aspect ratio of the mullite whiskers. Continue to increase the amount of aluminum fluoride, the growth ratio at thickness could be faster and the mullite whiskers from the needle-like transition to the rods. The temperature could be change the anisotropic grain growth rates, the highest aspect ratio of mullite whiskers could be formed at1500℃. The result of the TEM shown that, the aspect ratios of the particles looked very high, and the particles were single crystals. The elongated direction was [001], the crystallographic direction parallet to the c-axis. It was related to the octahedral chains and the double tetrahedral chains aligned in the c-direction in the crystal structure of mullite.
     2. Anisotropic grain growth kinetic and thermo dynamical behavior of mullite whiskers
     The result of XRD and TG-DSC shown that the crystallization temperature of precursor powder was about1225℃, vanadic oxide, manganese oxide and cobalt oxide could be decreased the crystallization temperature, where manganese oxide the greatest impact on crystallization temperature, the weaker influence of vanadic oxide, and cobalt oxide the least impact. Due to the low eutectic point of the ternary system of Al2O3-SiO2-MOx, then formed a local region of liquid ternary system, it could be decreased the crystallization temperature of mullite. Vanadic oxide, manganese oxide and cobalt oxide could be promoted the anisotropic grain growth of mullite. With the increased in the amount of flux, the liquid ternary system could be increased, and then the anisotropic growth rate would be increased. And increased the sintered temperature could be promoted the anisotropic grain growth of mullite.
     As3wt%vanadic oxide added, the molding pressure was20MPa, kinetic studies demonstrated that anisotropic grain growth followed the empirical equation Gn-G0n=kt, with growth exponents of3-4and6for the length and thickness direction, respectively. The growth kinetics in the length direction can be interpreted as due to diffusion-controlled growth in the liquid. As expected, the growth kinetics in the thickness direction was much slower than in the length direction. Grain growth was a thermally activated process, and the rate constant could be expressed in the Arrhenius form. The activation energies for grain growth were501.5KJ/mol for the length and554.3KJ/mol for the thickness directions. The growth rate constants at1600℃were6.8and0.1for the length and thickness direction, respectively. The result indicated that the growth rate in length direction is much faster than the thickness direction. Such large differences have been explained by the roughness of the solid/liquid interface and different growth mechanism in each direction. The relative smoothness in each direction is closely related to the anisotropic grain boundary energy, which, in turn, has its origin in the crystal structure. Thus, anisotropic grain growth behavior in vanadic oxide-doped mullite is due to the intrinsic anisotropic crystal structure in which strong-bonded chains lie along the crystallographic c-axis and extrinsic free growth environment of low-viscosity glass provided by vanadic oxide doping.
     As3wt%manganese oxide added, the molding pressure was20MPa, kinetic studies demonstrated that anisotropic grain growth followed the empirical equation Gn-G0n=kt, with growth exponents of2-3and5-8for the length and thickness direction, respectively. The growth kinetics in the length direction can be interpreted as due to diffusion-controlled growth in the liquid. As expected, the growth kinetics in the thickness direction was much slower than in the length direction. Grain growth was a thermally activated process, and the rate constant could be expressed in the Arrhenius form. The activation energies for grain growth were622.9KJ/mol for the length and748.7KJ/mol for the thickness directions. The growth rate constants at1600℃were1.4and0.1for the length and thickness direction, respectively. The result indicated that the growth rate in length direction is much faster than the thickness direction. Such large differences have been explained by the roughness of the solid/liquid interface and different growth mechanism in each direction. The relative smoothness in each direction is closely related to the anisotropic grain boundary energy, which, in turn, has its origin in the crystal structure. Thus, anisotropic grain growth behavior in manganese oxide-doped mullite is due to the intrinsic anisotropic crystal structure in which strong-bonded chains lie along the crystallographic c-axis and extrinsic free growth environment of low-viscosity glass provided by manganese oxide doping.
     As3wt%cobalt oxide added, the molding pressure was20MPa, kinetic studies demonstrated that anisotropic grain growth followed the empirical equation Gn-G0n=kt, with growth exponents of2-3and3-5for the length and thickness direction, respectively. The growth kinetics in the length direction can be interpreted as due to diffusion-controlled growth in the liquid. As expected, the growth kinetics in the thickness direction was much slower than in the length direction. Grain growth was a thermally activated process, and the rate constant could be expressed in the Arrhenius form. The activation energies for grain growth were978.3KJ/mol for the length and1125.3KJ/mol for the thickness directions. The growth rate constants at1600℃were3.4and1.0for the length and thickness direction, respectively. The result indicated that the growth rate in length direction is much faster than the thickness direction. Such large differences have been explained by the roughness of the solid/liquid interface and different growth mechanism in each direction. The relative smoothness in each direction is closely related to the anisotropic grain boundary energy, which, in turn, has its origin in the crystal structure. Thus, anisotropic grain growth behavior in cobalt oxide-doped mullite is due to the intrinsic anisotropic crystal structure in which strong-bonded chains lie along the crystallographic c-axis and extrinsic free growth environment of low-viscosity glass provided by cobalt oxide doping.
     3. Growth mechanism of mullite whiskers
     Due to the higher melting point and phase-transition temperature of kyanite, so it remained crystalline as the kyanite began to mullitization and there wasn't liquid phase in the system. The formation of nuclei of the mullite attached to the surface of kyanite particles. The contact angle between the nucleation and surface of kyanite particles was higher, the diameter of the nuclei was smaller, and then the diameter of the mullite whiskers growth from the nuclei was smaller too. When kaolin as the raw materials to prepared the mullite whiskers, kaonite would be dehydration and formed a local liquid region. The mullite neclei formed in the liquid region and attached to the solid liquid interphase. Due to the smaller contact angle, the diameter of the nuclei was larger, and then the diameter of the mullite whiskers growth from the nuclei was larger too. When the mullite whiskers was prepared by the flux growth method, due to the low eutectic point of the ternary system of Al2O3-SiO2-MOx, then formed a local region of liquid ternary system, The mullite neclei formed in the liquid region and attached to the solid liquid inter-phase. Because of the smaller contact angle, the diameter of the nuclei was larger, and then the diameter of the mullite whiskers growth from the nuclei was larger too.
     It could be observed that there were some kink and bending on the whiskers and some redidual droplets at the tip of the whiskers, when the mullite whiskers were prepared by the vapor-phase reaction from kyanite as the raw materials. So, it could be confirmed that the whiskers growth mechanism followed the VLS theory. Furthermore, the corners and crystal surfaces could be observed clearly, and the secondary growth of whiskers could be observed in some of the whiskers tip. It was demonstrated that some whiskers growth mechanism followed the Frank spiral dislocation theory. While the kaolin as the raw materials, the growth spiral would be observed in the tip of the whiskers, which demonstrated that the whiskers growth mechanism followed the Frank spiral dislocation theory. As the mullite whiskers were prepared by the flux growth method, the extrinsic free growth environment was liquid, and it could be observed the growth step on the side of the whiskers. And the whiskers growth mechanism followed the growth step mode.
     The intrinsic crystal morphology of mullite was calculated which based BFDH-model. The intrinsic crystal morphology was the combinates which could be setted by simplex{200} and other simplexes, and it was the polyhedral columnar crystals. In the tips of the whiskers, there would be the simplex{001} or the combinates setted by simplex{001} and{111}. The observed morphology of mullite whiskers was closely with the calculated results.
     4. Mullite whiskers toughened composites
     The mullite whiskers could be significantly improved the fracture toughness of ceramic matrix composites. While the mass fraction of30%of mullite whiskers, to achieve the best toughening effect to traditional ceramics. The fracture toughness of composites from1.1MPa-m1/2increased to2.0MPa-m1/2. As the mass fraction of10%of mullite whiskers, to achieve the best toughening effect to mullite ceramics. The fracture toughness of composites from1.8MPa-m1/2increased to2.4MPa-m1/2. The fracture toughness of mullite ceramics could be improved by in-situ whiskers. The apparent porosity and the diameter of the whiskers would be affected by the calcination temperature and time. The fracture toughness of mullite ceramics would be up to3.0MPa·m1/2.
     Within the ceramic matrix, whiskers were oriented randomly. Due to the higher strength and elasticity modulus of the whiskers, the crack would be deflection as the initial crack under stress in the propagation. The whiskers fracture, whiskers'pullout and bridging which leading by the crack deflection should be major mechanisms for increasing the fracture toughness in the composite ceramics. The size and distribution of whiskers and pore would be affected the crack growth behavior, so that it would be impacted the fracture toughness.
引文
[1]李武,靳治良,张志宏.无机晶须材料的合成与应用[J].化学进展,2003,(04):264-274.
    [2]崔小明.无机晶须的研究和应用进展[J].精细化工原料及中间体,2007,(05):25-28+36.
    [3]李武.无机晶须[M].北京:化学工业出版社,2005.
    [4]C. C. Evans, Whiskers[M]. Londan:Mills Boon Limited,1972.
    [5]R. S. Wagner, W. C. Ellis. Vapor-liquid-solid mechanism of single crystal growth[J]. Applied Physics Letters,1964,(4):89-90.
    [6]J. Homeny, L. J. Neergaard, K. R. Karasek, et al. Characterization of β-silicon nitride whiskers[J]. Journal of the American Ceramic Society,1990,73(1):102-105.
    [7]L. S. Chu, M. W. Tang, Z. W. Zhou. The enhancement of the complex dielectric constant of zinc oxide whisker and analysis of the microwave absorption mechanism[C]. Contributions of surface engineering to modern manufacturing and remanufacturing-Proceedings of the 3rd International Conference on Surface Engineering, 2002, Beijing:604-606.
    [8]Y. Kargin, S.Ivicheva, A.Lysenkov, et al. Preparation of silicon carbide whiskers from silicon nitride[J]. Inorganic Materials,2009,45(7):758-766.
    [9]张旭东,何文,沈建兴.莫来石晶须的制备[J].中国陶瓷,1998,(06):6-9.
    [10]M. Ismail, H. Arai, Z. Nakai, et al. Mullite whiskers from precursor gel powders[J]. Journal of the American Ceramic Society,1990,73(9):2736-2739.
    [11]M. Qu, X. Jian, G.Liao. Performance of potassium titanate whisker reinforced PPESK composites[J]. Journal of Materials Science & Technology,2004,(04):445-447.
    [12]P. Huo, S. Li, C. Wu, et al. Study on application of potassium titanate whisker materials in preparation of photocatalyst[J]. Chinese Journal of Reactive Polymers,2007,(Z1):7-14.
    [13]景晓明,卢佳美,马晨,等.钛酸钾晶须研究现状及发展前景[J].西南民族大学学报(自然科学版),2008,(03):539-544.
    [14]周文君.钛酸钾晶须的研究及应用[J].杭州师范学院学报(自然科学版),2004,(01):69-72.
    [15]乃学瑛.氧化镁晶须的合成及其生长机理的研究[D].中国科学院青海盐湖研究所,2007.
    [16]乃学瑛,李洁,边绍菊,等.高温熔剂法制备氧化镁晶须[J].无机盐工业,2007,(05):29-31.
    [17]臧月龙.氧化镁晶须的研究进展[J].广东微量元素科学,2009,(10):24-28.
    [18]X. Wang, Y. Zhu, Y. Han, et al. Toughening of polypropylene with calcium sulfate whiskers treated by coupling agents[J]. Advanced Materials Research,2008, (58):225-229.
    [19]黄哲元,董发勤,张伟.硫酸钙晶须的制备进展[J].无机盐工业,2009,(08):6-8.
    [20]唐湘,李军,金央,等.硫酸钙晶须的制备工艺研究[J].无机盐工业,2011,(05):36-39.
    [21]H. Gao, L. Wang, W. Fei. Effect of aluminum borate whisker coating on interface and mechanical properties of 6061A1 matrix composites[J]. Rare Metals,2007,(S1):41-45.
    [22]Z. Lu, H. Geng, M. Zhang. Preparation of aluminum borate whisker reinforced aluminum phosphate wave-transparent materials[J]. Chinese Science Bulletin,2008,(19):3073-3076.
    [23]王湃,孙铁军.硼酸铝晶须的应用与制备[J].无机盐工业,2006,(10):16-17.
    [24]赵铭姝,翟玉春.硼酸铝晶须的生长机理[J].化工冶金,1998,(04):78-82.
    [25]S. Minagawa. Kinetics of growth of Al2O3 whiskers[J]. Journal of the American Ceramic Society,1972,55(2):77-80.
    [26]P. Azar. Whiskers[M]//Ullmann's Encyclopedia of Industrial Chemistry.Wiley-VCH Verlag GmbH & Co. KGaA,2000
    [27]金栋.无机晶须材料的制备方法和应用进展[J].精细化工原料及中间体,2010,(10):23-27.
    [28]范正赟,朱伯铨,李雪冬,等.硫酸钾熔盐中合成莫来石晶须的形态和生长机理[J].耐火材料,2007,(03):172-174.
    [29]聂建华,张寒,徐满,等.熔盐法合成莫来石晶须[J].稀有金属材料与工程,2009,(S2):1154-1157.
    [30]P. Zhang, J. Liu, H. Du, et al. Influence of silica sources on morphology of mullite whiskers in Na2SO4 flux[J]. Journal of Alloys and Compounds,2009,484(1-2):580-584.
    [31]一种SiC晶须强化的SiC陶瓷基复合材料及其制备方法:CN102161594A[P].
    [32]田杰谟,张宝清,董利民,等.SiC晶须结构与形貌研究[C].首届中国功能材料及其应用学术会议,桂林:961-962.
    [33]严东泉.CVD法生长SiC晶须研究[D].电子科技大学,2006.
    [34]翟蕊.助溶剂法不同形貌SiC晶体的生长[D].浙江大学,2007.
    [35]周鹤年.SiC晶须的新合成法[J].化工新型材料,1986,08):14-15.
    [36]徐桦,郭梦熊.SiC晶须特性在SiCw/Si3N4复合材料中所起作用的研究[J].高技术通讯,1994,(06):26-28.
    [37]A. De Arellano-Lopez, F. L. Cumbrera, A. Dominguez-Rodriguez, et al. Compressive creep of SiC-whisker-reinforced A12O3[J]. Journal of the American Ceramic Society, 1990,73(5):1297-3000.
    [38]Z. Chen, S. Tan, Z. Zhang, et al. High preformation SiC-AIN composites[J]. Journal of Materials Science & Technology,1997,04):342-344.
    [39]魏明,王春波,乃学瑛,等.无机晶须研究进展Ⅰ:钛酸钾晶须的制备及应用[J].盐湖研究,2004,(04):58-62+48.
    [40]魏明,王春波,乃学瑛,等.无机晶须研究进展Ⅱ:钛酸钾晶须在复合材料中的应用[J].盐湖研究,2005,(01):55-60.
    [41]李武.硼酸铝晶须的性质、制备和开发前景[J].盐湖研究,2000,(03):40-43.
    [42]G.W. Fisher, Petrogenesis of Metamorphicrocks[M]:(third edition) Winkler, H. G.F. Springer-Verlag, New York,1974. Geochimica et Cosmochimica Acta,1975,39(9).1975.
    [43]吴红丹.具有不同硅铝比的莫来石的合成及其晶体结构研究[D].中国地质大学(武汉),2011.
    [44]H. Schneidera, J. Schreuerb, B. Hildmanna. Structure and properties of mullite[J]. Journal of the European Ceramic Society,2008,28(2):329-344.
    [45]朱伯铨,郝瑞,李雪冬.温度对硫酸钠熔盐中合成莫来石晶须的影响[J].稀有金属材料与工程,2009,(S2):1-4.
    [46]王洪彬,张玉军,张敏.莫来石晶须研究进展[J].山东轻工业学院学报(自然科学版),2005,(04):58-61.
    [47]Y. M. Park, T. Y. Yang, S. Y. Yoon, et al. Mullite whiskers derived from coal fly ash[J]. Materials Science and Engineering:A,2007,454-455:518-522.
    [48]S. Agathopoulos, H. Fernandes, D. Tulyaganov, Preparation of mullite whiskers from kaolinite using CuSO4 as fluxing agent[J]. Materials Science Forum,2004, 455-456:818-821.
    [49]B. M. Kim, T. Y.Yang, S. Y. Yoon, et al. Processing of mullite whiskers from kaolin[J]. Advanced Materials Research,2007,29:203-206.
    [50]B. M. Kim, Y. K. Cho, S. Y. Yoon, et al. Mullite whiskers derived from kaolin[J]. Ceramics International,2009,35(2):579-583.
    [51]H. Tan. Effect of aluminium sulphate on phase formation and morphology development of mullite whiskers[J]. Clay Minerals,2010,45(3):349.
    [52]谭宏斌.用高岭土低温制备莫来石晶须[J].材料开发与应用,2010,(01):41-44.
    [53]徐晓虹,郭子瑜,孙钱平,等.原位生成莫来石晶须机理的研究[J].武汉理工大学学报,2005,(12):18-21.
    [54]徐晓虹,吴建锋,柯尊文,等.原位合成莫来石晶须及其微观结构的研究[J].陶瓷学报,2007,(02):89-92.
    [55]H. Katsuki, H.Ichinose, S. Furuta. Growth of mullite whiskers on alumina particle by thermal decomposition of clay minerals[J]. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi,1996,104(8):788-791.
    [56]陈纲领,漆虹,邢卫红,等.原位反应烧结合成针状结构多孔莫来石载体[J].无机材料学报,2008,(03):597-601.
    [57]P. Peng, S. Chris. Preparation of mullite whiskers from topaz decomposition[J]. Materials Letters,2004,58(7-8):1288-1291.
    [58]X. Miao. Porous mullite ceramics from natural topaz[J]. Materials Letters, 1999,38(3):167-172.
    [59]S. Y. Park, S. W. Kim, H. G. Bang. Effect of oxide additives on the aspect ratio control of mullite whiskers[J]. Materials Science Forum,2005,486-487:538-541.
    [60]姜晓谦,李金洪,童玲欣,等.高铝粉煤灰制备莫来石晶须的实验研究[J].矿物岩石,2010,(02):33-37.
    [61]谭宏斌.电厂粉煤灰制备莫来石晶须[J].有色金属(冶炼部分),2010,(03):25-26+41.
    [62]姜晓谦,李金洪,赵宏伟,等.红柱石绢云母千枚岩制备莫来石晶须的实验研究[J].矿物岩石地球化学通报,2010,(03):270-273.
    [63]P. Zhang, J. Liu, H. Du, et al. Molten salt synthesis of mullite whiskers from various alumina precursors [J]. Journal of Alloys and Compounds,2010,491(1-2):447-451.
    [64]李雪冬,朱伯铨,张少伟.熔盐介质对合成莫来石晶须的影响[J].稀有金属材料与工程,2008,(S1):300-302.
    [65]朱伯铨,李雪冬,郝瑞,等.在硫酸钠熔盐中合成莫来石晶须[J].耐火材料,2006,(03):165-168.
    [66]S. Hashimoto, A.Yamaguchi. Synthesis of mullite whiskers using Na2SO4 flux[J]. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi,2004,112(2):104-109.
    [67]张旭东,何文,沈建兴.自生晶须强韧化莫来石材料的研究[J].中国陶瓷,2001,(03):4-6.
    [68]张旭东.莫来石晶须的生长机理研究[J].陶瓷学报,1998,(02):76-78.
    [69]R. John, H. Moyer, N. A. Neal. Catalytic process for mullite whiskers[J]. Journal of the American Ceramic Society,1994,77(4):1083-1086.
    [70]袁建君,刘智恩,韩玉.莫来石晶须制备新工艺与生长机理[J].无机材料学报,1996,(01):101-106.
    [71]K. Okada, N. Otsuka. Synthesis of mullite whiskers by vapour-phase reaction[J]. Journal of Materials Science Letters,1989,8(9):1052-1054.
    [72]纪士东,罗益军.莫来石晶须的特性及应用[J].江苏陶瓷,2007,(03):28-31.
    [73]袁建君,刘智恩,韩玉.溶胶—凝胶法制备莫来石晶须[J].硅酸盐学报,1996,(03):342-346.
    [74]袁建君,刘智恩,韩玉.溶胶-凝胶法制备的莫来石晶须的形貌和生长过程研究[J].人工晶体学报,1996,(01):49-53.
    [75]漆志飞,陈纲领,漆虹,等.烧成温度对合成莫来石陶瓷膜的影响[J].膜科学与技术,2009,(04):64-67.
    [76]Z. F. Wang, C. T. Du, X. T. Wang, et al. Preparation and morphology of mullite whiskers by sol-gel method[J]. Key Engineering Materials,2007,336:1313-1315.
    [77]赵东亮,张玉军,龚红宇,等.不同酸对胶凝过程及莫来石晶须形成的影响[J].中国陶瓷,2007,(10):17-18+13.
    [78]江伟辉,彭永烽,刘健敏,等.非水解溶胶-凝胶法制备莫来石晶须[J].无机材料学报,2010,(05):532-536.
    [79]H. J. Choi, J. G. Lee. Synthesis of mullite whiskers[J]. Journal of the American Ceramic Society,2002,85(2):481-483.
    [80]黄卫国.莫来石晶须的合成[J].耐火材料,2002,(03):131.
    [81]刘永鹤,彭金辉,孟彬,等.莫来石晶须长径比影响因素的响应曲面法优化[J].硅酸盐学报,2011,(03):403-408.
    [82]孔德强,袁运法,白召军,等.溶胶-凝胶法合成莫来石纳米带[J].无机化学学报,2006,(02):359-362.
    [83]L. B. Kong, J. Ma, H. Huang. Anisotropic mullitization in CuO-doped oxide mixture activated by high-energy ball milling[J]. Materials Letters,2003,57(22-23):3660-3666.
    [84]L. B. Kong, H. Huang, T. S. Zhang, et al. Growth of mullite whiskers in mechanochemically activated oxides doped with WO3[J]. Journal of the European Ceramic Society,2003,23(13):2257-2264.
    [85]L. B. Kong, H. Huang, T. S. Zhang,et al. Effect of transition metal oxides on mullite whisker formation from mechanochemically activated powders[J]. Materials Science and Engineering:A,2003,359(1-2):75-81.
    [86]L. B. Kong, Y. Z. Chen, T. S. Zhang. Effect of alkaline-earth oxides on phase formation and morphology development of mullite ceramics[J]. Ceramics International, 2004,30(7):1319-1323.
    [87]M. F. De Souza, J. Yamamoto, I. Regiani, et al. Mullite whiskers grown from erbia-doped aluminum hydroxide-silica gel[J]. Journal of the American Ceramic Society, 2000,83(1):60-64.
    [88]M. F. De Souza, I. Regiani, D. P. F. De Souza, Mullite whiskers from rare earth oxide doped aluminosilicate glasses[J]. Journal of Materials Science Letters, 2000,19(5):421-423.
    [89]L. Liang, J. Li, H. Lin, et al. Difference of mullite whiskers between ytterbia-doped aluminum hydroxide-silica gel and mechanochemical process[J]. Journal of Rare Earths, 2006,24(1, S1):51-53.
    [90]I. Regiani, W. L. E. Magalhaes, D. P. F. De Souza, et al. Nucleation and growth of mullite whiskers from lanthanum-doped aluminosilicate melts[J]. Journal of the American Ceramic Society,2002,85(1):232-238.
    [91]王洪彬.莫来石晶须的合成及其生长机理研究[D].山东大学,2006.
    [92]张以河.复合材料学[M].北京:化学工业出版社,2011.
    [93]穆柏春.陶瓷材料的强韧化[M].北京:冶金出版社,2002.
    [94]尹衍升,陈守刚,李嘉.先进结构陶瓷及其复合材料学[M].北京:化学工业出版社,2006.
    [95]胡克艳.莫来石晶须强韧化80高铝瓷基体的制备工艺研究[D].景德镇陶瓷学院,2010.
    [96]N. Travitzky. Mechanical properties and microstructure of mullite whisker-reinforced magnesium aluminosilicate glass with cordierite composition[J]. Journal of Materials Science Letters,1998,17(19):1609-1611.
    [97]D. Haught,1. Talmy, D. Divecha, et al. Mullite whisker felt and its application in composites[J]. Materials Science and Engineering:A,1991,144(1-2):207-214.
    [98]S. Li, H. Du, A.Guo, et al. Preparation of self-reinforcement of porous mullite ceramics through in situ synthesis of mullite whisker in flyash body[J]. Ceramics International, 2012,38(2):1027-1032.
    [99]Q. Ren, X. Wu, X. He, et al. Relationships among preparative technique, phase composition and bending strength of bauxite porcelain[J].结构化学,2007,26(1):79-83
    [100]K. Okada, N. Otuska. Synthesis of mullite whiskers and their application in composites[J]. Journal of the American Ceramic Society,1991,74(10):2414-2418.
    [101]T. T. Long, H. H. Aiga. Use of mullite whiskers for aluminum matrix composites[J]. Materials Transactions Jim,1993,34(4):364-372.
    [102]陈桂华,杨辉,王家邦,等.莫来石结合莫来石-刚玉质高温推板的研制[J].硅酸盐学报,2002,(S1):105-108.
    [103]胡克艳,顾幸勇,陈宗玲.外加莫来石晶须增强80氧化铝瓷工艺研究[J].中国陶瓷,2010,(01):15-18.
    [104]穆柏春.原位合成莫来石晶须增强氧化铝基陶瓷[J].耐火材料,1998,(02):70-73.
    [105]张立同.纤维增强碳化硅陶瓷复合材料——模拟、表征与设计[M].北京:化学工业出版社,2009.
    [106]J. Karch, R. Birringer, H. Gleiter. Ceramics ductile at low temperature[J]. Nature, 1987,330:556-558.
    [107]黄勇,汪长安.高性能多相复合陶瓷[M].北京:清华大学出版社,2008.
    [108]高濂,靳喜海,郑珊.纳米复相陶瓷[M].北京:化学工业出版社,2004.
    [109]K. Niihara. New design concept of structural ceramics—ceramic nanocomposites[J]. Nippon seramikkusu kyokai gakujutsu ronbunshi,1991,99(10):974-982.
    [110]L. Gao, X. Jin, H. Kawaoka, et al. Microstructure and mechanical properties of SiC-mullite nanocomposite prepared by spark plasma sintering[J]. Materials Science and Engineering:A,2002,334(1):262-266.
    [111]S. K. C. Pillai, B. Baron, M. J. Pomeroy, et al. Effect of oxide dopants on densification, microstructure and mechanical properties of alumina-silicon carbide nanocomposite ceramics prepared by pressureless sintering[J]. Journal of the European Ceramic Society, 2004,24(12):3317-3326.
    [112]M. Poorteman, P. Descamps, F. Cambier, et al. Silicon nitride/silicon carbide nanocomposite obtained by nitridation of SiC:fabrication and high temperature mechanical properties [J]. Journal of the European Ceramic Society, 2003,23(13):2361-2366.
    [113]Y. Xu, L. Cheng, L. Zhang, et al. Preparation and mechanical properties of self-reinforced in situ Si3N4 composite with La2O3 and Y2O3 additives[J]. Composites Part A:Applied Science and Manufacturing,1999,30(8):945-950.
    [114]D. H. Cho, Y. W. Kim, W. Kim, Strength and fracture toughness of in situ-toughened silicon carbide[J]. Journal of Materials Science,1997,32(18):4777-4782.
    [115]陈力,冯坚,李永清,等.烧结助剂对白增韧Si3N4陶瓷显微结构和性能的影响[J].硅酸盐学报,2003,(04):382-385.
    [116]仝建峰,陈大明,李宝伟,等.原位生长柱状晶氧化铝陶瓷材料的制备[J].真空电子技术,2005,(04):15-18.
    [117]傅恒志,郭景杰,刘林.先进材料定向凝固[M].北京:科学出版社,2008.
    [118]陈桂华,梁华定Sol-Gel法制备莫来石粉末的研究[J].佛山陶瓷,2005,(1]):9-11.
    [119]茅宇雄.无机先驱体溶胶-凝胶法制备莫来石[D].浙江大学,2002
    [120]谭宏斌,杨建锋.溶胶-凝胶法制备莫来石纤维及莫来石晶化的动力学研究[J].西安 交通大学学报,2009,(11):43-46+94.
    [121]顾幸勇,陈玉清.陶瓷制品检测及缺陷分析[M].北京:化学工业出版社,2006.
    [122]K. Niihara, R. Morena, D. P. H. Hasselman. Evaluation of KIC of brittle solids by the indentation method with low crack-to-indent ratios[J]. Journal of Materials Science Letters,1982,1(1):13-16.
    [123]尹邦跃,王零森.ZrO2基陶瓷压痕断裂韧性的测定[J].粉末冶金材料科学与工程,2001,6(1):78-82.
    [124]方正东,汪敦佳,张传越.地开石热分解过程及非等温动力学研究[J].化学物理学报,2005,(04):619-624.
    [125]易发成,宋绵新,陈廷芳,李虎杰,文学飞.利用埃洛石粘土制备白炭黑的研究[J].非金属矿,1999,01):17-18+13.
    [126]俞建长.叶蜡石及蜡石质釉面砖坯焙烧过程物相变化的X射线研究[J].福州大学学报(自然科学版),1994,05):118-123.
    [127]蒋鹏,罗守靖,胡连喜.用硅线石制造莫来石瓷的试验研究[J].陶瓷研究,1993,(03):123-126.
    [128]李静.蓝晶石基刚玉-莫来石陶瓷[J].科技资讯,2011,(30):220.
    [129]J. R. Moyer, P. R. Rudolf. Stoichiometry of fluorotopaz and of mullite made from fluorotopaz[J]. Journal of the American Ceramic Society,1994,77(4):1087-1089.
    [130]石成利.蓝晶石的特性及其应用[J].陶瓷,2007,(04):39-41.
    [131]王濮,潘兆橹,翁玲宝.系统矿物学(中)[M].北京:地质出版社,1984.
    [132]伊赫桑·巴伦.纯物质热化学数据手册[M].北京:科学出版社,2003.
    [133]J. J. Kim, B. K. Kim, B. M. Song, et al. Effect of sintering atmosphere on isolated pores during the liquid-phase sintering of MgO-CaMgSiO4[J]. Journal of the American Ceramic Society,1987,70(10):734-737.
    [134]K.R. Lai, T. Y. Tien. Kinetics of P-Si3N4 grain growth in Si3N4 ceramics sintered under high nitrogen pressure[J]. Journal of the American Ceramic Society,1993,76(1):91-96.
    [135]C. H. Tien, T. I. Chen. Anisotropic grain growth during final stage sintering of silicon nitride ceramics[J]. Sintering,1987,2:1034-1039.
    [136]介万奇.晶体生长原理与技术[M].北京:科学出版社,2010.
    [137]S. H. Hong, G. L. Messing. Anisotropic grain growth in diphasic-gel-derived titania-doped mullite[J]. Journal of the American Ceramic Society,1998,81(5):1269-1277.
    [138]张金升,张银燕,王美婷,等.陶瓷材料显微结构与性能[M].北京:化学工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700