用户名: 密码: 验证码:
基于支持向量机的代价敏感数据挖掘研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产生于20世纪90年代的数据挖掘(Data Mining,DM)技术是一种基于海量数据获取知识的技术。随着计算机和存储技术的快速发展,人们已经积累了大量的历史数据,迫切需要把这些历史数据转化为可用的知识,因此DM相关内容已得到广泛的研究,并有一些成功的应用。但当面对的挖掘任务涉及不同类型的代价时,大多现有DM算法的直接应用不能很好地完成DM任务,需引入代价敏感数据挖掘(Cost Sensitive DM,CSDM)。对于给定的样本集,常用的DM算法假定每个样本的误分类代价都相等,以泛化精度为学习目标;而CSDM则是考虑到不同样本的误分类代价不相等,以最小化期望代价为学习目标。
     支持向量机(Support Vector Machines,SVM)源于统计学习理论(Statistical Learning Theory,SLT),是一种强有力的DM算法。不同于神经网络、决策树等传统算法基于经验风险最小化(Empirical Risk Minimization,ERM)准则,SVM基于结构风险最小化(Structural Risk Minimization,SRM)准则,即同时考虑经验风险和模型复杂度,因而获得良好的泛化性能。但和传统算法一样,SVM不具有代价敏感性,不能直接用于CSDM。
     针对CSDM问题,本论文提出一系列基于改进SVM的CSDM算法,并进行应用研究。本论文主要内容如下:
     1.基于SVM及其启发,提出并证明了支持向量率(和数)与边界支持向量率(和数)的界,并把这些界分别扩展到正例与反例;提出并证明了正例的支持向量率与边界支持向量率分别依概率大于反例的支持向量率与边界支持向量率;证明了正例的分类性能依概率差于反例的分类性能,即证明SVM算法应用于不平衡数据挖掘时同传统基于精度的算法一样存在“有偏性”。虚拟数据集试验和Benchmark数据集试验表明了假设的合理性和结论的正确性。
     2.基于SVM实现SRM原则的启发,在SVM中嵌入拒识代价和误分类代价,提出了SVM-RMC分类器的设计,并基于修改的SMO算法给出了该优化问题的求解方法。在SVM-RMC中,决策函数和拒识区域的确定在训练过程中实现。试验结果表明:相比于SVM,SVM-RMC减少平均测试代价,提高分类可靠性。
     3.基于SVM,通过引入概率估计和代价最小化过程,提出了一个基于SVM的CSDM算法CS-SVM,在此基础上提出了一个通用CSDM算法G-CSC。CS-SVM和G-CSC以误分类代价最小作为优化目标,G-CSC中包含的分类算法可以是任意的,只要把分类算法的输出构造成后验概率的形式。基于虚拟和Benchmark数据集的试验结果表明CS-SVM能有效减小平均测试误分类代价。
     4.基于K最近邻(KNN)算法,提出了确定噪音代价的方法,并将其引入到SVC和SVR算法,进而提出了嵌入噪音代价的代价敏感SVC(SVC-NC)算法和代价敏感SVR(SVR-NC)算法。基于虚拟和Benchmark数据集的试验结果表明,
Data mining, emerged during the late 1980's, has made great strides and is expected to continue to flourish. Data mining is the process of extracting knowledge hidden from large volumes of raw data. There is growing interest in data mining theories and applications in recent years due to the wide availability of huge amounts of data and the imminent need for turning such data into useful information and knowledge. However, the majority of the data mining literature ignores all types of cost (unless accuracy is interpreted as a type of cost measure) involved in so many real-world applications as medical diagnosis and fraud detection fields, so these algorithms without taking all types of cost into account do not perform well, and cost sensitive data mining should be introduced. Cost sensitive data mining is defined as the problem of learning decision model minimizing expected total costs, given a training set. For example, in medical diagnosis, the cost of erroneously diagnosing a patient to be healthy may be much bigger than that of mistakenly diagnosing a healthy person as being sick, because the former kind of error may result in the loss of a life.Support vector machines (SVM) are a new class of data mining algorithms, motivated by the structural risk minimization (SRM) induction principle of statistical learning theory. SVM captures the main insight of statistical learning theory (in order to obtain a small risk (cost) function, one needs to control both training error and model complexity) and shows better generalization ability than data mining algorithms based on empirical risk minimization (ERM) principle. SVM have proven to be effective in many practical applications. However, SVM are not cost sensitive, like traditional algorithms.Some implementation algorithms of cost sensitive data mining based on SVM are proposed in this thesis aiming to develop practical and near-optimal algorithms for learning how to solve cost sensitive data mining tasks. In detail, the major contributions of this dissertation are as following:1. Based on SVM, firstly, the bound of both the SV number (and rate) and BSV number (and rate) is proposed and is proved, further the bounds are extended to positive class and negative class respectively. Secondly, it is presented and testified that the SV rate and BSV rate of positive class is higher than that of negative class. Thirdly, that the positive class yields poorer classification and predictive accuracy than the negative class does is attested. Experimental study based on German credit and Heart disease data sets shows that the hypothesis and conclusion proposed is true and effective.
    2. A novel cost sensitive data mining method for support vector machine classifiers with reject cost and unbalanced misclassification cost (SVM-RMC) is proposed based on SRM principle. In SVM-RMC, the decision function, rejection region included, can be determined during the training phase of a classifier, by the learning algorithm. To implement SVM-RMC, we develop a novel formulation of the training problem, and a specific algorithm to solve it. Experimental results based on some artificial and benchmark data sets shows that SVM-RMC reduced the total cost and improved the classification reliability.3. A novel general cost sensitive data mining (G-CSDM) algorithm for making an arbitrary classifier cost sensitive is proposed by wrapping probability estimation and a cost minimizing procedure around it, and a particular implementation based on SVM, called CS-SVM, is achieved. Experimental results based on artificial and benchmark data sets shows that CS-SVM reduced the total misclassification cost.4. In order to overcome the overfitting problem caused by noise in training data set, a noise cost model based on k nearest neighbors (KNN) algorithm in feature space is presented and is applied to SVC and SVR algorithms, then SVC algorithm with noise cost (SVC-NC) and SVR algorithm with noise cost (SVR-NC) are proposed. Experimental results show that both SVC-NC and SVR-NC algorithms can largely reduce the effect of noise in training set on learning model, and have better generalization ability.5. Under some restrictions, the functional equivalence between SVM and a kind of FIS is proposed, and further MBFIS-SRM and MBFIS-SRM-MC is devised based on SRM principle. In MBFIS-SRM and MBFIS-SRM-MC, the number of rules and rules base generate automatically by algorithm. Experimental results based a few benchmark data sets show that MBFIS-SRM have better generalization ability and MBFIS-SRM-MC reduced the average test misclassification cost.6. A few data mining process model and data mining software are introduced and general data mining patterns and technologies are reviewed. A novel bidirectional feedback data mining process model (BFDM) is proposed base on the understanding of both data mining process model and metallurgy process industry. A novel data mining system software DMP is implemented in which some data mining models in metallurgy process industry are built to solve real industrial problems.
引文
Agarwal R., Imielinski T., Swami A.. Mining Association Rules Between Sets of Items in Large Databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, 1993, 207-217.
    Agrawal R., Christos F., Arun S.. Efficient Similarity Search In Sequence Database. In FODO Conference, Evanston, Illinois, October, 1993.
    Agrawal R., Mannila H., Srikant R., Toivonen H., Verkamo A. I.. Fast Discovery of Association Rules. Chapter 12 in Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, AAAI Press, 1996, 307-328.
    Agrawal R., Srikant R.. Fast Algorithms for Mining Association Rules. In: Proceedings of 1994 International Conference on Very Large Data Bases, Santiago, Chile, 1994, 487-499.
    Ali K., Pazzani M.. HYDRA-MM: Learning Multiple Descriptions to Improve Classification Accuracy. International Journal of Artificial Intelligence tools, 1995, 4.
    Anand S. S., Bell D. A., Hughes J. G... EDM: A General framework for Data Mining Based on Evidence Theory. Data & Knowledge Engineering, 1996, 18, 189-223.
    Anand S. S., Scotney B. W., Tan M. McClean G. S. I., Bell D. A., Hughes J. G., fan C. M.. Designing a Kernel for Data Mining, IEEE Expert, March-April, 1997, 65-74.
    Ben-Hui A., Horn D., Sidgelmann H.T., et.al.. Support Vector Clustering. Journal of Machine Learning Research, 2001, 2, 125-137.
    Blake C. L., Merz C. J.. UCI Repository of Machine Learning Databases. Department of Information and Computer Science, University of California, Irvine, CA. [Online]. Available: http://www.ics.uci.edu/~mlearn/MLRepository, 1998.
    Bortolet P.. Modelization et commande multivariable floues: Application a la commande d'un moteur thermique. Ph.D. dissertation, Inst. Nat. Sci. Appl., toulouse, LAAS-CNRS, Dec. 1998.
    Boser B.E., Guyon I.M., Vapnik V.N.. A Training Algorithm for Optimal Margin Classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, 1992.
    Brachman R. J., Anand T.. The Process of Knowledge Discovery in Databases: A Human-centered Approach. Adavance In Knowledge Dicovery and Data Mining, 1996.
    Bradley A.. The Use of the Area under the ROC Curve in the Evaluation of Machine Learning Algorithms. Pattern Recognition, 1997, 30(7): 1145-1159.
    Breiman L., Friedman J., Olshen R., Stone C.. Classification and Regression Trees. Chapman and Hall/CRC Press, California, F1, 1984.
    Burges C. J. C.. A Tutorial on Support Vector Machines for Pattern Recognition. Knowledge Discovery and Data Mining, 1998, 2(2). 121-167.
    Cardie C.. Improving Minority Class Prediction Using Casespecific Feature Weights. In Proceedings of the Fourteenth International Conference on Machine Learning, Morgan Kaufmann, 1997, 57-65.
    Carvalho D. R., Freitas A. A.. New Results for a Hybrid Decision Tree/Genetic Algorithm for Data Mining. In Proceedings of the Fourth International Conference on Recent Advances in Soft Computing, 2002, 260-265.
    Carvalho D. R., Freitas A.. A Genetic Algorithm for Discovering Small-disjunct Rules in Data Mining. Applied Soft Computing, 2002, 2(2), 75-88.
    Cauwenberghs G.. Poggio T.. Incremental and Decremental Support Vector Machine Learning. In Advances in Neural Information Processing Systems (NIPS'2000), Vol. 13, MIT Press,Cambridge, MA, 2001, 409-415.
    Chan G., Chih C, Lin C. L1BSVM: A Library for Support Vector Machines (Version 2.3) [Online]Available: http: //www.csie.ntu.edu.tw//~ cjlin/papers/libsvm.pdf, 2001.
    Chan P. K., Stolfo S. J.. Toward Scalable Learning with Non-uniform Class and Cost Distributions: A Case Study in Credit Card Fraud Detection. In: Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, 2001, 164-168.
    Chang R. F., Wu W. J. Support Vector Machines for Diagnosis of Breast Tumors on US Images. Academic Radiology, 2003, 10(2), 189-197.
    Chapelle, Vapnik V., Bousquet O., Mukherjee S.. Choosing Kernel Parameters for Support Vector Machines. Machine Learning, 2001, 46, 131-160.
    Chapelle, Vapnik V., Model Selection for Support Vector Machines. Advances in Neural Information Processing Systems 12. Cambridge, Mass: MIT Press, 2000.
    Chapman P., Kerber R., Clinton J., Khabaza T., Reinartz T., Wirth R.. The CRISP-DM Process Model, [Online]Available: http://www.crisp-dm.org/Default.htm, March, 1999.
    Chawla N. V., Lazarevic A., Hall L. O., Bowyer K.. SMOTEBoost: Improving Prediction of the Minority Class in Boosting. In: Proceedings of Principles of Knowledge Discovery in Databases,2003.
    Chawla N.V., Bowyer K. W., Hall L. O., Kegelmeyer W. P.. SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 2002, 16, 321-357.
    Chawla N.V.. C4.5 and Imbalanced Data Sets: Investigating the Effect of Sampling Method, Probabilistic Estimate, and Decision Tree Structure. In Workshop on Learning from Imbalanced Datasets II, International Conference on Machine Learning, 2003.
    Chen M.S., Han J., Yu P. S.. Data Mining: An Overview From Database Perspective. IEEE Transactions on Knowledge and Data Engineering, 1997.
    Chew H.G., Bonger R.E., Lim C.C.. Dual Nu-Support Vector Machine With Error Rate and Training Size Biasing. In: Proceedings of 25th IEEE ECASSP (International Conference on Acoustics, Speech, and Signal Proceeding). Salt Lake City, UT, USA, 2001, 1269-1272.
    Chew H.G., Crisp D.J., Bogner R.E. et al.. Target Detection in Radar Imagery Using Support Vector Machines with Training Size Biasing. In: Proceedings of the 6th International Conference on Control, Automation, Robotics and Vision. Singapore, 2000.
    Chow C. K.. On Optimum Error and Reject Tradeoff. IEEE Trans, on Information Theory, 1970, 16,41-46.
    Cohen W.W.. Fast Effective Rule Induction. In: Proceedings of the 12th International Conference on Machine Learning, 1995, 115-123.
    Cohn D.A., Ghahramani Z., Jordan M. I.. Active Learning With Statistical Models. Journal of Artificial Intelligence Research, 1996, 4, 129-145.
    Cohn D.A., Ghahramani Z., Jordan M. I.. Active Learning With Statistical Models. In Tesauro, G., touretzky, D., and Leen, T. (Eds.). Advances in Neural Information Processing Systems 7, MIT Press, Cambridge, MA, 1995, 705-712.
    Cortes C, Vapnik V.. Support Vector Networks. Machine Learning, 1995, 20, 1-25.
    Cortes C, Vapnik V.. Support-Vector Network. Machine Learning, 1995, 20, 273-297.
    Cost S., Salzberg S.. A Weighted Nearest Neighbor Algorithm for Learning with Symbolic Features. Machine Learning, 1993, 10(1), 57-78.
    Cover T.M.. Geometrical and Statistical Properties of Systems and Linear Inequalities with Applications in Pattern Recognition. IEEE Trans, on Electronic Computers, 1965, 19, 326-334.
    Craven M. W., Shavlik J. W.. Using Sampling and Queries to Extract Rules from Trained Neural Networks. In: Proceedings of the 11th International Conference on Machine Learning, New Brunswick, NJ, 1994, 37-45.
    Cristianini N. , Shawe-Taylor J.. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge, U.K.: Cambridge Univ. Press, 2000.
    Das G., Lin K., Mannila H., Renganathan G., Smyth P.. Rule Discovery from Time Series, In: Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining,1998.
    De Jone K. A.. Evolutionary Computation for Discovery. Communications of the ACM, 1999,42(11), 51-53.
    Domingos P.. Knowledge Discovery Via Multiple Models. Intelligent Data Analysis, 1998, 2,187-202.
    Domingos P.. Metacost: A General Method for Making Classifiers Cost Sensitive. In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego, CA, USA, August 1999. 155-164.
    Drummond C, Holte R.. Exploiting The Cost (In)Sensitivity of Decision Tree Splitting Criteria [A]. Proceedings of the 17th International Conference on Machine Learning. Stanford University, The Stanford Area, and the San Francisco Bay Area, June 29-July 2, 2000, 239-246.
    Drummond C,Holte R. C. C4.5,Class Imbalance, and Cost Sensitivity: Why Under-Sampling Beats Over-Sampling. In Workshop on Learning from Imbalanced Data Sets II, International Conference on Machine Learning, 2003.
    DuboisD., Prade H., "Operations on Fuzzy Numbers, " Int. J. Syst.Sci., 1978, 9(6), 613-626.
    Duda Richard O., Hart Peter E., Stork David G.. Pattern Classification (2nd Edition). New York: John Wiley&Sons, 2001
    Elkan C. The Foundation of Cost-Sensitive Learning. Proceedings of the 17th International Joint Conference on Artificial Intelligence. Seattle, Washington, USA, August 2001. 239-246.
    Emami M. R., TURksen I. B., Goldenberg A. A.. Development of a Systematic Methodology of Fuzzy Logic Modeling. IEEE Trans. Fuzzy Syst., Aug. 1998, 6, 346-361.
    Estabrooks A., Japkowicz N.. A Mixture-of-Experts Framework for Learning from Unbalanced Data Sets. In: Proceedings of the 2001 Intelligent Data Analysis Conference, 2001, 34-43.
    Fan W, Stolfo S, Zhang J, Chan P.. Adacost: Misclassification Cost-Sensitive Boosting. In: Proceedings of the 16th International Conference on Machine Learning. Bled, Slovenia, June 1999, 97-105.
    Fawcett T., Provost F.J.. Activity Monitoring: Noticing Interesting Changes in Behavior. In: Proceedings of the 5th International Conference on Knowledge Discovery and Data Mining, KDD-99, 1999.
    Fawcett T., Provost F.J.. Adaptive Fraud Detection. Data Mining and Knowledge Discovery, 19971(3).
    Fawcett T., Provost F.J.. Combining Data Mining and Machine Learning for Effective User Profiling. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining,KDD-96, 1996, 8-13.
    Fawcett T.. Feature Discovery for Problem Solving Systems. Doctoral Dissertation, Department of Computer Science, University of Massachusetts, Amherst, MA, 1993.
    Fayyad U., Haussler D., Stolorz P.. KDD for Science Data Analysis: Issues and Examples. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD96), Portland, Oregon, August 2-4, AAAI Press, 1996(A).
    Fayyad U., Piatetsky-Shapiro G., Padhraic S.. Knowledge Discovery and Data Mining: Towards a Unifying Framework. In: Proceedings of Second International Conference on Knowledge Discovery and Data Mining (KDD-96), AAAI Press, 1996(B).
    Flake G., Lawrence S.. Efficient SVM Regression Training with SMO, Machine Learning, 2002, 46(103), 271-290.
    Francesco T.. A ROC-Based Reject Rule for Dichotomizers. Pattern Recognition Letters, 2005, 26,167-180.
    Freitas A. A.. Evolutionary Computation. Handbook of Data Mining and Knowledge Discovery, Oxford University Press, 2002, 698-706.
    Freund Y., Schapire R.E.. A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting. Journal of Computer and System Sciences, 1997, 55(1), 119-139?
    Friedman J. H., Kohavi R., Yun Y.. Lazy Decision Trees. In: Proceedings of the 13th National Conference on Artificial Intelligence, 1996, 717-724.
    Fu L.. Knowledge Discovery Based on Neural Networks. Communications of the ACM, November, 1999, 42(11), 47-50, .
    Ge M., Du R. and Zhang G.. Fault Diagnosis Using Support Vector Machine with an Application in Sheet Metal Stamping Operations. Mechanical Systems and Signal Processing, 2004, 18,143-159.
    Genton M. G.. Classes of Kernels for Machine Learning: A Statistics Perspective. J. Mach. Learn. Res., 2001, 2, 299-312.
    Giorgio F., Fabio R.. Cost-sensitive Learning in Support Vector Machines. [Online] Available: Http://Www.Diee.Unica.lt/Informatica/En/Publications/Papers-Prag/Rel-Conference-06.Pdf2002.
    Gloger J. M., Kalttenmeier A., Mandler E.. Reject Management in a Handwriting Recognition System. Proc. of 4th ICDAR, 1997, 2, 556-559.
    Goldberg D. E.. Genetic Algorithms in Search Optimization and Machine Learning. Addison- Wesley, 1989.
    Gonzales A., Perez R.. Slave: A Genetic Learning System Based on an Iterative Approach. IEEE Trans. Fuzzy Syst., Apr. 1999, 7, 176-19L.
    Gorski N.. Optimizing Error-Reject Trade off in Recognition Systems. In: Proc. of 4th ICDAR, 1997, 2, 1092-1096
    Grobelnik M., Mladenic D.. Efficent Text Categorization. In: Proceedings of ECML98 Text Mining Workshop, 1998.
    Grzymala-Busse J. W., Zheng Z., Goodwin L. K., Grzymala-Busse W. J.. An Approach to Imbalanced Data Sets Based on Changing Rule Strength. In Learning From Imbalanced Data Sets: Papers From the AAAI Workshop, AAAI Press Technical Report WS-00-05, 2000, 69-74.
    Guyon I., Weston J., Barnhill S., Vapnik V.. Gene Selection for Cancer Classification Using Support Vector Machines. Machine Learning, January 2002, 46, 389-422.
    Ha T. M.. An Optimum Class-Selective Rejection Rule for Pattern Recognition. In: Proc. of 13th ICPR, 1996, 2, 75-80.
    Han J, Jian P, Yiwen Y.. Mining Frequent Patterns Without Candidate Generation. In: Proceedings of the 2000 ACM SIGMOD International Conference Management of Data. Dallas, 2000, 1-12.
    Han J, Kamber M.. Data Mining: Concepts and Techniques. Sanfrancisco, CA: Morgan Kaufmann,2001.
    Han J., et. al.. DBMiner: A System for Mining Knowledge in Large Relational Databases, In: Proc. of 1996 International Conference on Data Mining and Knowledge Discovery (KDD'96) , Portland, Oregon, August 1996, 250-255.
    Han J., Fu Y., Koperski K., Melli G., Wang W., Zane O. R.. Knowledge Mining in Databases: An Integration of Machine Learning Methodologies with Database Technologies. Canadian Artificial Intelligence, October 1995.
    Han J., Kamber M.. Data Mining: Concepts and Techniques. Sanfrancisco, CA: Morgan Kaufmann,2001.
    Han J.. Data Mining Techniques, Proc. 1996 ACM-SIGMOD International Conference on Management of Data (SIGMOD'96), Montreal, Canada, June 1996.
    Hand D.J.. Statistics and Data Mining: Intersecting Disciplines , [Online] Available: Http://Diagnosis.Xjtu.Edu.Cn/ Acdemic/Kdd/Others_KDD_Abstract.Html.
    Hasenjager M., Ritter H.. Active Learning with Local Models. Neural Processing Letters, 1998,7(2), 107-117.
    Hearst M. A., Scholkopf B., Dumais S., Osuna E., Plan J.. Trends and Controversies - Support Vector Machines. IEEE Intelligent Systems, 1998, 13(4), 18-28.
    Heckerman D.. Bayesian Networks for Knowledge Discovery. In Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy, Editors, Advances in Knowledge Discovery and Data Mining, AAAI Press, 1996, 273-306.
    Hermans J., Habbema J.D.F., Van Der Burght A.T.. Cases of Doubt in Allocation Problems, Kpopulations. Bulletin of the International Statistics Institute, 1974, 45, 523-529.
    Hohensohn J. and Mendel J. M.. Two Pass Orthogonal Least-Squares Algorithm to Train and Reduce Fuzzy Logic Systems. In Proc. IEE Conf. Fuzzy Syst., Orlando, FL, 1994, 696-700.
    Holte R. C, Acker L. E., Porter B. W.. Concept Learning and the Problem of Small Disjuncts. In: Proceedings of the 11th International Joint Conference on Artificial Intelligence, 1989, 813-818.
    Horn R. A., Johnson C. R.. Matrix Analysis. Cambridge, U.K.:Cambridge Univ. Press, 1985.
    IchihashiH., ShiraiT., NagasakaK., Miyoshi T.. Neuro-Fuzzy ID3: A Method of Inducing Fuzzy Decision Trees with Linear Programming for Maximizing Entropy and an Algebraic Method for Incremental Learning. Fuzzy Sets Syst., 1996, 81, 157-167.
    Jain A.K., Dubes. R.C.. Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs, New Jersey, 1998.
    Jang J.-S. R., Sun C. T., Mizutani E.. Neuro-Fuzzy and Soft Computing. Englewood Cliffs, NJ:Prentice Hall, 1997.
    Jang J.-S. R.. Anfis: Adaptive-network-based Fuzzy Inference Systems. IEEE Trans. Syst., Man,Cybern., 1993, 23, 665-685.
    Japkowicz N., Myers C Gluck M. A.. A Novelty Detection Approach to Classification. In: Proceedings of the 14th Joint Conference on Artificial Intelligence, 1995, 518-523.
    Japkowicz N., Stephen S.. The Class Imbalance Problem: A Systematic Study. Intelligent Data Analysis, 2002, 6(5), 429-450.
    Japkowicz N.. Class Imbalances: Are We Focusing on the Right Issue? In: International Conference on Machine Learning Workshop on Learning from Imbalanced Data Sets II, 2003.
    Japkowicz N.. Concept Learning in the Presence of Betweenclass and Within-Class Imbalances. In:Proceedings of the 14th Conference of the Canadian Society for Computational Studies of Intelligence, Springer-Verlag, 2001, 67-77.
    Japkowicz N.. Supervised Learning with Unsupervised Output Separation. In: International Conference on Artificial Intelligence and Soft Computing, 2002, 321-325.
    Japkowicz N., Stephen, S.. The Class Imbalance Problem: A Systematic Study. Intelligent Data. Analysis Journal, November 2002, 6(5).
    Japkowicz N.. The Class Imbalance Problem: Significance and Strategies. In: Proceedings of the 2000 International Conference on Artificial Intelligence: Special Track on Inductive Learning, Las Vegas, Nevada, 2000.
    Joachims T.. The Maximum-Margin Approach to Learning Text Classifiers: Method, Theory and Algorithms. Ph.D. Thesis, Department of Computer Science, University of Dortmund, 2000.
    Joachims. T.. Text Categorization with Support Vector Machines: Learning with Many Relevant Features. In Claire NEDellec and CELine Rouveirol, Editors, Proceedings of the European Conference on Machine Learning, Berlin, Springer, 1998, 137-142.
    John G. H.. Enhancements to the Data Mining Process. Ph.D Thesis of Stanford University, 1997.
    Joshi M. V., Agarwal R. C, Kumar V.. Mining Needles in a Haystack: Classifying Rare Classes Via Two-Phase Rule Induction in S1GMOD '01 Conference on Management of Data, 2001, 91-102.
    Joshi M. V., Agarwal R. C, Kumar V.. Predicting Rare Classes: Can Boosting Make Any Weak Learner Strong? In: Proceedings of the 8th International Conference on Knowledge Discovery and Data Mining, 2002, 297-306.
    Joshi M. V., Kumar V., .Agarwal R. C. Evaluating Boosting Algorithms to Classify Rare Cases: Comparison and Improvements. In: The 1st IEEE International Conference on Data Mining, November 2001, 257-264.
    Kaufman L., Rousseeuw P.J.. Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons, 1990.
    Keerthi S., Gilbert E.. Convergence of a Generalized SMO Algorithm for SVM Classifier Design. Machine Learning, 2002, 46(l/3):351-360.
    Keerthi S., ShevadeS., Bhattcharyya C, Et Al.. Improvements to Platt's SMO Algorithm for SVM Classifier Design, Neural Computation, 2001, 13 (3): 637-649.
    Kero B., Russell L., Tsur S., Shen W.M.. An Overview of Data Mining Technologies. The KDD Workshop in the 4th International Conference on Deductive and Object-Oriented Databases, Singapore, 1995.
    Kim Hyun-Chul, Pang Shaoning, Je Hong-Mo.. Constructing Support Vector Machine Ensemble. Pattern Recognition, 2003, 36, 2757-2767.
    Klemettinen M., Mannila H., Ronkainen P., toivonen H., Verkamo I.. Finding Interesting Rules from Large Sets of Discovered Association Rules. In Proceedings of the 3rd International Conference on Information and Knowledge Management (CIKM'94), Gaithersburg. Maryland, ACM Press, November 1994, 401-407.
    Knight K.. Mining Online Text, Communications of the ACM, November 1999, 42(11), 58-61.
    Kohavi R., John G.. Wrappers for Feature Subset Selection. Artificial Intelligence, 1997 (1-2), 273-324.
    Kohavi R... Data Mining with Mineset: What Worked, What Did Not, and What Might. In Workshop on Commercial Success of Data Mining, the 4th International Conference on Knowledge Discovery and Data Mining, 1998.
    Koperski K., Adhikary J., Han J.. Spatial Data Mining: Progress and Challenges, 1996 SIGMOD'96 Workshop, on Research Issues on Data Mining and Knowledge Discovery (DMKD'96), Montreal, Canada, June 1996.
    Krishnapuram R., Kim J.. A Note on the Gustafson-Kessel and Adaptive Fuzzy Clustering Algorithms. IEEE Trans. Fuzzy Syst., Aug. 1999, 7, 453-461.
    Krogh A., Vedelsby J.. Neural Network Ensembles, Cross Validation, and Active Learning, Neural Information Processing Systems 7, MIT Press, 1995, 231-238.
    Kubat M., Holte R: C Matwin S.. Machine Learning for the Detection of Oil Spills in Satellite Radar Images. Machine Learning, 1998, 30(2), 195-215.
    Kubat M., Holte R., Matwin S.. Learning When Negative Examples Abound. Machine Learning: ECML-97, Lecture Notes in Artificial Intelligence, Springer, 1997, 1224, 146-153.
    Kubat M., Matwin S.. Addressing the Curse of Imbalanced Training Sets: One-sided Selection. In: Proceedings of the 14th International Conference on Machine Learning, Morgan Kaufmann,1997, 179-186.
    Lacrose V.. REDuction De La ComplexitE Des Controleurs Flous: Applicationa La Commande Multivariable. Ph.D. Dissertation, Inst. Nat. Sci.Appl., toulouse, LAAS-CNRS, Nov. 1997.
    Laskov P.. An Improved Decomposition Algorithm for Regression Support Vector Machines. Advances in Neural Information Processing Systems. Cambridge, MA:MIT Press, 2000,484-490.
    Laskov P.. Feasible Direction Decomposition Algorithms for Training Support Vector Machines. Machine Learning, 2002, 46(1/3) , 315-349.
    Lauritzen S. L.. The EM Algorithm for Graphical Association Models with Missing Data.Computational Statistics & Data Analysis, 1995, 19, 191-201.
    LecunY., DenkerJ., and Solla S.. Optimal Brain Damage. In D. touretsky, .Editor, Advances in Neural Information Processing Systems, Morgan Kaufmann, 1990, 2, 589-595.
    Lee M.M.S., Keerthi S.S., Ong C.J., Decoste D.. An Efficient Method for Computing Leave-one-out Error in Support Vector Machines , Technical Report , 2001.[Online] Available: Http://Guppy.Mpe.Nus.Edu.Sg/~Mpessk/Papers/Loo_New.Ps.Gz.
    Letourneau S.. Discovering Useful Knowledge from Aircraft Operation/ Maintenance Data. Workshop on Machine Learning Applications in the Real World: Methodological Aspects and Implications, ICML97, 1997.
    LIN Chihjen.. On the Convergence of the Decomposition Method for Support Vector Machines. IEEE Transactions on Neural Networks, 2001, 12(6), 1288-1298.
    Lin Chunfu, Wang Shengde. Fuzzy Support Vector Machines. IEEE Trans. on Neural Networks, 2002, 13(3), 466-471.
    Ling C, Li C. Data Mining for Direct Marketing Problems and Solutions. In: Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, New York, 1998, 73-79.
    Liu B., Hsu W., Ma Y.. Mining Association Rules with Multiple Minimum Supports. In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,1999, 337-341.
    Liu R.L., SuH.Y., Mu S.J., Jia T., Cheng W.Q., Chu J.. Fuzzy Neural Network Model of 4-CBA Concentration for Industrial PTA Oxidation Process. Chinese J. of Chem. Eng., 2004, 12(2),234-239.
    Lu H., Setiono R., Liu H.. Effective Data Mining Using Neural Networks, IEEE Transactions on Knowledge and Data Engineering, December 1996, 8(6), 957-961.
    Luntz, Brailovsky V.. On Estimation of Characters Obtained in Statistical Rocedure of Recognition. Technicheskaya Kiberaetica, 1969.
    Mamdani E. H., Assilian S.. An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller. Int. J. Man-Mach. Stud., 1975, 7, 1-13.
    Mannila H., Toivonen H., Verkamo A. I.. Efficient Algorithms for Discovering Association Rules, in Usama M. Fayyad and Ramasamy Uthurusamy, Editors, AAAI Workshop on Knowledge Discovery In Databases, Seattle, Washington, July 1994, 181-192.
    Mannila H., Toivonen H., Verkamo A.I.. Discovering Frequent Episodes in Sequences. In 1st International Conference on Knowledge Discovery and Data Mining (KDD'95), Montreal, Canada, AAAI Press, 1995, 210-215.
    Mannila H.. Data Mining: Machine Learning, Statistics, and Databases. In: The 8th International Conference on Scientific and Statistical Database Management, Stockholm June 18-20, 1996.
    Margineantu D.. Class Probability Estimation and Cost-Sensitive Classification Decisions. In: Proceedings of the 13th European Conference on Machine Learning, Helsinki, Finland, August,2002., 270-281.
    Merz C. J., Murphy P. M.. UCI Repository for Machine Learning Data-Bases. Irvine, CA: University of California , Department of Information and Computer Science , [Online].Available: http://www.ics.uci.edu/, -mlearn/MLRepository.html, 1998.
    Merz C. J., Murphy P. M.. UCI Repository for Machine Learning Data-Bases.Irvine, CA: University of California , Department of Information and Computer Science , [Online] Available: Http://www.lcs.Uci.Edu/~Mlearn/Mlrepository. Html, 1998.
    Michie D., Spiegelhalter D. J., Taylor C. C. Machine Learning, Neural and Statistical Classification. Prentice Hall , Englewood Cliffs , N.J.. [Online]Available: Http://www.Ncc.Up.Pt/Liacc/ML/Statlog/Data.Html, 1994.
    Mingers J.. An Empirical Comparison of Pruning Measures for Decision Tree Induction. Machine Learning, 1989, 4, 227-243.
    Mitchell T.. Machine Learning. Mcgraw-Hill International, 1997.
    Mitra S., De R. K., Pal S. K.. Knowledge-based Fuzzy MLP for Classification and Rule Generation. IEEE Trans. Neural Networks, 1997, 8, 1338-1350.
    Mitra S., Hayashi Y.. Neuro-Fuzzy Rule Generation: Survey in Soft Computing Framework. IEEE Trans. Neural Networks, 2000, 11, 748-768.
    Miyano T. .Kimoto S., Shibuta H. ,et.al. Time Series Analysis and Prediction on Complex Dynamical Behavior Observed in a Blast Furnace. Physica D, 2000, 135(3-4), 305-310.
    Mizutani, H.. Discriminative Learning for Minimum Error and Minimum Reject Classification. In: Proc. of 14th International Conference on Pattern Recognition, 1998, 1, 136-140.
    NUNez M.. Economic Induction: A Case Study. Proceedings of the 3rd European Working Session on Learning, EWSL-88, California: Morgan Kaufmann, 1988, 139-145.
    NUNez M.. The Use of Background Knowledge in Decision Tree Induction. Machine Learning, 1991, 6, 231-250.
    OLEDB for Data Mining, DRAFT Specification Version 0.9, Microsoft Corporation, February 2000.
    Opitz D.W., Shavlik J.W.. Connectionist Theory Refinement: Genetically Searching the Space of Network Topologies. Journal of Artificial Intelligence Research, 1997, 6, 177-209.
    Osuna E., Freund R., Girosi F.. Support Vector Machines: Training and Applications. AI Memo 1602, MIT, May 1997.
    Osuna E., Freund R., Girosi F.. Training Support Vector Machines: An Application to Face Detection. In Proceedings of CVPR'97, Puerto Rico, 1997.
    PanditS. M., ClumJ. A., Wu S. M.. Modeling, Prediction and Control of Blast Furnace Operation From Observed Data By Multivariate Time Series. Ironmaking Proceedings, Metallurgical Society of AIME, Iron and Steel Division, 1975, 34, 403-410.
    Paola C, Elena C, Giorgio V.. Support Vector Machines for Candidate Nodules Classification. Neurocomputing, 2005, 68, 281-288
    Pazzani M., Merz C, Murphy P., Ali K., Hume T., and Brunk C. Reducing Misclassification Costs. In: Proceedings of the 1 lth International Conference on Machine Learning, 1994, 217-225.
    Pearl J.. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. California: Morgan Kaufmann, 1988.
    Pedro Domingos and Michael Pazzani. Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier. In Lorenza Saitta, Editor, In: Proceedings of the 13th International Conference on Machine Learning2, San Francisco. CA, Morgan Kaufmann, 1996, 105-11.
    Pei J., Han J., Mortazavi-Asl B., Zhu H.. Mining Access Pattern Efficiently From Web Logs (PDF). Proc. 2000 Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD'00), Kyoto, Japan, April 2000.
    PERez-Cruz F, A LarcON-Diana P, Navia-V AZquez A , et al.. Fast Training of Support Vector Classifiers. Advapces in Neural Information Processing Systems. Cambridge, MA: M IT Press,2001, 734-740.
    Pipitone F., De Jong K.A., Spears W.M.. An Artificial Intelligence Approach to Analog Systems Diagnosis. In Testing and Diagnosis of Analog Circuits and Systems, Ruey-Wen Liu, Editor. New York: Van Nostrand-Reinhold, 1991.
    Platt J.C.. Using Analytic QP and Sparseness to Speed Training of Support Vector Machines. Advances In Neural Information Processing Systems, 1999, 11, 557-563.
    Provost F., Domingos P.. Tree Induction for Probabilitybased Rankings. Machine Learning, 2003, 52(3).[Online]Available: Http://Citeseer.Ist.Psu.Edu/Provost02tree.Html
    Provost F., Fawcett T.. Robust Classification for Imprecise Environments. Machine Learning, 2001,42, 203-231.
    Provost F.J., Jensen D., Oates T.. Efficient Progressive Sampling. In: Proceedings of the 5th International Conference on Knowledge Discovery and Data Mining, KDD-99, 1999.
    Quinlan J. R.. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA, 1993.
    Quinlan J. R.. Improved Estimates for the Accuracy of Small Disjuncts. Machine Learning, 1991, 6,93-98.
    Quinlan, J.R.. Induction of Decision Trees. Machine Learning, 1986, 1, 81-106.
    Raskutti B., Kowalczyk A.. Extreme Re-Balancing for Svms: A Case Study. In Workshop on Learning from Unbalanced Data Sets II, International Conference on Machine Learning, 2003.
    Riddle P., Segal R., Etzioni O.. Representation Design and Brute-force Induction in a Boeing Manufacturing Design. Applied Artificial Intelligence, 1994, 8, 125-147.
    Rogers S., Langley Pat, Wilson C. Mining GPS Data to Augment Road Models. In: Proceedings of 5th International Conference on Knowledge Discovery and Data Mining (KDD-99), 1999,104-113.
    Runkler T. A., Bezdek J. C. Alternating Cluster Estimation: A New tool for Clustering and Function Approximation. IEEE Trans. Fuzzy Syst., Aug. 1999, 7, 377-393.
    Russo M.. Fugenesys—A Fuzzy Genetic Neural System for Fuzzy Modeling. IEEE Trans. Fuzzy Syst., Aug. 1998, 6, 373-388.
    Salzberg S. L.. Gene Discovery in DNA Sequences. IEEE Intelligent System, November/December 1999, 14(6), 44-48.
    Schapire R. E.. A Brief Introduction to Boosting. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence, 1999, 1401 -1406.
    Scholkopf B., Bartlett P., Smola A., Williamson R.. Support Vector Regression with Automatic Accuracy Control. In L. Niklasson, M. BodEN, and T. Ziemke, Editors, In: Proceedings of ICANN'98, Perspectives in Neural Computing, Berlin, Springer Verlag, 1998, 111-116.
    ScholkopfB., Platt J. C, Shawe-Taylor J., Smola A. J., Williamson R. C. Estimating the Support of a High-Dimensional Distribution. Neural Computation, 2001, 13(7), 1443-1471.
    Sch6lkopf B., Smola A., MULler K.R.. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation, 1998, 10, 1299-1319.
    Scholkopf B., Smola A., Williamson R. C., Bartlett P.L.. New Support Vector Algorithms. Neural Computation, 2000, 12, 1207-1245.
    ScholkopfB., Smola A., Williamson R.C., Bartlett P.. New Support Vector Algorithms. 1998c. Neurocolt2-TR 1998-031;Cf. [Online] Available: Http://www.Neurocolt.Com.
    Scholkopf B., Burges C.J.C., Smola A.J.. Advances in Kernel Methods—Support Vector Learning. to Appear, MIT Press, Cambridge, Mass, 1998.
    Schulze-Kremer S.. Discovery In the Human Genome Project. Communications of the ACM, November 1999, 42(11), 62-64.
    Setnes M.. Babu'Ska R... Rule Base Reduction: Some Comments on the Use of Orthogonal Transforms. IEEE Trans. Syst., Man, Cybern. C, Apr. 2001, 31, 199206.
    Shahar Y.. A Framework for Knowledge-based Temporal Abstraction, Artificial Intelligence, 1997,90, 79-133.
    Singh H, Sridhar N V, Deo B. Artificial Neural Network Model for Prediction of Silicon Content of Blast Furnace Hot Metal. Steel Reaearch, 1996, 67(12), 521-530.
    Sleeman D., Mitchell F., Milne R.. Applying KDD Techniques to Produce Diagnostic Rules for Dynamic Systems. Technical Report AUCS/TR9604, 9 September, 1996.
    Smola A. J., Scholkopf B., MULler K.R.. The Connection between Regularization Operators and Support Vector Kernels. Neural Networks, 1998, 11(4), 637-649.
    Smola A. J., Scholkopf B.. A Tutorial on Support Vector Regression. Neurocolt Technical Report NC-TR-98-030, Royal Holloway College, University of London, UK, 1998.
    Sugeno M., Kang G. T.. Structure Identification of Fuzzy Model. Fuzzy Sets Syst., 1988, 28, 15-33. Tan M.. Cost-Sensitive Learning of Classification Knowledge and Its Applications in Robotics. Machine Learning, 1993, 13, 7-33.
    Tan M.. Cost-Sensitive Reinforcement Learning for Adaptive Classification and Control. In: Proceedings of the 9th National Conference on Artificial Intelligence, San Jose, CA: AAAI Press, 1991a , 774-780.
    Tan M.. Learning a Cost-Sensitive Internal Representation for Reinforcement Learning. In: Proceedings of the 8th International Workshop on Machine Learning, Evanston, 1L: Morgan Kaufmann, 1991b, 358-362.
    Tax D. M. J., Duin R. P.W. Data Domain Description by Support Vectors. In M. Verleysen, Editor, Proceedings ESANN, Brussels, 1999, 251-256.
    Ting K. M.. The Problem of Small Disjuncts: Its Remedy in Decision Trees. In Proceeding of the 10th Canadian Conference on Artificial Intelligence, 1994, 91-97.
    Towell.G., Shavlik. J.. Refinement of Approximately Correct Domain Theories by Knowledge-based Neural Networks. In: Proc. of the 8th National Conf. on AI, Boston, 1994, 861-866.
    Tsuda K., Ratsch G., Mika S., MULler K.R.. Learning to Predict the Leave-one-out Error of Kernel Based Classifiers. In Proceedings of ICANN'01, 2001, 331-338.
    Turney P.D., Schaffer C Holte R.. In: Proceedings of the IJCAI-95 Workshop on Data Engineering for Inductive Learning. MontrEAl, Canada [Online] Available: Http://www.Iit.Nrc.Ca/DEIL/,1995.
    Turney P.D.. Bias and the Quantification of Stability. Machine Learning, 1995c, 20, 23-33.
    Turney P.D.. Cost-Sensitive Classification: Empirical Evaluation of a Hybrid Genetic Decision Tree Induction Algorithm. Journal of Artificial Intelligence Research, 1995a , 2, 369-409.
    Turney P.D.. Low Size-complexity Inductive Logic Programming: The East-west Challenge Considered As a Problem in Cost-Sensitive Classification. In: Proceedings of The 5th International Inductive Logic Programming Workshop, 1995b, 247-263.
    Uthurusamy R.. From Data Mining to Knowledge Discovery: Current Challenges and Future Directions. Advances in Knowledge Discovery and Data Mining, AAAI Press, 1996, 561-573.
    Van Den Bosch A., Weijters T., Van Den Herik H. J., Daelemans W.. When Small Disjuncts Abound, Try Lazy Learning: A Case Study. In: Proceedings of the 7th Belgian-Dutch Conference on Machine Learning, 1997, 109-118.
    Van Langen J M. Blast Furnace Technology, New York, 1972.
    Van Rijsbergen C. J.. Information Retrieval (2nd Edition). Butterworths, London, 1979.
    Van Someren M.W., Torres C, Verdenius F.. A Systematic Description of Greedy Optimization Algorithms for Cost Sensitive Generalisation. In: Proceedings of Intelligent Data Analysis 1997 (1DA97), Springer Verlag, New York, 1997, 247-258.
    Vapnik V. N.. An Overview of Statistical Learning Theory. IEEE Trans. Neural Networks. 1999,10(5), 988-999.
    Vapnik V. N.. The Nature of Statistical Learning Theory. Springer-Verlag, NY: 1999.
    Vapnik V., Chapelle O.. Bounds on Error Expectation for Support Vector Machines. Neural Computation, 2000, 12(9).
    Vapnik V.. Statistical Learning Theory [M]. New York: Springer, 1998.
    Vanik V.. The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.
    Verdenius F.. A Method for Inductive Cost Optimization. In: Proceedings of the 5th European Working Session on Learning, EWSL-91, New York: Springer-Verlag, 1991, 179-191.
    Veropoulos K., Campbell C., Cristianini N.. Controlling the Sensitivity of Support Vector Machines. In: Proceedings of the International Joint Conference on AI, 1999, 55-60.
    Wahba G., Lin Y., Zhang H.. GACV for Support Vector Machines. Advances in Large Margin Classifiers MIT Press, Cambridge, MA, 1999.
    Waltz D., Hong S. J., Data Mining: A Long-Term Dream, IEEE Intelligent System, November/December 1999, 14(6), 30-31.
    Weiss G. M., Hirsh H.. A Quantitative Study of Small Disjuncts. In: Proceedings of the 17th National Conference on Artificial Intelligence, AAAI Press, 2000, 665-670.
    Weiss G. M., Hirsh H.. Learning to Predict Rare Events in Event Sequences. In: Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, 1998, 359-363.
    Weiss G.M., Provost F.. Learning When Training Data Are Costly: The Effect of Class Distribution on Tree Induction. Journal of Artificial Intelligence Research, 2003, 19, 315-354.
    Weiss G. M., Provost F.. The Effect of Class Distribution on Classifier Learning: An Empirical Study. Tech Rep. ML-TR-44, Department of Computer Science, Rutgers University, New Jersey, 2001.
    Weiss G. M.. Learning With Rare Cases and Small Disjuncts. In: Proceedings of the 12th International Conference on Machine Learning, Morgan Kaufmann, 1995, 558-565.
    Weiss G. M.. Timeweaver: A Genetic Algorithm for Identifying Predictive Patterns in Sequences of Events. In: Proceedings of the Genetic and Evolutionary Computation Conference, Morgan Kaufmann, 1999, 718-725.
    Wong C.C. Her S.M.. A Self-Generating Method for Fuzzy Systems Design. Fuzzy Sets Syst., 1999, 103, 13-25.
    Wu G., Chang E.Y.. Workshop on Learning From Imbalanced Datasets Ⅱ, ICML, Washington D.C., 2003.
    Yam Y., Baranyi P., Yang C.T.. Reduction of Fuzzy Rule base Via Singular Value Decomposition. IEEE Trans. Fuzzy Syst., Apr. 1999, 7, 120-132.
    Yan R., Liu Y., Jin R., Hauptmann A.. On Predicting Rare Classes With SVM Ensembles in Scene Classification. In IEEE International Conference on Acoustics, Speech and Signal Processing, 2003.
    Yao B., Yang T. J., Ning X. J.. An Improved Artificial Neural Network Model for Predicting Silicon Content of Blast Furnace Hot Metal. Journal of University of Science and Technology Beijing, 2000, 7(4), 269-272.
    Yen J., Wang L., Gillepsie C. W.. Improving the Interpretability of TSK Fuzzy Models by Combining Global Learning and Local Learning. IEEE Trans. Fuzzy Syst., Nov. 1998, 6, 530-537.
    Zadeh L. A.. Fuzzy Sets. Inform & Control, 1965, 8, 338-353.
    Zadrozny B., Elkan C.. Learning and Making Decisions When Costs and Probabilities Are Both Unknown. In: Proceedings of the 7th International Conference on Knowledge Discovery and Data Mining, 2001, 204-213.
    Zadrozny B., Langford J., Abe N.. Cost-Sensitive Learning by Cost-Proportionate Example Weighting. In: Proceedings of the 3rd IEEE International Conference on Data Mining. Melbourne, Florida, USA, Nov 2003.
    Zadrozny B., Langford J., Abe N.. Cost-Sensitive Learning by Cost-Proportionate Example Weighting. In: Proceedings of the 3rd IEEE International Conference on Data Mining. Melbourne, Florida, USA, November, 2003.
    Zaiane R., Xin M., Han J.. Discovering Web Access Patterns and Trends By Applying OLAP and Data Mining Technology on Web Logs. Proc. Advances In Digital Libraries Conf. (ADL'98), Santa Barbara, CA, April 1998, 19-29.
    Zhang X.. Using Class Center Vectors to Build Support Vector Machines. Proc. IEEE NNSP'99, 1999, 0-11.
    Ziarko W.. Discovery Through Rough Set Theory. Communications of the ACM, November 1999, 42(11), 55-57.
    边肇祺,张学工等.模式识别(第二版).北京:清华大学出版社,1999.
    陈念贻,丁亚平,叶晨洲等.支持向量回归-吸光光度法同时测定溶液中的Ph,Cd,Zn.计算机与应用化学,2002b,19(6),717-718.
    陈念贻,陆文聪,陈瑞兰等.SVM-微量元素分析法判别乌龙茶红茶与绿茶.计算机与应用化学,2002c 19(6),719-720.
    陈念贻,陆文聪,叶晨洲,李国正.SVM及其他核函数算法在化学计量学巾的应用.计算机与应用化学,2002d,19(6):691-696.
    陈念贻,陆文聪.SVM算法在化学化工中的应用.计算机与应用化学,2002a,19(6),674-676.
    陈念贻,钦佩,陈瑞亮,陆文聪.模式识别在化学化工中的应用.北京:科学出版社,2000.
    陈念贻.模式识别优化技术及其应用.北京:中国石化出版社,1997.
    丁亚平,陈念贻,吴庆生等.导数光谱—SVM回归法同时测定NO3/NO2.计算机与应用化学,2002,19(6),752-754.
    范明,孟小峰等译.DM.概念与技术.机械工业出版社,2001.
    冯瑞,沈伟,张艳珠.基于F-Svms的多模型建模方法.控制与决策,2003,18(6),646-650.
    冯瑞,张浩然,劭惠鹤.基于SVM的软测量建模,信息与控制,2002,31(6),567-571.
    高小强,郑忠,黄庆周.高炉铁水含硅量和含硫量动力学预报研究.钢铁,1995,30(4),10-13.
    高毅龙.DM及其在工程诊断中的应用.西安交通大学博士学位论文,2000.
    高正其.DM系统在工程实践中的应用.计算机世界报,1998 D7.
    韩曾晋,孙建华,陈剑,张乃尧.带知识库的高炉铁水含硅量的自适应预报系统.自动化学报,1989,15(2),128-135.
    胡可云.基于概念格和粗糙集的DM方法研究.清华大学博士学位论文,2000.
    姬田冒孝,西尾通卓,西川洁.统计制御理论高炉炉热制御适用.铁钢,1980,S96.
    李家新,周莉英,唐成润.神经网络在梅山高炉铁水硅含量预报中的应用.钢铁,2001,36(5),14-16.
    李俊国,闫小林.高炉铁水含硅量神经网络预测模型.河北理工学院学报,2002,24(3),17-23.
    刘金琨,邓守强,苏士权.高炉铁说硅含量的神经网络时间序列预报.钢铁研究学报,1996,8(3),63-66.
    刘学艺.基于贝叶斯网络的高炉炉温[Si]预测控制模型研究.浙江大学硕士学位论文,2004.
    陆文聪,陈念贻,叶晨洲,李国正.支持向量算法和软件介绍.计算机与应用化学,2002a,19(6):697-702.
    陆文聪,陈念贻,叶晨洲等.SVM用于民航安检炸药判别研究.计算机与应用化学,2002b,19(6):709-711.
    饶鲜,董春羲,杨绍全.应用SVM实现计算机入侵检测.西安电子科技大学学报,2003,30(3),353-357.
    田金兰,李奔.分类器在保险业务中的应用.计算机世界报,1999a,C6-C7.
    田金兰,李奔.关联规则挖掘在保险业务中的应用.计算机世界报,1999b,C10.
    王国鹏,翟永杰,封官斌等.模糊SVM在气轮机故障诊断中的应用.华北电力大学学报,2003.30(4)47-50.
    王志海,胡可云,刘宗田等.概念格上粗糙集合运算与函数依赖生成.清华大学学报,1998,38(S2),1-4.
    王志海,胡可云等.概念格上规则提取的一般和渐进式算法.计算机学报,1999,22(1):66-70.
    吴高巍,陶卿,王珏.基于后验概率的SVM.计算机研究与发展.2005,42(2),196-202.
    肖健华,樊可清,吴今培,杨叔子.应用于故障诊断的SVM理论研究.震动、测试与诊断,2001,21(4),258-262.
    肖健华,吴今培.样本数目不对成时的SVM模型.计算机科学,2003,30(2),165~167.
    熊大国.概率论自然公理系统.北京:清华大学出版社,2000.
    许建华,张学工,李衍达.基于最小二乘SVM的油气判别技术.模式识别与人工智能,2002,15(4),507-510
    阎辉,张学工,李衍达.应用SVM方法进行沉积微相识别.物探化探计算技术,2000,22(2),58-164.
    阎威武,朱宏栋,劭惠鹤.基于最小二乘SVM的软测量建模.系统仿真学报,2003,1494-1496.
    杨尚宝,杨天钧,董一诚.铁水含硅量预报神经网络模型.北京科技大学学报,1995,17(6),524-528.
    姚斌,杨天钧.铁水硅预报神经网络专家系统的遗传优化生成.钢铁,2000,35(4),13-16.
    恽爽,胡南军,董浚,陈道蓄.DM软件现状研究.计算机工程与应用,2003,8,189-191.
    张学工.关于SLT与SVM.自动化学报,2000,26(1),32-42.
    张学工译.SLT的本质.北京:清华大学出版社,2000.
    张玉朵,闫小林.唐钢二炼铁厂3号高炉铁水硅含量神经网络预报模型.河北理工学院学报.2003,25(3),6-10.
    郑纬民,黄刚.DM纵览.计算机世界报,1999,5月31日,C1-C2
    周传典.高炉炼铁生产技术手册M.北京:冶金工业出版社,2002.
    周莉英,李家新.梅山3号高炉(1250m^3)铁水硅含量在线预报.江苏冶金,2001(2),18-21
    周莉英,李家新.神经网络方法在高炉铁水硅含量预报中的应用.华东冶金学院学报,2000,17(4),309-312
    周明,秦民生.高炉铁水含硅量预报数学模型.钢铁,1986,21(5),7-11.
    周志华.普适机器学习(EB/OL).Http://www.Intsci.Ac.Cn/Research/Zhouzh04.Ppt,2003.
    朱国强,刘士荣,俞金寿.基于SVM的数据建模在软测量建模中的应用,华东理工大学学报,2002,28,6-10.
    朱廷劭.DM及其在汉语文语转换中应用的研究.中国科学院计算技术研究所博士学位论文,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700