福建金线莲粗提物多组分的快速质谱分析方法及NMR/RRLC-MS相关谱分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文重点运用质谱分析方法开展了珍稀、濒危野生福建金线莲中主要成分黄酮类及芳香酸类化合物的快速分析鉴定,以及野生与生物技术栽培品种相关成分及其含量比较分析研究。首先,运用正、负离子检测模式相结合的RRLC-MS/MS及MSE方法对福建金线莲中所含化学成分进行了系统分析,建立了适合于快速鉴定福建金线莲粗提物中黄酮及芳香酸类成分的质谱分析方法。进一步采用RRLC-MS与1H NMR的平行动态谱(NMR/RRLC-MS PDS)和异相关谱(NMR/RRLC-MS HCS)方法,开展了该提取物中多组分无需完全分离的同步结构鉴定研究,建立了针对混合物组分群中黄酮及芳香酸等不同类型成分的NMR/RRLC-MS PDS和HCS谱学分析方法,拓展了这二种新型谱学分析方法的应用范围;同时结合RRLC-MS/MS等手段,实现了混合物组分群中不同类型成分无需完全分离的快速结构鉴定。此外,利用RRLC-MS/MS方法,开展了野生与生物技术栽培的福建金线莲中主要成分及其含量的比较分析研究。本项研究结果为福建金线莲的可持续利用以及筛选与评价其人工培育品种及技术工艺研究提供了重要分析依据。
     本论文的研究内容主要包括以下三个部分:
     1.福建金线莲粗提物多组分的RRLC-MS/MS及MSE快速鉴定方法研究
     为了建立适用于福建金线莲粗提物多组分的RRLC-MS/MS分析方法,首先系统开展了液相色谱条件与质谱参数的优化,获得了适宜的色谱和质谱条件,成功地建立了用于95%乙醇提取物中常量与微量成分结构鉴定的正、负离子检测模式相结合的RRLC-MS/MS及MSE分析方法。采用上述分析方法,开展了福建金线莲95%乙醇提取物中化学成分的系统分析研究,同时结合黄酮苷类化合物的裂解规律及相关文献报道,共分析推断出17个化合物的结构。其中包括4个芳香酸类化合物,5个黄酮苷元、5个黄酮O-单糖苷类,2个黄酮O-双糖苷类化合物和对羟基苯甲醛,其中3个化合物为首次从该植物中发现的化学成分。本研究表明,采用以RRLC-MS/MS方法为主,并结合MSE技术的分析思路,可以实现福建金线莲中黄酮类、芳香酸类及其它化学成分的简便、快速的结构鉴定。
     2.福建金线莲提取物组分群的NMR与RRLC-MS平行动态谱和异相关谱分析方法研究
     以福建金线莲95%乙醇提取物为研究对象,利用反相制备型高效液相色谱技术获取含量呈连续动态变化的系列混合物,并分别进行RRLC-MS和1H NMR谱测定。然后采用MATLAB软件编写的数据处理程序,对原始数据进行处理与分析,构成了NMR/RRLC-MS PDS和NMR/RRLC-MS HCS谱。通过综合分析,获取多组分混合物中同一成分的质荷比(m/z)和化学位移值(6)等相关性信息,利用这些关键信息并结合RRLC-MS/MS分析方法,对系列流份中的黄酮类及芳香酸类等相关成分进行了分析鉴定研究。实现了该提取物中13个成分的同步结构鉴定,其中包括8个黄酮类化合物,4个芳香酸类化合物和对羟基苯甲醛,其中5个化合物为首次从该属植物中发现的化学成分。因此,运用本研究方法实现了混合物中不同类型成分无需完全分离的快速结构鉴定,并拓展了这二种新型谱学分析方法的应用范围。
     3.野生与生物技术栽培的福建金线莲主要成分及其含量的比较分析研究
     在上述研究基础上,采用RRLC-MS/MS方法,进一步开展了野生与生物技术栽培的福建金线莲中相关成分及其含量的比较分析研究。首先分别从精密度、准确度等方面对该分析方法进行了细致、系统的方法学考察,结果显示其灵敏度高、准确度高、精密度良好。采用建立的RRLC-MS/MS方法,针对野生(JO)与9种不同生物技术栽培品种(J1-J9)获得的金线莲95%乙醇提取物进行了化学成分比较分析研究,结果发现在生物技术栽培获得的品种J1和J5中化学成分种类和数目与野生品种极为相近。进一步对于野生与生物技术栽培品种中20个主要成分进行了含量分析,同时结合标准品对6个黄酮类成分进行了定量分析。结果发现与野生金线莲主要成分及含量近似的2个生物技术栽培品种(J5,J6);以及与野生品种主要成分及含量差异较大的品种(J2)。本项研究建立了金线莲生物技术栽培品种的含量评价方法,并为筛选与评价福建金线莲人工培育品种以及大量繁育工艺技术研究提供了重要分析依据。
Mass spectrometric analytical method was used to identify main constituents including flavonoids and organic acids in the rare endangered plant Anoectochilus roxburghii (A. roxburghii), and to compare constituents and their content in the wild and artificial ones bred with biotechnologies. First of all, constituents in the crude extract of A. roxburghii were identified using RRLC-MS/MS and RRLC-MSE in both positive and negative ion modes. Consequently, combined with RRLC-MS/MS, the NMR/RRLC-MS PDS and NMR/RRLC-MS HCS were used to identify the main constituents in the crude extract. Three types of natural products were identified successfully, which exploited the application of correlation spectroscopy of NMR/RRLC-MS. In addition, comparison of constituents and their content between the wild and artificial breeding A. roxburghii were implemented using RRLC-MS/MS. Overall, the results of this paper have provided important basis for sustainable utilization of A. roxburghii and evalution of the cultivated species.
     1. Fast identification of constituents in the crude extract of Anoectochilus roxburghii using RRLC-MS/MS and MSE
     In order to establish RRLC-MS/MS and MSE analytical methods to identify the constituents in the crude extract of A. roxburghii, the analytical condition of liquid chromatography and mass spectrometry analysis have been investigated systematically. RRLC-MS/MS and RRLC-MSE analytical methods were then established and allowed the identification of seventeen constituents, including four aromatic acids, five flavonoid aglycones, five flavonoid mono-O-glycosides, two aromatic acids and p-hydroxybenzaldehyde, of which three constituents were discovered in the plant for the first time. The results indicated that rapid identification of flavonoids, aromatic acids and other constituents in A. roxburghii could be achieved using RRLC-MS/MS and RRLC-MSE
     2. Study of NMR/RRLC-MS PDS and NMR/RRLC-MS HCS on crude extract of Anoectochilus roxburghii
     Based on the incomplete separation analysis strategy, the crude extract of A. roxburghii was separated into a series of fractions with the concentration of constituent dynamic variation using reversed-phase preparative chromatography. The RRLC-MS and 1H NMR data of series of fractions were acquired and then processed by MATLAB to form NMR/RRLC-MS PDS and NMR/RRLC-MS HCS. The correlation relationship between 1H NMR and the extracted ion chromatogram (XIC) signals deriving from the same individual constituent could be correlated and extracted simultaneous from the mixture spectra. Combined with RRLC-MS/MS spectra, three kinds of natural products were then successfully identified, including eight flavonoids, four aromatic acids and p-hydroxybenzaldehyde, five of which have not previously been reported in A. roxburghii. The results highly proved that this approach should be of benefit in unequivocal structural determination of a variety of classes of compounds from an extremely complex mixture, such as herbs and their active extracts.
     3. Comparison on the main constituents and their contents between the wild Anoectochilus roxburghii and the artificial breeding species
     An RRLC-MS/MS method was established to compare the wild A. roxburghii with the artificial breeding species on main constituents and their contents. First of all, sensitivity, precision, calibration curves and accuracy of the methods have been studied systematically. The results indicated that RRLC-(-)ESI-MS/MS analysis methods in negative ion mode could quantify the main constituents accurately and exactly. Nine artificial breeding species (J1-J9) were then compared with wild A. roxburghii (JO)on constituents using this method, and it was found that Jl and J5 is almost the same with JO on constituents. Furthermore, qualitiation of twenty constituents and quantification of six constituents in wild and artificial breeding A. roxburghii were implemented, and the results indicated J5 and J6 were found to have almost the same constituents and their constants with JO, while J2 showed great difference from that of JO. In all, analytical method for content assessment of artificial breeding species was established, and the results provided important scientific basis for screening and evaluation of artificial cultivation technologies.
引文
[1]Newman DJ, Cragg GM, Snader KM. Natural Products as Sources of New Drugs over the Period 1981-2002 [J]. J. Nat. Prod.2003,66:1022-1037.
    [2]严霞.国内外中草药市场及研究开发概况[J].中国健康月刊.2010,29(7):181-183.
    [3]Igor V. Chernushevich, Alexander V, et al. An Introduction to Quadrupole-Time-of-Flight Mass Spectrometry [J]. J. Mass Spectrom.2001,36:849-865.
    [4]Strege, MA. High-performance Liquid Chromatographic-Electrospray lonization Mass Spectrometric Analyses for the Integration of Natural Products with Modern High-Throughput Screening [J]. J. Chromatogr. B. Biomed Sci.1999,725:67-78.
    [5]H.J. Dong, Z.Q. Liu, F.R. Song, et al. Structural Analysis of Monoterpene Glycosides Extracted from Paeonia lactiflora Pall. Using Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and High-Performance Liquid Chromatography/Electrospray lonization Tandem Mass Spectrometry [J]. Rapid Commun. Mass Spectrom.,2007,21: 3193-3199.
    [6]Wolfender JL, Queiroz, EF, Hostettmann K. Phytochemistry in the Microgram Domain-a LC-NMR Perspective [J]. Magn. Reson. Chem.2005,43:697-709.
    [7]Wolfender JL, Ndjoko K, Hostettmann K. Liquid Chromatography with Ultraviolet Absorbancc-Mass Spectrometric Detection and with Nuclear Magnetic Resonance Spectrometry: a Powerful Combination for the On-Line Structural Investigation of Plant Metabolites [J]. J. Chromatogr. A.2003,1000:437-455.
    [8]V. Exarchou, M. Godejohann, T.A.van. Beek. I.P. Gerothanassis. et al. LC-UV-Solid-Phase Extraction-NMR-MS Combined with a Cryogenic Flow Probe and Its Application to the Identification of Compounds Present in Greek Oregano [J]. Anal. Chem..2003,75:6288-6294.
    [9]Maeder M. Evolving Factor-Analysis For the Resolution of Overlapping Chromatographic Peaks [J]. Anal. Chem.1987,59:527-530.
    [10]Maeder M. Zilian A. Evolving Factor-Analysis, a New Multivariate Technique in Chromatography [J]. Chemom. Intell. Lab. Syst.1988.3:205-213.
    [11]Liang YZ Kvalheim OM. Keller HR. et al. Heyristic Evolving Latent Projections:Resolving Two-Way Multicomponent Data. Part 2:Detection and Resolution of Minor Constituents [J]. Anal. Chem.1992,64:946-953.
    [12]Kvalheim OM. Liang YZ. Heyristic Evolving Latent Projections:Resolving Two-Way Multicomponent Data. Part 1:Selectivity. Latent Projective Graph. Datascope, Local Rank and Unique Resolution [J]. Anal. Chem.1992,64:936-946.
    [13]O. Cloarec. M.E Dumas. A. Craig, et al. Statistical total correlation spectroscopy:An exploratory approach for latent biomarker identification from metabolic'H NMR data sets [J]. Anal. Chem.2005,77:1282-1289.
    [14]E. Holmes, R. L Loo, O. Cloarec, M. Coen, et al. Detection of Urinary Drug Metabolite (Xenometabolome) Signatures in Molecular Epidemiology Studies via Statistical Total Correlation (NMR) Spectroscopy [J]. Anal. Chem,2007,79:2629-2640.
    [15]O.Cloarec, A.Campbell, L.-h.Tseng, et al. Virtual Chromatographic Resolution Enhancement in Cryoflow LC-NMR Experiments via Statistical Total Correlation Spectroscopy [J]. Anal.Chem., 2007,79:3304-3311.
    [16]D.J. Crockford, E. Holmes, J.C.Lindon, et al. Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets:application in metabonomic toxicology studies [J]. Anal. Chem.2006,78:363-371.
    [17]代冬梅.天然产物混合物结构鉴定的MS与NMR平行动态谱与正交相关谱新型分析方法研究[D1.北京:中国医学科学院/北京协和医学院,2008.
    [18]Dai DM, He JM, Sun RX, et al. Nuclear Magnetic Resonance and Liquid Chromatography-Mass Spectrometry Combined with an Incompleted Separation Strategy for Identifying the Natural Products in Crude Extract [J]. Anal. Chim. Acta.2009,632:221-228.
    [19]刘影.苯乙醇苷类化合物及其混合物组分群的质谱分析方法以及LC-MS/NMR相关谱分析方法研究[D].北京:中国医学科学院/北京协和医学院,2009.
    [20]刘影,贺玖明,孙瑞祥等.核磁共振和液相色谱-质谱平行动态谱学方法对连翘活性提取物的同步结构分析.分析化学.2011,39(3):323-329.
    [21]Barnidge. D. R, Dratz. E. A. Martin. T, et al. Absolute quantification of the G protein-coupled receptor rhodopsin by LC/MS/MS using proteolysis product peptides and synthetic peptide standards [J]. Anal. Chem.2003,75:445-151.
    [22]Barnidge. D. R, Goodmanson, M. K, Klee. G. G, et al. Absolute quantification of the model biomarker prostate-specific antigen in serum by LC-MS/MS using protein cleavage and isotope dilution mass spectrometry [J]. J.Proteome Res.2004.3:644-652.
    [23]Gerber. S. A. Rush. J, Stemman. O, et al. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS [J]. Proc.Natl. Acad. Sci.2003.100: 6940-6945.
    [24]Kuhn. E. Wu. J. Karl. J, et al. Quantification of C-reactive protein in the serum of patients with rheumatoid arthritis using multiple reaction monitoring mass spectrometry and 13C-labeled peptide standards [J]. Proteomics.2004,4:1175-1186.
    [25]Lu. Y. Bottari. P. Turecek.. F. Aebersold. R. et al. Absolute Quantification of Specific Proteins in Complex Mixtures Using Visible Isotope-Coded Affinity Tags [J]. Anal. Chem.2004,76: 4104-4111.
    [26]O. V. Nemirovskiv. D. R. Dufield, T.Sunyer. et al. Discovery and development of a type II collagen neoepitope (THNE) biomarker for matrix metalloproteinase activity:From in vitro to in vivo [J]. Anal. Biochem 2007.361:93-101.
    [27]S. L. Wu. H. Amato. R. Biringer.et al. Targeted proteomics of low-level proteins in human plasma by LC/MSn. using human growth hormone as a model system [J]. J. Proteome Res.2002. 1:459-165.
    [28]Kay. R. G., Gregory. B, Grace. P. B. et al. The application of ultra-performance liquid chromatography/tandem mass spectrometry to the detection and quantitation of apolipoproteins in human serum [J]. Rapid Commun. MassSpectrom.2007.21:2585-2593.
    [29]S. Lin, T. A. Shaler, C. H. Becker. Quantification of intermediate-abundance proteins in serum by multiple reaction monitoring mass spectrometry in a single-quadrupole ion trap [J]. Anal. Chem.2006,78:5762-5767.
    [30]O. Heudi, S. Barteau, Zimmer, et al. Towards Absolute Quantification of Therapeutic Monoclonal Antibody in Serum by LC-MS/MS Using Isotope-Labeled Antibody Standard and Protein Cleavage Isotope Dilution Mass Spectrometry [J]. Anal. Chem.2008,80:4200-4207.
    [31]Z. Yang, M. Hayes, X. Fang, et al. LC-MS/MS approach for quantification of therapeutic proteins in plasma using a protein internal standard and 2D-solid-phase extraction cleanup [J]. Anal. Chem.2007,79:9294-9301.
    [32]Jose M. Castro-Perez. Current and future trends in the application of HPLC-MS to metabolite-identification studies [J]. Drug Discovery Today.2007,12:249-256.
    133] Xin Lu, Xinjie Zhao, Changmin Bai, et al. LC-MS-based metabonomics analysis [J]. Journal of Chromatography B.2008,866:64-76.
    [34]J.R. Mazzeo. U.D. Neue, M. Kele, et al. Advancing LC performance with smaller particles and higher pressure [J]. Anal. Chem.2005,77:460A-467A.
    [35]I.D.Wilson. J.K. Nicholson, J. Castro-Perez, et al. High Resolution "Ultra Performance" Liquid Chromatography Coupled to oa-TOF Mass Spectrometry as a Tool for Differential Metabolic Pathway Profiling in Functional Genomic Studies [J] J. Proteome Res.2005.4:591-598.
    [36]R.S. Plumb. K.A. Johnson, P. Rainville. et al. UPLC/MSE. a new approach for generating molecular fragment information for biomarker structure elucidation [J]. Rapid Commun. Mass Spectrom.2006,20:1989-1994.
    [37]P.Y. Yin. X.J. Zhao, Q.R. Li. et al. Metabonomics Study of Intestinal Fistulas Based on Ultraperformance Liquid Chromatography Coupled with Q-TOF Mass Spectrometry (UPLC/Q-TOF MS) [J]. J. Proteome Res.2006,5:2135-2143.
    [38]Jose Luis Martinez Vidal. Maria del Mar Aguilera-Luiz. Roberto Romero-Gonzale. Multiclass Analysis of Anlibiotic Residues in Honey by Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry [J]. J. Agric. Food Chem.2009,57:1760-1767.
    [39]Jenny M. Armenta. Diego F.Cortes. John M. Pisciotta. A sensitive and rapid method for amino acid quantitation in malaria biological samples using AccQ· Tag UPLC-ESI-MS/MS with multiple reaction monitoring [J]. Anal. Chem.2010.82:548-558.
    [40]A.J. Alpert. Hydrophilic-interaction chromatography for the separation of peptides. nucleic acids and other polar compounds [J]. J. Chromatogr.A.1990.499:177-196.
    [41]T.Ikegami. K. Tomomatsu. H. Takubo. et al. Separation efficiencies in hydrophilic interaction chromatography [J]. J. Chromatogr. A 2008,1184:474-503.
    [42]Y.J. Xue, J. Liu, S. Unger. A 96-well single-pot liquid-liquid extraction, hydrophilic interaction liquid chromatography-mass spectrometry method for the determination of muraglitazar in human plasma [J]. J. Pharm. Biomed. Anal.2006,41:979-988.
    [43]Ravi K. Bhamidipati, Julia Morizzi, Francis C.K. Chiu, et al. Simultaneous determination of OZ277, a synthetic 1,2,4-trioxolane antimalarial, and its polar metabolites in rat plasma using hydrophilic interaction chromatography [J]. Journal of Cluomatography B.2009,877: 2989-2995.
    [44]Yuanzhong Yang, Reinhard I. Boysen, Milton T.W. Hearn. Hydrophilic interaction chromatography coupled to electrospray mass spectrometry for the separation of peptides and protein digests [J]. Journal of Chromatography A.2009,1216:5518-5524.
    [45]E.M. Weissinger, E. Schiffer, B. Hertenstein, et al. Proteomic patterns predict acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation [J]. Blood. 2007.109:5511-5519.
    [46]L.U. Zimmerli, E. Schiffer, P. Ziirbig, et al. Urinary proteomic biomarkers in coronary artery disease [J]. Mol. Cell. Proteomics.2008,7:290-298.
    [47]K. Rossing. H. Mischak, M. Dakna, et al. Urinary proteomics in diabetes and CKD [J]. J. Am. Soc. Nephrol.2008,19:1283-1290.
    [48]Chandra A. Nesbitt, Haixia Zhang, Ken K.-C. Yeung. Recent applications of capillary electrophoresis-mass spectrometry (CE-MS):CE performing functions beyond separation [J]. Analytica Chimica Acta.2008,627:3-24.
    [49]H.X. Zhang. C.J. Zhang, G.A. Lajoie. et al. Selective Sampling of Phosphopeptides for Detection by MALDI Mass Spectrometry [J]. Anal. Chem.2005.77:6078-6084.
    [50]K.K.-C. Yeung. A.G. Kiceniuk. L. Li. Capillary electrophoresis using a surfactant-treated capillary coupled with offline matrix-assisted laser desorption ionization mass spectrometry for high efficiency and sensitivity detection of proteins [J]. J. Chromatogr. A.2001.931:153-162.
    [51]Y. Tachibana. K. Otsuka, S. Terabe. A. Arai, et al. Nakamura. Robust and simple interface for microchip electrophoresis-mass spectrometry [J]. J. Chromatogr. A.2003.1011:181-192.
    [52]Jeff D. Carter. Jeremiah D. Tipton. Jordan D. Mathias. et al. Protein Modification Analysis of GM2 Activator Protein Mutants by High Performance nano-LC ESI FT-ICR Mass Spectrometry [J]. Biophysical Journal.2009,96:430a-431a.
    [53]Ney Carter Borges. Rafael Barrientos Astigarraga. Carlos Eduardo Sverdloff. et al. A novel and sensitive method for ethinylestradiol quantification in human plasma by high-performance liquid chromatography coupled to atmospheric pressure photoionization (APPI) tandem mass spectrometry:Application to a comparative pharmacokinetics study [J]. Journal of Chromatography B.2009.877:3601-3609.
    [54]Jie Zheng. Shahab A. Shamsi. Capillary Electrochromaiography Coupled to Atmospheric Pressure Photoionization Mass Spectrometry for Methylated Benzo[a]pyrene Isomers [J]. Anal. Chem 2006,78:6921-6927.
    [55]Anders Nordstrom, Elizabeth Want, Trent Northen, et al. Multiple ionization mass spectrometry strategy used to reveal the complexity of metabolomics[J]. Anal. Chem.2008,80:421-429.
    [56]Zhuoling An, Yanhua Chen, Ruiping Zhang, et al. Integrated Ionization Approach for RRLC-MS/MS-basedMetabonomics:Finding Potential Biomarkers for Lung Cancer [J]. J. Proteome Res.2010,9:4071-4081.
    [57]Hauh-Jyun Candy Chen, Wei-Loong Chiu. Simultaneous detection and quantification of 3-nitrotyrosine and 3-bromotyrosine in human urine by stable isotope dilution liquid chromatography tandem mass spectrometry [J]. Toxicology Letters.2008.181:31-39.
    [58]Reinout Raijmakers, Karsten Kraiczek, Ad P. de Jong, et al. Exploring the human leukocyte phosphoproteome using a microfluidic reversed-Phase-TiO2-reversed-rhase high-performance liquid chromatography phosphochip coupled to a quadrupole time-of-flight mass spectrometer [J]. Anal. Chem.2010,82:824-832.
    [59]Meritxell Gros. Mira Petrovic Damia BarcelB. Tracing pharmaceutical residues of different therapeutic classes in environmental waters by using liquid cliromatography/quadrupole-linear ion trap mass spectrometry and automated library searching [J]. Anal. Chem 2009.81:898-912.
    [60]Marquet P. Progress of liquid chromatography-mass spectrometry in clinical and forensic toxicology [J]. Ther Drug Monit.2002,24:125-133.
    [61]Fitzgerald RL, Rivera JD, Herold DA. Broad spectrum drug identification directly from urine, using liquid chromatography-tandem mass spectrometry [J]. Clin Chem.1999,45:1224-1234.
    [62]Decaestecker TN. Clauwaert KM. Van Bocxlaer JF, et al. Evaluation of automated single mass spectrometry to tandem mass spectrometry function switching for comprehensive drug profiling analysis using a quadrupole time-of-flight mass spectrometer [J]. Rapid Commun Mass Spectrom.2000,14:1787-92.
    [63]Russell J. Mortishire-Smith. Desmond O'Connor, et al. Accelerated throughput metabolic route screening in early drug discovery using high-resolution liquid chromatography/quadrupole time-of-flight mass spectrometry and automated data analysis [J]. Rapid Commun. Mass Spectrom 2005,19:2659-2670.
    [64]Robert S. Plumb, Kelly A. Johnson. Paul Rainville. et al. UPLC/MSE; a new approach for generating molecular fragment information for biomarker structure elucidation [J]. Rapid Commun. Mass Spectrom.2006,20:1989-1994.
    [65]Derek J.Crockford. Anthony D.Maher. Kourosh R. Ahmadi. et al.1H NMR and UPLC-MSE statistical heterospectroscopy:characterization of drug metabolites (xenometabolome) in epidemiological studies [J]. Anal.Chem.2008.80:6835-6844.
    [66]Kevin P. Bateman. Jose Castro-Perez. Mark Wrona. et al. MSB with mass defect filtering for in vitro and in vivo metabolite identification[J]. Rapid Coinmun.Mass Spectrom.2007.21: 1485-1496.
    [67]Mark Wrona. Timo Mauriala. Kevin P. Bateman. et al. 'All-in-One'analysis for metabolite identification using liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry with collision energy switching [J]. Rapid Commun. Mass Spectrom.2005,19:2597-2602.
    [68]Chang,Y. Zeper A, Li LJ, et al. Study on Fragmentation Behavior of 5/7/6-Type Taxoids by Tandem Mass Spectrometry [J]. J. Mass Spectrom.2000,35:1207-1214.
    [69]Liang F, Li L J, Zeper A, et al. Structural Characterization of Steroidal Saponins by Electrospray Ionization and Fast-Atom Bombardment Tandem Mass Spectrometry [J]. Rapid Commun. Mass Spectrom.2002,16:1168-1173.
    [70]Xiang Y, Zeper A. Li LJ, et al. Study of Structural Characteristic Features of Phenanthriondolizidine Alkaloids by Fast Atom Bombardment with Tandem Mass Spectrometry [J]. Rapid Commun. Mass Spectrom.2002,16:1668-1674.
    [71]Liang F, Zeper A, Zhang RP, et al. Investigation of interconversion between aspacochiosides A and B by fast-atom bombardment mass spectrometry [J]. Rapid Commun. Mass Spectrom.2006, 20:328-330.
    [72]Xiang Y, Zeper A, Li LJ, et al. Characteristic Fragmentation Behavior of Deoxytetranucleotides by Positive Ion Electrospray Ionization Tandem Mass Spectrometry [J]. Rapid Commun. Mass Spectrom.2003,17:1220-1224.
    [73]XiangY, Zeper A. M.Takayama. Cleavage Reactions of the Complex Ions Derived from Self-Complementary Deoxydinucleotides and Alkali-Metal Ions Using Positive Ion Electrospray Ionization with Tandem Mass Spectrometry [J]. J. Am. Soc. Mass Spectrom.2004,15:689-696.
    [74]Cui LJ. Zeper A. Xia M. et al. On-Line Identification of Phenanthroindolizidine Alkaloids in a Crude Extract from Tylophora Atrofolliculata by Liquid Chromatography Combined with Tandem Mass Spectrometry [J]. Rapid Commun. Mass Spectrom.2004,18:184-190.
    [75]Liu YZ, Liang F, Cui LJ, et al. Multi-stage Mass Spectrometry of Furostanol Saponins Combined with Electrospray Ionization in Positive and Negative Ion Modes [J]. Rapid Commun. Mass Spectrom.2004,18:235-238.
    [76]Zhang R P, Zeper A, Liang F, et al. Characteristic Elimination Reactions of 1.2-Disubstituted Henylbenzimidazoles and Their Isosteres 2.3-Disubstituted Phenylindoles in Electron Ionization Mass Spectrometry [J]. Rapid Commun. Mass Spectrom.2004,18:584-587.
    [77]Li B, Zeper A. Fu G. et al. Characteristic Fragmentation Behavior of Some Glucuronide-type Triterpenoid Saponins Using Electrospray Ionization Tandem Mass Spectrometry [J]. Rapid Commun. Mass Spectrom.2005.19:381-390.
    [78]Li B. Zeper A. Tang M. et al. Rapid Structural Characterization of Triterpenoid Saponins in Crude Extract from Symplocos Chinensis using Liquid Chromatography Combined with Electrospray Ionization Ttandem Mass Spectrometry [J]. J. Chromatogr. A.2006,1101:53-62.
    [79]Ablajan K. Zeper A. Shang XY. et al. Structural characterization of flavonol 3.7-di-O-glycosides and determination of the glycosylation position by using negative ion electrospray ionization tandem mass spectrometry [J]. J. Mass Spectrom.2006,41:352-360.
    [80]S.D. Taylor. B. Wright. E. Clayton, et al. Practical aspects of the use of high performance liquid chromatography combined with simultaneous nuclear magnetic resonance and mass spectrometry [J]. Rapid Commun. Mass.Spectrom.1998,12:1732-1736.
    [81]I.D. Wilson. Multiple hyphenation of liquid chromatography with nuclear magnetic resonance spectroscopy, mass spectrometry and beyond [J]. J. Chromatogr. A.2000,892:315-327.
    [82]Zheng Yang. Online hyphenated liquid chromatography-nuclear magnetic resonance spectroscopy-mass spectrometry for drug metabolite and nature product analysis [J]. Journal of Pharmaceutical and Biomedical Analysis.2006,40:516-527.
    [83]K. Albert. Liquid chromatography-nuclear magnetic resonance spectroscopy [J]. J. Chromatogr. A.1999,856:199-211.
    [84]Harri Koskela, Mia Ervasti, Heikki Bjurk, et al. On-Flow Pulsed Field Gradient Heteronuclear Correlation Spectrometry in Off-Line LC- SPE-NMR Analysis of Chemicals Related to the Chemical Weapons [J]. Anal. Chem.2009,81:1262-1269.
    [85]J.W. Jaroszewski. Hyphenated NMR methods in natural products research. Part 2: HPLC-SPE-NMR and other new trends in NMR hyphenation [J]. Planta Med.2005,71: 691-700.
    [86]Exarchou V. Godejohann M, Van BTA, et al. LC-UV-Solid-Phase extraction-NMR-MS combined with a cryogenic flow probe and its application to the identification of compounds present in Greek Oregano [J]. Anal. Chem.2003,75:6288-6294.
    [87]Olson DL, Norcross JA. O'Neil JM, et al. Microflow NMR:concepts and capabilities [J]. Anal. Chem.2004.76:2966-2974.
    [88]Fischer HH. Seiler M. Ertl TS, et al. Quantification studies in continuous-flow 13C nuclear magnetic resonance spectroscopy by use of immobilized paramagnetic relaxation agents [J]. J. Phvs. Chem. B.2003,107:4879-4886.
    [89]S.H. Smallcombe. S.L. Patt, P.A. Keifer. WET solvent suppression and its applications to LC NMR and high-resolution NMR spectroscopy [J]. J. Magn. Res. Ser.A.1995.117:295.
    [90]Maria Victoria Silva Elipe. Advantages and disadvantages of nuclear magnetic resonance spectroscopy as a hyphenated technique [J]. Analytica Chimica Acta.2003,497:1-25.
    [91]Y.Q. Lin, S. Schiavo. J. Orjala. et al. Microscale LC-MS-NMR platform applied to the identification of active cyanobacterial metabolites [J]. Anal. Chem 2008.80:8045-8054.
    |92] M. Spraul. A. S. Freund. R. E. Nast. et al. Advancing NMR sensitivity for LC-NMR-MS using a cryoflow probe:application to the analysis of acetaminophen metabolites in urine [J]. Anal. Chem.2003.75:1546-1551.
    [93]Dele Stulten. Marc Lamshoft. Sebastian Zuhlke. et al. Isolation and characterization of a new human urinary metabolite of diclofenac applying LC-NMR-MS and high-resolution mass analyses [J]. Journal of Pharmaceutical and Biomedical Analysis.2008.47.371-376.
    [94]Julie Regitze Kesting. JingQi Huang. Dan Sorensen. Identification of adulterants in a Chinese herbal medicine by LC-HRMS and LC-MS-SPE/NMR and comparative in vivo study with standards in a hypertensive rat model [J]. Journal of Pharmaceutical and Biomedical Analysis. 2010,51:705-711.
    [95]Iolaf. Duarte, Markus Godejohann, Ulrich Braumann, et al. Application of NMR spectroscopy and LC-NMR/MS to the identification of carbohydrates in beer [J]. J. Agric. Food Chem.2003, 51:4847-4852.
    [96]Olivia Corcoran, Manfred Spraul. LC-NMR-MS in drug discover [J]. Research focus.2003,8: 624-631.
    [97]Kowalski BR. Chemometrics [J]. Anal.Chem.1980,52:112R.70
    [98]梁逸曾,渝汝勤.化学计量学在我国的发展[J].化学通报.1999.10:14-19.
    [99]房靖.化学计量学在分析化学中的应用及发展前景[J].科技咨讯.2010,21:242.
    [100]梁逸曾,龚范,俞汝勤.化学计量学用于中医药研究[J].化学进展.1999,11:208-212.
    [101]梁逸曾,吴海龙,俞汝勤.化学计量学[J].现代科学仪器.1998,5:3-6.
    [102]陈学国,倪坚毅,邹汉法,等。遗传算法用予液相色谱分离条件的优化[J].色谱.2002,20(2):97-101.
    [103]Shah YC, Zhao RH, Tian Y, et al. Retention modeling and optimization of pH value and solvent composition in HPLC using back-propagation neural networks and uniform design [J]. J. Liq. Chrorrmtogr. Related Technol.2002,25:1033-47.
    [104]中国科学院中国植物志编委.中国植物志[M].第17卷.北京:科学出版社.2000:204.
    [105]福建中医药研究所编.福建药物志[M].第二册.福州:福建科技出版社,1982:215.
    [106]何春年.福建金线莲的化学成分研究[D].北京:中国医学科学院/北京协和医学院,2004.
    [107]王振登,等.金线莲中微量元素及氨基酸的分析测定[J].福建中医学院学报.1993,3(2):100-101.
    [108]杨秀伟,韩美华,靳彦平.金线莲化学成分的研究[J].中药.2007,30(7):797-800.
    [109]关璟.王春兰,郭顺星.福建产金线莲中黄酮苷成分的研究[J].中草药.2005,36(10):1450-1453.
    [110]曹扬远.金线莲中化学成分的研究[D].福建:福建医科大学,2008.
    [111]韩美华.杨秀伟.靳彦平.金线莲挥发油化学成分的研究[J].天然产物研究与开发.2006.18:65-68.
    [112]蔡文燕,肖华山,范秀珍.金线莲研究进展[J].亚热带植物科学.2003,32(3):68-72.
    [113]刘贤旺,黄慧莲,袁勇.金线莲的研究进展[J].江西中医学院学报.1999,11:188-189.
    [114]刘贤旺,赖学文,黄慧莲,袁勇.江西金线莲资源调查简报[J].中国野生植物资源.19:25-26.
    [115]方金辉,李强,陈建新,林俊杨,张爱加,林金元.金线莲的室内人工栽培技术[J].福建农业科技.1998.41.
    [116]叶庆荣.珍稀中草药金线莲病虫害综合防治技术[J].中国农村小康科技.2005,12:43-47
    [117]孔祥海.“药王”金线莲的自然资源初步研究[J].中草药.2001,32(2):155-157.
    [118]张以忠,邓琳琼,黄丽华,等.金线莲研究的现状与展望[J].贵州科学.2007,2(25):81-84.
    [119]陈远光,韩湘玲.金线莲引种栽培试验初探[J].中国林副特产.1997,3(42):7-9.
    [120]梁贵秋.金线莲的栽培技术[J].广西热带农业.2005,43:13-15.
    [121]林俊芳,林俊扬.珍稀中草药金线莲快速微繁研究初报[J].中国中药杂志.1993,18(12):721.
    [122]范子南.金线莲的组织培养研究[J].福建师范大学学报.1997,13(2):82-87.
    [123]何云芳.金线莲组培快繁技术[J].浙江林学院学报.1999,16(2):170-174.
    [124]陈汉鑫,王雅英,杨忠耿,黄德贵,林荣耀,冯志红.金线莲组织培养快繁技术[J].广西农业科学.2004,35(4):325-326.
    [125]于雪梅,郭顺星.金线莲与内生真菌共生培养体系的建立[J].中国中药杂志.2000,25(2):81-83.
    [126]陈晓梅,郭顺星,王春兰.四种内生真菌对金线莲无菌苗生产及多糖含量的影响[J].中国药学杂志.2005.1(40):13-16.
    [127]唐明娟,孟志霞,郭顺星.菌根真菌对人工栽培金线莲糖类和无机元素的影响[J].中草药.2008,39(10):1565-1568.
    [128]张福生,郭顺星.SPSS正交设计在福建金线莲组织培养中的应用[J].中国中药杂志.2009,34(20):2581-2585.
    [129]王雅俊,孟志霞,于雪梅.促进金线莲生长发育的内生真菌筛选研究[J].中国药学杂志.2009,44(13):976-979.
    [130]邱桂丹.金线莲已进入工厂化育苗[J].福建经济报.1996,19:2.
    [1]Chang,Y. Zeper A, Li LJ, et al. Study on Fragmentation Behavior of 5/7/6-Type Taxoids by Tandem Mass Spectrometry [J]. J Mass Spectrom.2000,35:1207-1214.
    [2]Liang F, Li L J, Zeper A, et al. Structural Characterization of Steroidal Saponins by Electrospray Ionization and Fast-Atom Bombardment Tandem Mass Spectrometry [J]. Rapid Commun. Mass Spectrom.2002,16:1168-1173.
    [3]Xiang Y, Zeper A, Li LJ, et al. Study of Structural Characteristic Features of Phenanthriondolizidine Alkaloids by Fast Atom Bombardment with Tandem Mass Spectrometry [J]. Rapid Commun. Mass Spectrom.2002,16:1668-1674.
    [4]Xiang Y, Zeper A, Li LJ, et al. Characteristic Fragmentation Behavior of Deoxytetranucleotides by Positive Ion Electrospray Ionization Tandem Mass Spectrometry [J]. Rapid Commun. Mass Spectrom.2003,17:1220-1224.
    [5]XiangY, Zeper A, Mitsuo Takayama. Cleavage Reactions of the Complex Ions Derived from Self-Complementary Deoxydinucleotides and Alkali-Metal Ions Using Positive Ion Electrospray Ionization with Tandem Mass Spectrometry [J]. J. Am. Soc. Mass Spectrom.2004,15:689-696.
    [6]Cui LJ, Zeper A. Xia M, et al. On-Line Identification of Phenanthroindolizidine Alkaloids in a Crude Extract from Tylophora Atrofolliculata by Liquid Chromatography Combined with Tandem Mass Spectrometry [J]. Rapid Commun. Mass Spectrom.2004,18:184-190.
    [7]Liu YZ, Liang F, Cui LJ, et al. Multi-stage Mass Spectrometry of Furostanol Saponins Combined with Electrospray Ionization in Positive and Negative Ion Modes [J]. Rapid Commun. Mass Spectrom.2004,18:235-238.
    [8]Zhang R P, Zeper A,Liang F, et al. Characteristic Elimination Reactions of 1.2-Disubstituted Henylbenzimidazoles and Their Isosteres 2,3-Disubstituted Phenylindoles in Electron Ionization Mass Spectrometry [J]. Rapid Commun. Mass Spectrom.2004,18:584-587.
    [9]Li B, Zeper A, Fu G. et al. Characteristic Fragmentation Behavior of Some Glucuronide-type Triterpenoid Saponins Using Electrospray Ionization Tandem Mass Spectrometry [J]. Rapid Commun. Mass Spectrom.2005,19:381-390.
    [10]Li B, Zeper A, Tang M. et al. Rapid Structural Characterization of Triterpenoid Saponins in Crude Extract from Symplocos Chinensis using Liquid Chromatography Combined with Electrospray Ionization Ttandem Mass Spectrometry [J]. J. Chromatogr. A.2006,1101:53-62.
    [11]Liang F.. Zeper A. Zhang RP. et al. Investigation of interconversion between aspacochiosides A and B by fast-atom bombardment mass spectrometry [J]. Rapid Commun. Mass Spectrom. 2006.20:328-330.
    [12]Ablajan K. Zeper A, Shang XY. et al. Structural characterization of flavonol 3.7-di-O-glycosides and determination of the glycosylation position by using negative ion electrospray ionization tandem mass spectrometry [J] J Mass Spectrom.2006,41:352-360.
    [13]李斌.三萜皂苷及黄酮苷类天然产物的质谱分析方法研究[D].北京:中国医学科学院/北 京协和医学院,2002.
    [14]Tolonen A, Uusitalo J. Fast screening method for the analysis of total flavonoid content in plants and foodstuffs by high-performance liquid chromatography/electrospray ionization time-of-flight mass spectrometry with polarity switching [J]. Rapid Commun. Mass Spectrom.2004,18: 3113-3112.
    [15]Shahat A A, Cuyckens F, Wang W. et al. Structural characterization of flavonol di-(9-glycosides from Farsetia aegyptia by electrospray ionization and collision-induced dissociation mass spectrometry[J]. Rapid Commun. Mass Spectrom.2005,19:2172-2178.
    [16]阿布拉江·克依木.黄酮类天然产物的质谱分析方法研究[D].北京:中国医学科学院/北京协和医学院.2003.
    [17]Russell J. Mortishire-Smith, Desmond O'Connor, et al. Accelerated throughput metabolic route screening in early drug discovery using high-resolution liquid chromatography/quadrupole time-of-flight mass spectrometry and automated data analysis [J]. Rapid Commun. Mass Spectrom.2005,19:2659-2670.
    [18]Robert S. Plumb, Kelly A. Johnson, Paul Rainville, et al. UPLC/MSE; a new approach for generating molecular fragment information for biomarker structure elucidation [J],Rapid Commun. Mass Spectrom.2006,20:1989-1994.
    [19]Derek J.Crockford, Anthony D.Maher, Kourosh R. Ahmadi. et al.1H NMR and UPLC-MSE Statistical Heterospectroscopy:Characterization of Drug Metabolites (Xenometabolome) in Epidemiological Studies [J]. Anal.Chem.2008,80:6835-6844.
    [20]R. Dommarco. A. Santilio, L. Fornarelli. et al. RubbianiSimultaneous quantitative determination of thirteen urea pesticides at sub-ppb levels on a Zorbax SB-C18 column [J]. J. Chromatogr. A. 1998.825:200-204.
    [21]Yong Ba, Danny Chagolla. Structure, Dynamics, and Interaction of the Stationary Phase and Xenon Atoms in the Zorbax SB-C18 HPLC Column Material Studied by Solid State NMR and 129Xe NMR [J]. J. Phys. Chem. B.2001.106:5250-5257.
    [22]Guiherme MT. Roge'rio CB. Fernando ML. Optimization of the ESI and APCI experimental variables for the LC/MS determination of s-triazines, methylcarbamates. organophosphorous. benzimidazoles. carboxamide and phenvlurea compounds in orange samples [J]. Journal of mass spectrometry.2007.42:1348-1357.
    [23]Chen ML. Song FR. Guo MQ. et al. Analysis of flavonoid constituents from leaves of Acanthopanax senticosus Harms by electrospray tandem mass spectrametry [J]. Rapid Commun. Mass Spectrom.2002.16:264-271.
    [24]阿布拉江·克依木.再帕尔·阿不力孜,尚小雅等黄花柳植物中黄酮醇糖苷类成分的ESI-MS"及HPLC-UVUESI-MS"研究[J].分析测试学报.2005.24:54-55.
    [25]Rezanka T. Dembitsky VM. Identification of acylated xanthone glvcosides by liquid chromatography-atmospheric pressure chemical ionization mass spectrometrv in positive and negative modes from the lichen Umbilicaria proboscidea [J]. J. Chromatogr. A.2003.995: 109-118.
    [26]Carbone V, Montoro P, de Tommasi N. et al. Analysis of flavonoids from Cyclanthera pedata fruits by liquid chromatography/electrospray mass spectrometry [J]. Journal of Pharmaceutical and Biomedical Analysis.2004,34 (2):295-304.
    [27]Schutz, K, Kammerer D, Carle R. et al. Identification and quantification of caffeoylquinic acids and flavonoids from artichoke (Cynara scolymus L.) heads, juice, and pomace by HPLC-DAD-ESI/MSn [J]. J. Agric. Food Chem.2004,52:4090-4096.
    [28]Careri M, Elviri L, Mangia. Validation of a liquid chromatography ionspray mass spectrometiy method for the analysis of flavanones, flavones and flavonols [J]. Rapid Commun. Mass Spectrom 1999,13:2399-2405.
    [29]de Rijke E, Zappey H. Ariese F. et al. Liquid chromatography with atmospheric pressure chemical ionization and electrospray ionization mass spectrometry of flavonoids with triple-quadrupole and ion-trap instruments [J]. J. Chromatogr. A.2003,984:45-58.
    [30]贾元威,谢海棠,沈杰等LC-ESI-MS法测定对羟基苯甲醛方法的建立[J].安徽医药.2010,14:517-519.
    [31]何春年.福建金线莲的化学成分研究[D].北京:中国医学科学院/北京协和医学院,2004.
    [32]杨秀伟,韩美华,靳彦平.金线莲化学成分的研究[J1.中药材.2010.30:797-800.
    [33]Sheng-Yang Wang. Yueh-Hsiung Kuo, Hsing-Ning Chang, et al. Profiling and Characterization Antioxidant Activities in Anoectochilus formosanus Hayata [J].J. Agric. Food Chem.2002.50: 1859-1865.
    [1]B. Li, Z. Abliz, M.J.Tang, et al. Rapid analytical method of triterpenoid saponins in crude extract from Symplocos chinensis using liquid chromatography combined with electrospray ionization tandem mass spectrometry [J]. J. Chromatogr. A.2006,1101:53-62.
    [2]P. Geng, R.P. Zhang, A.A. Haji, et al. Fast profiling of the integral metabolism of flavonols in the active fraction of Gossypium herbaceam L. using liquid chromatography/multi-stage tandem mass spectrometry [J]. Rapid Commun. Mass Spectrom.2007,21:1877-1888.
    [3]M. Sandvoss, A. Weltring, A.Preiss, et al. Combination of matrix solid-phase dispersion extraction and direct on-line liquid chromatography-nuclear magnetic resonance spectroscopy-tandem mass spectrometry as a new efficient approach for the rapid screening of natural products:Application to the total asterosaponin fraction of the starfish A sterias rubens [J]. J. Chromatogr. A.2001,917:75-86.
    |4] V. Exarchou, M. Godejohann, T.A van Beek, et al. LC-UV-solid-phase extraction-NMR-MS combined with a cryogenic flow probe and its application to the identification of compounds present in Greek oregano [J]. Anal. Chem.2003.75:6288-6294.
    [5]J. Fritsche, R. Angoelal, M. Dachtler. On-line liquid-chromatography-nuclear magnetic resonance spectroscopy-mass spectrometry coupling for the separation and characterization of secoisolariciresinol diglucoside isomers in flaxseed [J]. J. Chromatogr. A.2002.972:195-203.
    [6]D.J. Crockford, E. Holmes, J.C. Lindon, et al. Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets:application in metabonomic toxicology studies [J]. Anal. Chem.2006,78:363-371.
    [7]Cloarec. O. Dumas. M.E. Craig. A. Barton, R.H. et, al. Statistical total correlation spectroscopy: An exploratory approach for latent biomarker identification from metabolic 1H NMR data sets [J]. Anal. Chem.2005,77:1282-1289.
    [8]Derek J.Crockford. Anthony D.Maher. Kourosh R. Ahmadi. et al.'H NMR and UPLC-MSE Statistical Heterospectroscopy:Characterization of Drug Metabolites (Xenometabolome) in Epidemiological Studies [J], Anal.Chem.2008.80:6835-6844.
    [9]代冬梅.天然产物混合物结构鉴定的MS与NMR平行动态谱与正交相关谱新型分析方法研究[D].北京:中国医学科学院/北京协和医学院,2008.
    [10]D.M.Dai. J.M.He. R.X.Sun. et al. Nuclear magnetic resonance and liquid chromatography-mass spectrometry combined with an incompleted separation strategy for identifying the natural products in crude extract [J] Anal. Chim. Acta.2009,632:221-228.
    [11]刘影,贺玖明.孙瑞祥等.核磁共振和液相色谱-质谱平行动态谱学方法对连翘活性提取物的同步结构分析[J].分析化学.2011.39:323-329.
    [12]刘影苯乙醇苷类化合物及其混合物组分群的质谱分析方法以及LC-MS/NMR相关谱分析方法研究[D].北京:中国医学科学院/北京协和医学院.2009.
    [13]阿布拉沮·克依木.黄酮类天然产物的质谱分析方法研究[D]北京:中国医学科学院/北京 协和医学院,2003.
    [14]何春年.福建金线莲的化学成分研究[D].北京:中国医学科学院/北京协和医学院,2004.
    [15]杨秀伟,韩美华,靳彦平.金线莲化学成分的研究[J].中草药.2007,30:797-800.
    [16]李斌.三萜皂苷及黄酮苷类天然产物的质谱分析方法研究[D].北京:中国医学科学院/北京协和医学院,2002.
    [17]Z.A.Rabesa, B.Voian. Nouveaux aglycones flavoniques O-methyles derives de la meamsetine chez Alluaudia ascendens [J]. Phytochemistry.1979,18:360-362.
    [1]张兰桐,任雷鸣,温进坤.中药现代化研究与发展战略[J].河北医科大学学报.2000,21:253-256.
    [2]刘明言,朱世斌.中药现代化进展[J].中草药.2002,3:193-196.
    [3]肖培根,肖小河.21世纪与中药现代化[J].中国中药杂志.2000,2:67-70.
    [4]杜冠华.药物筛选新技术与中药现代化研究[J].世纪科学技术:中药现代化.2000,4:47-52.
    [5]姚新生.中药活性成分研究与中药现代化[J].中国新药与临床药理.2003,2:73-75.
    [6]白晶,季宇彬,李文兰.色谱技术在中药物质基础研究中的应用[J].中国执业药师.2009,6:31-34.
    [7]Kang J, Zhou L, Sun JH, et al. Chromatographic fingerprint analysis and characterization of furoeoumarins in the roots of Angelica dahurica by HPLC/DAD/ESI-MSn technique [J]. Journal Pharm Biomed Analy.2008.47:778-785.
    [8]Jose Maria Fuentes-Alventosa, Guillermo Rodriguez, Pedro Cermeno, et al. Identification of Flavonoid Diglycosides in SeveralGenotypes of Asparagus from the Huetor-TajarPopulation Variety [J]. J. Agri. Food Chem.2007,55:10028-10035.
    [9]Yatiug Denga.Qiondeag Liao, Suhua Li, et al. Simuhaneous determination of berberine, palmatine and jatmrrhizinc by liquid ehromatography—tandem mass spectrometry in rat plasma and its application in aphannacokinetie study after oral administration of eoptis-evodia herb couple [J]. Journal of Chromatography B.2008,863:195-205.
    [10]Man Liu, Huiping Liu, Xiumei Lu, et al. Simultaneous determination of icariin, icariside Ⅱ and osthole in rat plasma after oral administration of the extract of Gushudan (a Chinese compound formulation) by LC-MS/MS [J]. Journal of Chromatography B.2007,860:113-120.
    [11]阿布拉江·克依木.黄酮类天然产物的质谱分析方法研究[D].北京:中国医学科学院/北京协和医学院.2003.
    [12]耿平.黄酮醇类活性提取物整体代谢轮廓及结构分析的质谱方法研究[Dl.北京:中国医学科学院/北京协和医学院.2004.
    [13]陈远光,韩湘玲.金线莲引种栽培试验初探lJl.中国林副特产.1997,3(42):7-9.
    [14]梁贵秋.金线莲的栽培技术[J].广西热带农业.2005.43:13-15.
    [15]林俊芳,林俊扬.珍稀中草药金线莲快速微繁研究初报[J].中国中药杂志.1993.18(12):721
    [16]范子南,肖华山.金线莲的组织培养研究[J].福建师范大学学报.1997.13(2):82-87
    [17]何云芳,杨霞.金线莲组培快繁技术[J].浙江林学院学报.1999.16(2):170-174.
    [18]陈汉鑫,王雅英,杨忠耿,等.金线莲组织培养快繁技术[J].广西农业科学2004.35(4): 325-326.
    [19]于雪梅,郭顺星.金线莲与内生真菌共生培养体系的建立[J].中国中药杂志.2000,25(2):81-83.
    [20]陈晓梅,郭顺星,王春兰.四种内生真菌对金线莲无菌苗生产及多糖含量的影响[J].中国药学杂志.2005,1(40):13-16.
    [21]唐明娟,孟志霞,郭顺星.菌根真菌对人工栽培金线莲糖类和无机元素的影响[J].中草药.2008,39(10):1565-1568.
    [22]张福生,郭顺星SPSS正交设计在福建金线莲组织培养中的应用[J].中国中药杂志.2009,34(20):2581-2585.
    [23]王雅俊,孟志霞,于雪梅.促进金线莲生长发育的内生真菌筛选研究lJ].中国药学杂志.2009,44(13):976-979.
    [24]邱桂丹.金线莲已进入工厂化育苗[J].福建经济报.1996,19:2.
    [25]何春年.福建金线莲的化学成分研究[D]北京:中国医学科学院/北京协和医学院,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700