整体式结构化催化剂合成异丙苯的反应过程强化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异丙苯是一种重要的有机化工原料,用途十分广泛。本文采用单元模块模拟CFD、过程模拟Aspen Plus和Pro Ⅱ以及实验相结合的方法研究了苯与丙烯在整体式结构化催化剂合成异丙苯的反应过程强化及分离工段的能耗分析,考察了两类整体式结构化催化剂结构-性能(压降、传质、传热、丙烯转化率、异丙苯选择性、反应有效因子等)关系。
     首先,采用Pro Ⅱ和Aspen Plus过程模拟软件对颗粒催化剂固定床反应器合成异丙苯工艺流程进行优化模拟计算。以降低异丙苯流程中分离工段单位产品的能耗为目标本文逐步提出流程优化方案:在分离工段的二异丙苯塔增加一个侧线采出以回收三异丙苯,从而实现过程的节能减排;采用泡点反应器代替原固定床反应器进行苯丙烯烷基化反应;同时采用泡点反应器和增加二异丙苯塔侧线采出的方法合成异丙苯;最后提出采用固定床催化精馏塔合成异丙苯。
     第二,以空气-水逆流流动为研究对象采用实验和CFD数值模拟相结合的方法对两种开放错流整体式结构化催化剂(BH-1和BH-2型)的流体力学性能进行了研究,结果表明开放错流结构具有明显的低压降,相同操作条件下气体通过单位长度催化剂的压降比普通颗粒催化剂降低1-3个数量级。同时考察了几何结构参数(波纹板倾斜角、高径比及反应/分离面积比)对其流体力学性能的影响,研究结果表明,对于不同波纹板倾斜角时,单位长度催化剂的压降大小顺序为30°<30-45-300<45-30-45°<45°,液相传质系数KLa大小顺序为45°>45-30-45°>30-45-30°>30°;不同高径比(保持其直径不变,改变催化剂的高度)时,空气-水逆流流动通过单位长度催化剂的压降大小顺序为0.20m<0.15m<0.10m,液相传质系数KLa从大到小依次为0.10m>0.15m>0.20m;对于BH-1型开放错流整体式结构化催化剂改变不同反应/分离区域面积比(保持其分离区域不变,改变催化剂捆包厚度)时,单位长度催化剂的压降大小顺序为6mm<10mm<14mm,液相传质系数KLa从大到小依次为6mm>10mm>14mm;可见高传质性能将意味着高的压力损失,开放错流结构整体式结构化催化剂具有结构参数可调性,在实际应用中可以根据具体情况来设计更加合理的结构。
     第三,将BH型开放错流整体式结构化催化剂(BH-1)应用于异丙苯的合成过程中,通过建立可靠的数学模型来考察苯与丙烯烷基化过程中整体式结构化催化剂的传递和反应特性,结果表明最佳反应条件为反应温度160℃,进料苯烯摩尔比为4.0。进一步通过数学模型,定量的描述了整体式结构化催化剂结构-性能(动量传递、质量传递、热量传递和反应特性)之间的关系。结果表明两种折线式波纹板(30-45-30°和45-30-45°)表现出高丙烯转化率、高异丙苯选择性和反应有效因子;低高径比有利于提高质量传递和反应的有效因子,但同时也增大了压降降低了异丙苯的选择性;反应/分离面积比越低压降越小,同时异丙苯选择性和反应有效因子越高,但却不利于总的丙烯质量传递和转化率的提高。
     最后,通过实验和模拟相结合的方法考察了蜂窝式结构化催化剂在苯与丙烯烷基化反应时的传递和反应特性,建立了可靠的数学模型并采用此数学模型考察了不同通道结构形状(圆形、正方形、长方形、六边形和三角形)对其特性(单位催化剂压降、传质特性Nu、修伍德准数Sh、丙烯转化率x和异丙苯的选择性S、反应有效因子η、坦克莱准数Da)的影响,结果表明蜂窝式结构化催化剂具有低压降、高异丙苯选择性和高反应有效因子的特性,同时对比不同结构通道形状,综合考虑压降和异丙苯的特性正三角形和矩形结构为优。从工程角度出发,泡点反应器和整体式结构化催化剂联合使用能同时降低压降和反应分离过程的能量消耗。本文进一步对比了采用三种不同类型催化剂(蜂窝式结构化催化剂、BH型开放错流整体式结构化催化剂和YSBH颗粒催化剂)和泡点反应器耦合合成异丙苯时,发现采用蜂窝式结构化催化剂时分离工段能耗最低。
Cumene (or isopropylbenzene) is an important starting material for the production of acetone and phenol. This work investigated the transfer and reaction performances and the energy consumptions for the alkylation reaction of benzene with propylene to cumene over structured catalysts using the combination the CFD simulation, Aspen Plus, Pro II, and experimental methods. Furthermore, the relation between geometric parameters and reactor performances (the pressure drop, mass transfer, heat transfer, propylene conversion, cumene selectivity, effectiveness factor, and so on) was identified using CFD models.
     Firstly, due to high energy consumption brought by high feeding molar ratio of benzene to propylene, an optimized process design has been developed and is presented. First, a side-stream was added to the DIPB distillation column to recover some triisopropylbenzene (TIPB), resulting in a decrease of the energy consumption per product. On the other hand, if the original fixed-bed reactor is replaced by a bubble-point reactor, the total heat duty on condensers and reboilers will decrease by18.5and22.8%, respectively. Then, a fixed-bed catalytic distillation (FCD) column was proposed for producing cumene. The improvement of FCD column was done by carrying out alkylation and transalkylation reactions simultaneously in a single column for producing cumene, with the result that investment of equipment for transalkylation is reduced and the process is simplified. Finally, with the combination of the improved DIPB column and FCD process, the heat duty was found to be the lowest.
     Secondly, two types of structured catalytic packings (i.e. BH-1and BH-2types) were involved, and the relationship between geometric configuration and performance of pressure drop and mass transfer coefficients for BH-1and BH-2types was identified by means of the combination of experiments and computational fluid dynamics (CFD). The results showed that under the same operating conditions pressure drops for BH-1and BH-2types were significantly lower than those for conventional fixed-bed reactor packed with pellet catalyst particles by one to three orders of magnitude. Two kinds of transition structures were proposed and the calculated results revealed that they were favorable when considering pressure drop and mass transfer coefficient together. Furthermore, it was found that a low ratio of packing height to diameter was favorable for increasing mass transfer coefficient, but leads to increasing pressure drop like common structured packings; a low area ratio of separation to reaction region for BH-1type would increase mass transfer coefficient and decrease pressure drop simultaneously.
     Thirdly, a three-dimensional (3D) mathematical model was established to determine the optimum operating conditions and to examine the reactor performance when traditional catalyst pellets were replaced with BH structured catalytic packings for benzene alkylation with propylene. It was found that the optimum operating conditions were the reaction temperature of160℃and the molar ratio of benzene to propylene in the feed of4.0. In this work, we also explored the relationship between the geometric configuration and the reactor performance. The momentum transfer (pressure drop), heat transfer (Nu number), mass transfer (Sh number), propylene conversion, cumene selectivity, and effectiveness factor were determined for different geometric configurations, which included changes in the corrugation angle, ratio of the packing height to the diameter, and ratio of the areas of the reaction and open-channel regions. Two new types of transition or wave-like structures (30-45-30°and45-30-45°), which resulted in a higher propylene conversion, cumene selectivity and effectiveness factor, were adopted. Furthermore, the applicability of this new technology for benzene alkylation with propylene was verified in a pilot plant.
     Finally, the transfer and reaction performances for benzene alkylation with propylene to produce cumene over monolith catalysts were investigated by means of the combination of experiments and computational fluid dynamics (CFDs). A three-dimensional (3D) mathematical model was established to identify the geometric configuration-performance relation so as to provide a comprehensive comparison of momentum transfer (pressure drop), heat transfer (Nu number), mass transfer (Sh number), and reaction performances (i.e. propylene conversion, cumene selectivity, and effectiveness factor) among monolith catalysts with five kinds of channel shapes (i.e. circle, hexagon, square, rectangle, and regular triangle). It was found that monolith catalyst exhibits the lower pressure drop, higher cumene selectivity and higher effectiveness factor; and regular triangle or rectangle channel is optimum when considering pressure drop and cumene selectivity together. Furthermore, the advantages of monolith catalyst can lead to the lowest energy consumption for the whole process.
引文
[1]Olah G A. Friedel-Crafts and related reactions[M]. Interscience:New Youk,1963
    [2]Siffert S, Gaillard L, Su B L. Alkylation of benzene by propene on a series of Beta zeolites: toward a better understanding of the mechanisms[J]. J. Mol. Catal. A:Chern.,2000:267-279
    [3]金丹.分子筛催化剂上异丙苯与丙烯液相烷基化合成二异丙苯反应的研究[D].北京:北京化工大学,2009
    [4]李悦.USY分子筛上的二异丙苯烷基转移反应[D].北京:北京化工大学,2010
    [5]张振远.MCM-49分子筛上苯与三异丙苯烷基转移反应[D].上海:华东理工大学,2011
    [6]牛瑾.多异丙苯在改性β沸石上的反应研究[D].大连:大连理工大学,2011
    [7]Pranhan A R. Rao B S. Transalkylation of di-isopropylbenzenes over large pore zeolites[J]. Appl. Catal. A:Gen.,1993,106(1):143-153
    [8]陈标华.林世雄,张吉瑞,陈曙.Y沸石催化剂上二异丙苯与苯反应机理及催化剂失活[J].石油学报,1998,14(3):10-16
    [9]Pitts P M, Connor J E, Leum L N. Isomerization of alkyl aromatic hydrocarbons[J]. Ind. Eng. Chem.,1955,47(4):770-773
    [10]Best D A, Wojciechowski B W. The catalytic cracking of cumene:the kinetics of the dealkylation reaction[J]. J. Catal.,1977,47(3):343-357
    [11]Al-Khattaf S, de Lasa H. Catalytic cracking of alkylbenzenes. Y-zeolites with different crystal sizes[J]. Stud. Surf. Sci. Catal.,2001,134:279-292
    [12]Al-Khattaf S, de Lasa H. Catalytic cracking of cumene in a riser simulator:a catalyst activitydecay model[J].Ind.Eng.Chem.Res,2001,40(23):5398-5404
    [13]Eberly Jr. P E, Kimberlin Jr. C N. Mordenite, aluminum-deficient mordenite, and faujasite catalysts in the cracking of cumene[J]. Ind. Eng. Chem. Prod. Res. Dev.,1970,9(3):335-340
    [14]Bielanski A. Cumene cracking on NaH-Y and NaH-ZSM-5 type zeolites as catalysts [J]. Zeolites,1986,6(4):249-252
    [15]孟伟娟,陈标华,李英霞,等.原料中杂质对丙烯与苯烷基化催化剂性能的影响[J].现代化工,2002,22(10):26-33
    [16]Ghirga M, Valtorta L, Calcagno B. Process for the production of cumene[P]. US 4324941,1982
    [17]赵树斌.固体磷酸催化剂在异丙苯合成中的催化作用[J].辽宁化工,1981,5:6-11
    [18]吕荣先.UOP的固体磷酸催化剂[J].石油化工动态,1994,8:29-31
    [19]朱明,金国林.固体磷酸催化剂的XRD研究[A].见中国物理学会X射线衍射专业委员会:第八届全国X射线衍射学术会议论文集[C].北京,2003,187-189
    [20]刘大壮,钟贤,王福安.AlC13法合成异丙苯的产品分布[J].化学工程,1979,6:83-88
    [21]杜泽学,闵恩泽.异丙苯生产技术进展[J].石油化工,1999,28(8):562-564
    [22]Murthy J K, Gross U, Rudiger S, et al. Aluminum chloride as a solid is not a strong Lewis acid[J]. J. Phys. Chem. B,2006,110:8314-8319
    [23]Corma A, Martinez A. Chemistry, catalysts, and processes for isoparaffin-olefin alkylation: Actual situation and future trends[J]. Catal. Rev.,1993,35(4):483-570
    [24]Perego C, Amarilli S, Millini R, et al. Experimental and computational study of beta, ZSM-12, Y, mordenite and ERB-1 in cumene synthesis[J]. Microp. Mat.,1996,6(5-6):395-404
    [25]李东风,汪展文,金涌,曹钢.分子筛催化剂上液相法合成异丙苯研究[J].石油化工,2001,30:355-357
    [26]雷志刚,陈标华,李成岳.苯与烯烃烷基化反应的研究进展[J].化学反应工程与工艺, 2002,18(1):1-6
    [27]Rozanska X, Barbosa L A M M, van Santen R A. A periodic density functional theory study of cumene formation catalyzed by H-mordenite[J]. J. Phys. Chem. B,2004,109(6):2203-2211
    [28]张佩君.合成异丙苯生产现状及技术进展[J].石化技术,2005,12(2):62-65
    [29]崔小明.异丙苯生产技术进展及其国内外市场分析[J].化工技术经济,2006,24(7):27-33
    [30]Price S C, Cottrell P R. Catalyst regeneration method[P]. US 7585803,2009
    [31]Haag W O, Olson D H, Rodewald P G. Hydrogen regeneration of coke-selectivated crystalline aluminosilicate catalyst[P]. US 4358395,1982
    [32]金勋,傅吉金,张吉瑞.苯与丙烯烷基化失活沸石催化剂氢再生机理[J].燃料化学学报,2002,30(1):58-63
    [33]任杰,陈绍洲.长链烯-苯烷基化分子筛催化剂的再生方法[J].华东理工大学学报,1990,16(6):658-662
    [34]Thompson D N, Ginosar D M, Burch K C. Regeneration of a deactivated USY alkylation catalyst using supercritical isobutane[J]. Appl. Catal. A:Gen.,2005,279(1-2):109-116
    [35]Argauer R J, Landolt G R. Synthesis of zeolites ZSM-5[P]. US 3702866,1972
    [36]聂红,董为毅,项寿鹤,等.ZSM-12与ZSM-5分子筛催化剂对丙烯-苯烷基化反应的差异问题[J].南开大学学报,1989,1:1-6
    [37]李延锋.镧改性ZSM-5分子筛的结构、水热稳定性及其催化性能的理论研究[D].北京:北京化工大学,2011
    [38]王军,陈德民,顾海威,等.介孔ZSM-5分子筛材料的制备及催化应用研究进展[J].南京工业大学学报,2010,32(4):100-104
    [39]Chen X M, Huang S P, Cao D P, Wang W C. Optimal feed ratio of benzene-propylene binary mixtures for alkylation in ZSM-5 by molecular simulation[J]. Fluid Phase Equilib.,2007, 260(1):146-152
    [40]Kaeding W W, Holland R E. Shape-selective reactions with zeolite catalysts:VI. Alkylation of benzene with propylene to produce cumene[J]. J. Catal.,1988,109(1):212-216
    [41]Venuto P B, Hamilton L A, Landis P S, Wise J J. Organic reactions catalyzed by crystalline aluminosilicates:I. Alkylation reactions[J]. J. Catal.,1966,5(1):81-98
    [42]Shamshoum E S, Schuler T R, Ghosh A K. Aromatic alkylation process employing steam modified zeolite beta catalyst[P]. US 5227558,1993
    [43]Wang B, Lee C W, Cai T X, Park S E. Benzene alkylation with 1-dodecene over H-mordenite zeolite[J]. Catal. Lett.,2001,76(1-2):99-103
    [44]Hornacek M, Hudec P, Smieskova A, Jakubik T. Alkylation of benzene with 1-alkenes over zeolite Y and mordenite[J]. Acta Chim. Slov.,2009,2(1):31-45
    [45]Rao B S, Balakrishnan V R, Chumbhale A R, et al. In:Yoshida S., Takezawa N, Ono T. Proceedings of the first Tokyo conference on advanced catalytic science and technology[C]. Tokyo,1990,361-370
    [46]Rao B S, Balakrishnan I. Alkylation reactions over large pore zeolites[J]. Catal. Sci. Tech.,1991, 1:361-364
    [47]Perego C, Ingallina P. Recent advances in the industrial alkylation of aromatics:New catalysts and new processes[J]. Catal. Today,2002,73(1-2):3-22
    [48]Corma A, Martinez-Soria V, Schnoeveld. Alkylation of benzene with short-chain olefin over MCM-22 zeolite:Catalytic behaviour and kinetic mechanism[J]. J. Catal.,2000,192(1): 163-173
    [49]Muldoon M J, Aki S N V K, Anderson J L, et al. Improving carbon dioxide solubility in ionic liquids[J]. J. Phys. Chem. B,2007,111(30):9001-9009
    [50]Zhang X, Liu Z, Wang W. Screening of ionic liquids to capture CO2 by COSMO-RS and experiments[J]. AIChE J.,2008,54(10):2717-2728
    [51]Brennecke J F, Maginn E J. Ionic liquids:Innovative fluids for chemical processing[J]. AIChE 1,2004,47(11):2384-2389
    [52]Berthod A, Ruiz-Angel, Carda-Broch S. Ionic liquids in separation techniques [J]. J. Chromatogr. A,2008,1184(1-2):6-18
    [53]Dominguez I, Gonzalez E J, Gonzalez R, et al. Extraction of benzene from aliphatic compounds using commercial ionic liquids as solvents:Study of the liquid-liquid equilibrium at T=298.15 K[J]. J. Chem. Eng. Data,2011,56(8):3376-3383
    [54]Brennecke J F, Blanchard L A, Anthony J L, et al. Separation of species from ionic liquids[M]. American Chemical Society:Washington, DC,2002
    [55]Curtis L M, Laura C B, Michael L S. Separation of olefin from paraffins using ionic liquid solutions[P]. US 6339182,2002
    [56]Sherif F G, Shyu L-J, Greco C C. Linear alxylbenzene formation using low temperature ionic liquid[P]. US 5824832,1998
    [57]Dyson P J, Ellis D J, Welton T, et al. Arene hydrogenation in room-temperature ionic liquid using a ruthenium cluster catalyst[J]. Chem. Commun.,1999,25-26
    [58]Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis[J]. Chem. Rev., 1999,99(8):2071-2084
    [59]Owens G S, Abu-Omar M M. Methyltrioxorhenium-catalyzed epoxidations in ionic liquids[J]. Chem. Commun.,2000,1165-1166
    [60]Walker A J, Bruce N C. Cofactor-dependent enzyme catalysis in functionalized ionic solvents [J]. Chem. Commun.,2004,2570-2571
    [61]Plechkova N V, Seddon K R. Applications of ionic liquids in the chemical industry[J]. Chem.. Soc. Rev.,2008,37(1):123-150
    [62]Atkins M P, Bowlas C, Ellis B, et al. Ionic liquids as catalysts for ethylbenzene production[J]. NATO Science Series,2002,92,49-66
    [63]DeCastro C, Sauvage E, Valkenberg M H, Holderich W F. Immobilised ionic liquids as Lewis acid catalysts for the alkylation of aromatic compounds with dodecene[J]. J. Catal.,2000,196: 86-94
    [64]孙学文,赵锁奇,王仁安.离子液体在石油化工中的应用[J].天然气化工,2003,28(3):1-3
    [65]何绍群,赵锁奇,沈重振,孙学文.离子液体在烷基化反应中的应用[J].天津化工,2004,18(2):18-20
    [66]Sun X W, Zhao S Q. [Bmim]Cl/[FeCl3] ionic liquid as catalyst for alkylation of benzene with 1-octadecene[J]. Chinese J. Chem. Eng.,2006,14(3):289-293
    [67]何绍群,赵锁奇,孙学文,许志明.离子液体催化的苯与丙烯烷基化反应[J].石油炼制与化工,2006,37(3):14-18
    [68]Qiao K, Deng Y Q. Alkylations of benzene in room temperature ionic liquids modified with HC1[J]. J. Molecular Catal. A:Chem.,2001,171:81-84
    [69]乔煜,邓友全.氯铝酸温室离子液体体系中HCl促进的苯的烷基化反应研究[J].分子催化,2002,16(3):187-190
    [70]董聪聪,孙爱军,李春喜,等.氯铝酸盐温室离子液体催化苯与丙烯的烷基化反应[J].北 京化工大学学报,2006,33(5):109-112
    [71]董聪聪.离子液体催化苯与丙烯的烷基化反应的研究[D].北京:北京化工大学,2006
    [72]申凤善,彭军,孔育梅,等.杂多酸催化剂在烷基化反应中的研究进展[J].分子科学学报,2006,22(1):28-31
    [73]李会鹏,刘传宾,高军.固载杂多酸催化剂研究进展[J].河南化工,2006,4:8-10
    [74]Liu Y, Xu L, Xu B B, et al. Toluene alkylation with 1-octene over supported heteropoly acids on MCM-41 catalysts[J]. J. Molecular Catal. A:Chem.,2009,297:86-92
    [75]王广健,刘广卿,杨振兴,等.Keggin杂多酸负载型催化剂研究及在有机合成中的应用[J].有机化学,2009,29(7):1039-1047
    [76]陈波.新型固体酸催化剂的设计、制备及其在烷基化反应中的应用研究[D].上海:华东师范大学,2004
    [77]蔡黄菊.杂多酸及其负载型催化剂在F-C反应中的应用[D].杭州:浙江大学,2008
    [78]Lei Z G, Yang J, Gao J, Chen B H, Li C Y. Gas-liquid and gas-liquid-solid reactors for the alkylation of benzene with propylene[J]. Chem. Eng. Sci.,2007,62(24):7320-7326
    [79]Menon P G Dows 3-DDM catalyst for cumene process[J]. Appl. Catal. A:Gen.,1994,110(2): 22-23
    [80]Steigleder K Z. Low acidity Y zeolites[P]. US 5190903,1993
    [81]Beaumont R, Barthomeuf D. X, Y, aluminum-deficient and ultrastable faujasite-type zeolites:Ⅰ. Acidic and structural properties[J]. J. Catal.,1972,26(2):218-225
    [82]Gajda G J, Patton R L, Wilson S T. Discrete molecular sieve and use in aromatic-olefin alkylation[P]. US 5434326,1995
    [83]Perego C, Pazzuconi G, Girotti G, et al. Process for the preparation of cumene[P]. US 5672799, 1997
    [84]Yadav G D. New beta-zeolite catalysts for boosting cumene capacity[N]. Chem. Bus.,1996, 9(9):21
    [85]Fung A S, Lawton S L, Roth W J. Synthetic layered MCM-56, its synthesis and use[P]. US 5362697,1994
    [86]Lai W F, Kay R E. Process for manufacturing MCM-22 family molecular sieves [P]. US 7799316,2010
    [87]Lai W F, Kay R E. MCM-22 family molecular sieve composition[P]. US 8021643,2011
    [88]韩明汉,李晓锦,林世雄,等.FX-01催化剂上苯与丙烯烷基化反应过程研究(Ⅰ)反应动力学[J].化工学报,1999,50(1):65-69
    [89]曹廷炳,傅吉全,张吉瑞.水蒸气存在下异丙苯合成失活FX-01催化剂的烧炭再生[J].石油化工,2000,29(1):1-4
    [90]聂永生,杜迎春,张吉瑞,等.FX-01催化剂上苯与丙烯烷基化反应过程研究Ⅱ.反应器的模拟[J].石油化工,2000,29(3):167-171
    [91]韩明汉,李晓锦,林世雄,等.FX-01催化剂上苯与丙烯烷基化反应内扩散过程的研究[J].石油化工,2000,29(4):245-248
    [92]孙火焰,李建伟,李英霞,等.YSBH-4催化剂上苯与丙烯的液相烷基化[J].化学反应工程与工艺,2010,26(4):322-326
    [93]曹刚,陈标华,郑朝晖,等.合成异丙苯混合多晶分子筛催化剂的研制及其工业应用[R].北京燕化石油化工股份有限公司化学品事业部,2004
    [94]汤先富.YSBH催化剂上苯与二异丙苯烷基转移工艺条件及其本征动力学研究[D].北京:北京化工大学,2003
    [95]申东明,赵国新,孙英淑,等.β-分子筛催化剂在异丙苯生产中的应用研究[J].化工科技,2006,14(4):38-41
    [96]汪波.β沸石催化剂用于异丙苯生产的研究[D].大连:大连理工大学,2007
    [97]Agreda V H, Partin L R. Reactive distillation process for the production of methyl acetate[P]. US 4435595,1984
    [98]Al-Arfaj M A, Luyben W L. Design and control of and olefin metathesis reactive distillation column[J]. Chem. Eng. Sci.,2002,57(5):715-733
    [99]Stadig W P. Catalytic distillation:Combining chemical reaction with product separation[J]. Chem. Process.,1987,50:27-32
    [100]罗淑娟,李东风.催化精馏技术新进展[J].石油化工,2011,40(1):1-11
    [101]Shoemaker J D, Jones E M. Cumene by catalytic distillation[J]. Hydrocarb. Process.,1987, 66(6):57-58
    [102]Subawalla H, Fair J R. Design guidelines for solid-catalyzed reactive distillation systems [J]. Ind. Eng. Chem. Res.,1999,38:3696-3709
    [103]Luyben W L. Design and control of the cumene process[J]. Ind. Eng. Chem. Res.,2010,49: 719-734
    [104]Pathak A S, Agarwal S, Gera V, Kaistha N. Design and control of a vapor-phase conventional process and reactive distillation process for cumene production. Ind. Eng. Chem. Res.,2011,50: 3312-3326
    [105]胡一德,张品芳.催化精馏发生产异丙苯工艺的评述[J].化工设计,1997,5:25-27
    [106]张占柱,毛俊义,张凯,等.苯烃化制异丙苯的催化蒸馏技术研究[J].石油炼制与化工,1999,30(7):15-17
    [107]张德权,李东风,张吉瑞.催化精馏法制异丙苯工艺研究[J].北京服装学院学报,2003,23(1):34-38
    [108]李东风,曹钢,张吉瑞,等.催化蒸馏合成异丙苯中试研究[J].石油化工,2001,30(5):351-354
    [109]闵恩泽,温朗友,庞桂赐,等.一种催化蒸馏工艺[P].CN 1240673,2000
    [110]温朗友,闵恩泽,庞桂赐,等.悬浮床催化蒸馏新工艺合成异丙苯[J].化工学报,2000,51(1):115-119
    [111]雷志刚,陈标华,李成岳.苯与丙烯催化反应器的设计[J].石油化工,2002,31(8):641-644
    [112]Lei Z G, Li C Y, Li J, Chen B. Suspension catalytic distillation of simultaneous alkylation and transalkylation for producing cumene[J]. Sep. Purif. Tech.,2004,34(1-3):265-271
    [113]王二强.悬浮床催化蒸馏的模型化研究[D].北京:北京化工大学,2004
    [114]Lei Z G,Chen B H, Ding Z W. Special distillation processes[M]. Amsterdam:Elsevier,2005
    [115]Wang E Q, Li C Y, Wen L Y, et al. Study on suspension catalytic distillation for synthesis of linear alkylbenzene[J]. AIChE J.,2005,51(3):845-853
    [116]Wang E Q, Li C Y, Wen L Y, et al. Simulation of cumene synthesis by suspension catalytic distillation[J]. Adv. Mat. Res.,2012,557-559:2243-2248
    [117]Lei Z G, Li Q S, Li C Y, et al. Tray efficiency in the air-water-solid system without reaction and its application[J]. Korean J. Chem. Eng.,2004,21(5):1003-1009
    [118]Taylor R, Krishna R. Modelling reactive distillation[J]. Chem. Eng. Sci.,2000,55:5183-5229
    [119]Gorak A, Kreul L U, Skowroski M. Multi-purpose column packing[P]. DE 19701045 Al,1998
    [120]Moritz P S, Mandic Z, Goetze L D, et al. Packing element for a catalytic reactor or column for performing a reactive thermal separation[P]. EP 1308204 Al,2003
    [121]Ratheesh S, Kannan A. Holdup and pressure drop studies in structured packings with catalysts[J]. Chem. Eng. J.,2004,104:45-54
    [122]Roy S, Bauer T, Al-Dahhan M, Lehner P, Turek T. Monoliths as multiphase reactors:A review[J]. AIChE J.,2004,50:2918-2938
    [123]Behrens M, Olujic Z, Jansens P J. Combing reaction with distillation hydrodynamic and mass transfer performance of modular catalytic structured packings[J]. Chem. Eng. Res. Des.,2006, 84:381-389
    [124]Moritz P, Hasse H. Fluid dynamics in reactive distillation packing KATAPAK(?)-S[J]. Chem. Eng. Sci.,1999,54:1367-1374
    [125]Ellenberger J, Krishna R. Counter-current operation of structured catalytically packed distillation columns:pressure drop, holdup and mixing[J]. Chem. Eng. Sci.,1999,54: 1339-1345
    [126]Krishna R, Sie S T. Process development and scale up:Ⅲ. Scale up and scale down of trickle bed processes[J]. Rev. Chem. Eng.,1998,14:203-252
    [127]Gotze L, Bailer O, Moritz P, et al. Reactive distillation with KATAPAK(?)[J]. Catal. Today,2001, 69:201-208
    [128]周媛,李群生,张泽廷.新型丝网波纹填料的流体力学特性研究[J].北京化工大学学报,2005,32(3):13-19
    [129]李方,常秋连,李群生,等.新型高效丝网填料的性能研究[J].北京化工大学学报,2009,36(2):14-17
    [130]李群生,黄强,何荐轩,等.高效导向筛板和BH填料塔的研究与应用[J].化工进展,2009,28(增刊):327-330
    [131]Li Q S, Chang Q L, Tian Y M, et al. Cold model test and industrial applications of high geometrical area packings for separation intensification[J]. Chem. Eng. Process.,2009,48: 389-395
    [132]Gorak A, Hoffmann A. Catalytic distillation in structured packings:Methyl acetate synthesis[J]. AIChE J.,2001,47:1067-1076
    [133]Hoffmann A, Noeres C, Gorak A. Scale-up of reactive distillation columns with catalytic packings[J]. Chem. Eng. Process.,2004,42:383-395
    [134]姚征,陈康民.CFD通用软件综述[J].上海理工大学学报,2002,24(2):137-144
    [135]韩占忠,王敬,兰小平.Fluent流体工程仿真计算实例与应用[M].北京,北京理工大学出版社,2006
    [136]FLUENT user's guide, Fluent Inc., Lebanon, New Hampshire,2006
    [137]王瑞金,张凯,王刚.Fluent技术基础与应用实例[M].北京,清华大学出版社,2007
    [138]Chung, T J. Computational fluid dynamics,2nd, ed.[M]. Cambridge University Press:New York,2010
    [139]Tierney M, Nasr A, quarini G The use of proprietary computational fluid dynamics codes for flows in annular packed beds[J]. Sep. Purif. Tech.,1998,13(2):97-104
    [140]Edwards D P, Krishnamurthy K R, Potthoff R W. Development of an improved method to quantify maldistribution and its effect on structured packing column performance[J]. Chem. Eng. Res. Des.,1999,77(A7):1656-1662
    [141]Spiegel L, Knoche M. Influence of hydraulic conditions on separation efficiency of optiflow[J]. Chem. Eng. Res. Des.,1999,77(A7):609-616
    [142]张鹏,刘春江,成弘,余国琮.规整填料塔内流体流动研究进展及展望[J].化学工程,2001, 29(3):66-71
    [143]Zhang P, Liu C J, Wang L D, et al. Performance of structured packing in high pressure distillation[J]. Chinese J. Chem. Eng.,2002,10(6):635-638
    [144]张鹏.加压下规整填料塔内流体流动和传质特性的研究及其计算流体力学模拟[D].天津:天津大学,2002
    [145]谷芳.规整填料局部流动与传质的计算流体力学研究[D].天津:天津大学,2004
    [146]谷芳,刘春江,袁希钢.利用CFD及结点网络相结合的方法研究规整填料传质效率[J].化工学报,2005,56(4):588-592
    [147]van Baten J M, Krishna R. Liquid-phase mass transfer within KATAPAK-S(?) structures studied using computational fluid dynamics simulations [J]. Catal. Today,2001,69:371-377
    [148]van Baten J M, Ellenberger J, Krishna R. Radial and axial dispersion of the liquid phase within a KATAPAK-S(?) structure:Experiments vs. CFD simulations [J]. Chem. Eng. Sci.,2001,56: 813-821
    [149]van Baten J M, Krishna R. Gas and liquid phase mass transfer within KATAPAK-S(?) structures studied using CFD simulations[J]. Chem. Eng. Sci.,2002,57:1531-1536
    [150]Stankiewicz A I, Moulijn J A. Process intensification:Transforming chemical engineering[J]. Chem. Eng. Prog.,2000,96:22-34
    [151]Spiegel L, Meier W. Distillation columns with structured packings in the next decade[J]. Chem. Eng. Res. Des.,2003,81:39-47
    [152]Kolodziej A, Japoszynski M, Salacki W, et al. Catalytic distillation for TAME synthesis with structured catalytic packings[J]. Chem. Eng. Res. Des.,2004,82(A2):175-184
    [153]Liu H, Zhao J D, Li C Y, Ji S F. Conceptual design and CFD simulation of a novel metal-based monolith reactor with enhanced mass transfer[J].Catal. Today,2005,105:401-406
    [154]Knosravi Nikou M R, Ehsani M R. Turbulence models application on CFD simulation of hydrodynamics, heat and mass transfer in a structured packing[J]. Int. Commun. Heat Mass Transfer,2008,35:1211-1219
    [155]Chen J W, Yang H, Wang N, Ring Z, Dabros T. Mathematical modeling of monolith catalysts and reactors for gas phase reactions[J]. App. Catal. A:Gen.,2008,345:1-11
    [156]Olujic Z, Jodecke M, Shilkin A, Schuch G, Kaibel B. Equipment improvement trends in distillation[J]. Chem. Eng. Process.,2009,48:1089-1104
    [157]Pfeuffer B, Kunz U, Hoffmann U, et al. Heterogeneous reactive extraction for an intensified alcohol production process[J]. Catal. Today,2009,147S:S357-S361
    [158]Lei Z G, Yang Y, Li Q S, et al. Catalytic distillation for the synthesis of tert-butyl alcohol with structured catalytic packing [J]. Catal. Today,2009,147S:S352-S356
    [159]杨洋.采用催化精馏新工艺合成低成本无水叔丁醇的研究[D].北京:北京化工大学,2010
    [160]Pangarkar K, Schildhauer T J, van Ommen J R, et al. Experimental and numerical comparison of structured packings with a randomly packed bed reactor for Fischer-Tropsch systhesis[J].Catal. Today,2009,147S:S2-S9
    [161]Jung H, Yoon W L, Lee H, Park J S, Shin J S, La H, Lee J D. Fast start-up reactor for partial oxidation of methane with electrically-heated metallic monolith catalyst[J]. J. Power Sour., 2003,124(1):76-80
    [162]Barbero B P, Costa-Almeida L, Sanz O, Morales M R, Cadus L E, Montes M. Washcoating of metallic monoliths with a MnCu catalyst for catalytic combustion of volatile organic compounds[J]. Chem. Eng. J.,2008,139:430-435
    [163]Liu W, Hu J L, Wang Y. Fischer-Tropsch synthesis on ceramic monolith-structured catalysts[J]. Catal. Today,2009,140(3-4):142-148
    [164]Ciambelli P, Palma V, Palo E. Comparison of ceramic honeycomb monolith and foam as Ni catalyst carrier for methane autothermal reforming [J]. Catal. Today,2010,155(1-2):92-100
    [165]刘清雅,刘振宇.蜂窝状堇青石基CuO/Al2O3催化剂用于烟气同时脱硫脱硝的研究[J].燃料化学学报,2004,32(3):257-262
    [166]Bueno-Lopez A, Illan-Gomez M J, de Lecea C S M. Effect of NOx and C3H6 partial pressures on the activity of Pt-beta-coated cordierite monoliths for deNOxC3H6-SCR[J]. Appl. Catal. A: Gen.,2006,302(2):244-249
    [167]Ulla M A, Mallada R, Gutierrez L B, et al. Preparation and characterization of Co mordenite coatings onto cordierite monoliths as structured catalysts[J]. Catal. Today,2008,133-135: 42-48
    [168]Liu L S, Liu Z Y, Huang Z G, et al. Preparation of activated carbon honeycomb monolith directly from coal[J]. Carbon,2006,44(8):1598-1601
    [169]王邓军.蜂窝状活性炭担载Mn基氧化物用于NO的低温催化还原[D].上海:华东理工大学,2011
    [170]Hayes R E, Kolaczkowsik S T. A study of Nusselt and Sherwood numbers in a monolith reactor[J]. Catal. Today,1999,47(1-4):295-303
    [171]William J L. Monolith structures, materials, properties, and uses[J]. Catal. Today,2001,69(1-4): 3-9
    [172]Nijhuis T A, Beers A E W, Vergunst T, et al. Prepation of monolithic catalysts[J]. Catal. Rev. Sci. Eng.,2001,43(4):345-380
    [173]Stankiewicz A I. Process intensification in in-line monolith reactor[J]. Chem. Eng. Sci.,2001, 56:359-364
    [174]Centi G, Perathoner S. Novel catalyst design for multiphase reactions [J]. Catal. Today,2003, 79-80:3-13
    [175]Heck R M, Farrauto R J. Automobile exhaust catalysts[J]. Appl. Catal. A:Gen,2001,221(1-2): 443-457
    [176]Matsumoto S. Recent advances in automobile exhaust catalysts[J]. Catal. Today,2004,90(3-4): 183-190
    [177]Shan X L, Guan N J, Zeng X, et al. In-situ synthesis of ZSM-5 with different Si/Al ratios on honeycomb-shaped cordierite and their behavior on NO decomposition[J]. Chinese Chem. Lett., 1999,10(10):885-888
    [178]Guan N J, Han Y S. Monolithic TS-1/cordierite catalyst synthesized by in-situ method[J]. Chem. Lett.,2000,9:1084-1085
    [179]关乃佳,单学蕾,曾翔,等.Cu-ZSM-5/堇青石整体式催化剂上NO的吸附态及分解反应机理[J].催化学报,2001,22(3):245-249
    [180]王天友,关乃佳,刘书亮,等.分子筛催化器降低稀燃发动机NOx排放的研究[J].燃料科学与技术,2004,10(3):237-239
    [181]王天友,李兰东,刘书亮,等.一种新型分子筛/堇青石整体式稀燃催化器的开发应用[J].天津大学学报,2005,38(4):294-297
    [182]李兰东,张福祥,关乃佳,等.金属-ZSM-5/堇青石整体式催化剂上稀燃汽车尾气的净化[J].催化学报,2006,27(1):41-44
    [183]Li L D, Zhang F X, Guan N J. Ir/ZSM-5/cordierite monolith for catalytic NOx reduction from automobile exhaust[J]. Catal. Commun.,2008,9(3):409-415
    [184]田东.Cu-ZSM-5/堇青石整体式催化剂用于柴油机尾气净化的研究[D].太原:太原理工大学,2010
    [185]刘致强,唐磊,田东,等.Cu-ZSM-5/堇青石催化剂上同时消除烃和NO的研究[J].环境化学,2011,30(9):1558-1563
    [186]唐磊.Cu-SAPO-34/堇青石整体式催化剂用于柴油机尾气净化的研究[D].太原:太原理工大学,2011
    [187]刘清雅,刘振宇,范建.涂敷A1203的蜂窝状堇青石负载CuO催化剂上NH3选择性催化还原NO[J].催化学报,26(1):59-64
    [188]刘清雅.蜂窝状堇青石CuO/Al2O3催化剂的制备及其烟气脱硫脱硝的研究[D].太原:中国科学院山西煤炭化学研究所,2004
    [189]刘清雅,刘振宇.蜂窝状堇青石CuO/Al2O3催化剂用于烟气脱硫脱硝的研究[J].燃料化学学报,2004,32(3):257-262
    [190]Liu Q Y, Liu Z Y, Wu W Z. Effect of V2O5 additive on simultaneous SO2 and NO removal from flue gas over a monolithic cordierite-based CuO/AI2O3 catalyst[J]. Catal. Today,2009,147S: S285-S289
    [191]冯雅晨,谭青.堇青石蜂窝状SCR催化剂烟气脱硝试验[A].见:黄丽娟.中国化工学会2011年年会暨第四届全国石油和化工行业节能节水减排技术论坛论文集[C].北京:化学工业出版社,2011,372-374
    [192]Lei Z Q Liu X Y, Jia M R. Modeling of selective catalytic reduction (SCR) for NO removal using monolithic honeycomb catalyst[J]. Energy Fuel.,2009,23:6146-6151
    [193]刘学义.燃煤烟气脱硝结构化催化剂与反应器的数值模拟[D].北京:北京化工大学,2010
    [194]Lei Z G, Wen C P, Zhang J, Chen B H. Selective catalytic reduction for NO removal: Comparison of transfer and reaction performances among monolith catalysts [J]. Ind. Eng. Chem. Res.,2011,50(10):5942-5951
    [195]Lei Z G, Wen C P, Zhang J, Chen B H. Optimization of internals for selective catalytic reduction (SCR) for NO removal[J]. Environ. Sci. Technol.,2011,45(8):3437-3444
    [196]温翠萍.烟气脱硝结构化催化剂与反应器的数值模拟[D].北京:北京化工大学,2011
    [197]Lei Z G, Long A B, Jia M R, et al. Experimental and kinetic study of selective catalytic reduction of NO with NH3 over the CuO/Al2O3/cordierite catalyst[J]. Chinese J. Chem. Eng.,2010,18(5): 721-729
    [198]Lei Z G, Long A B, Wen C P, et al. Experimental and kinetic study of low temperature selective catalytic reduction of NO with NH3 over the V2O5/AC catalyst[J]. Ind. Eng. Chem. Res.,2011, 50(10):5360-5368
    [199]王玉丽.分子筛催化氮氧化物分解的反应过程研究[D].北京:北京化工大学,2011
    [200]官芳,卢晗锋,张燕,等.蜂窝陶瓷型La0.8Sr0.2MnO3催化剂VOCs催化燃烧反应活性[J].浙江工业大学学报,2009,37(1):22-26
    [201]张燕,卢晗锋,黄海凤,等.高热稳定性Cu-Mn-O催化燃烧催化剂的制备[J].分子催化,2008,22(6):503-506
    [202]张燕.铜锰复合氧化物制备及其催化燃烧VOCs性能研究[J].杭州:浙江工业大学,2009
    [203]余倩,林探厅,余林,等.一种Pd/Ce0.8Zr0.2O2/堇青石蜂窝陶瓷整体式催化剂及其制备方法和应用[P].CN 201010502344.4,2011
    [204]林探厅,余倩,李永峰,等.有机废气催化燃烧用贵金属钯整体式催化剂的研究[J].化工新型材料,2011,39(2):10-11
    [205]林探厅.化学镀法制备用于有机废气催化燃烧处理的整体式催化剂的研究[D].广州:广东工业大学,2011
    [206]张鑫.整体式催化剂上甲烷催化燃烧的研究[D].成都:四川大学,2002
    [207]罗勇悦,陈耀强,赵彬,等.实用型整体式钴基甲烷催化燃烧催化剂的研制[J].化学研究与应用,2004,16(2):266-267
    [208]罗勇悦.实用钴基甲烷燃烧催化剂的制备与性能[D].成都:四川大学,2004
    [209]陈清泉,张丽娟,陈耀强,等.Ce0.67zr0.33O2对CH4燃烧催化剂Fe2O3/Al2O3的改性作用[J].高等学校化学学报,2005,26(9):1704-1708
    [210]陈清泉,陈耀强,杜小春,等.不同助剂的添加对Fe2O3/CeO2-ZrO2甲烷燃烧催化剂活性的影响[J].石油化工,2004,33(增刊):221-223
    [211]陈清泉.以Fe2O3为活性组分的甲烷燃烧催化剂的研究[D].成都:四川大学,2005
    [212]韩倩茜,史兵兵,江志东.与钇稳定化锆复合的La0.8Sr0.2Mn0.5Ni0.5O3催化剂用于低浓度甲烷催化燃烧[J].化学反应工程与工艺,2011,27(6):488-495
    [213]韩倩茜.改性LaMnO3钙钛矿用于低浓度甲烷的催化燃烧[D].上海:上海交通大学,2012
    [214]张佳瑾,李建伟,朱吉钦,等.助剂对Cu-Mn复合氧化物整体式催化剂催化低浓度甲烷燃烧反应性能的影响[J].催化学报,2011,32(8):1380-1386
    [215]张佳瑾.低浓度甲烷流向变换催化燃烧实验研究及模型化[D].北京:北京化工大学,2012
    [216]Mei H, Li C Y, Liu H. Simulation of heat transfer and hydrodynamics for metal structured packed bed[J]. Catal. Today,2005,105(3-4):689-696
    [217]梅红.金属基整体式催化剂与反应器的传递及反应特性[D].北京:北京化工大学,2007
    [218]Albers R E, Nystrom M, Siverstrom M, et al. Development of a monolith-based process for H2O2 production:from idea to large-scale implementation[J]. Catal. Today,2001,69(1-4): 247-252
    [219]Nijhuis T A, Kreutzer M T, Romijn A C J, et al. Monolithic catalysts as efficient three-phase reactors[J]. Chem. Eng. Sci.,2001,56(3):823-829
    [220]郭亚男.Mo-Ni2/SBA-15堇青石整体式催化剂加氢脱硫催化性能的研究[D].北京:北京化工大学,2010
    [221]van Sint Annaland M, Kuipers J A M, van Swaaij W P M. A kinetic rate expression for the time-dependent coke formation rate during propane dehydrogenation over a platinum alumina monolithic catalyst[J]. Catal. Today,2001,66(2-4):427-436
    [222]李贤,顾雄毅,何孝祥,等.乙苯CO2脱氢规整结构催化剂[J].化工进展,2010,29(增刊):189-193
    [223]Schanke D, Bergene E, Holmen A. Fischer-tropsch synthesis[P]. US 6211255,2001
    [224]Ulla M A, Valera A, Ubieto T, et al. Carbon nanofiber growth onto a cordierite monolith coated with Co-mordenite[J]. Catal. Today,2008,133-135:7-12
    [225]代成娜,雷志刚,陈标华,等.苯与丙烯合成异丙苯工艺流程优化[J].现代化工,2008,28(增刊):144-146
    [226]雷志刚,陈标华,李成岳,等.精馏填料结构[P].CN 200720103306.5,2009
    [227]李群生.丝网填料[P].CN 200420096319.0,2005
    [228]Wadlinger R L, Kerr G T, Rosinski E J. Catalytic composition of a crystalline zeolite[P]. US 3308069,1967
    [229]Treacy M M J, Newsam J M. Two new three-dimensional twelve-ring zeolite frameworks of which zeolite beta is a disordered intergrowth. Nature,1988.322:249-251
    [230]Higgins J B, LaPierre L B, Schlenker J L, et al. The framework topology of zeolite beta. Zeolites.1988,8(6):446-452
    [231]时龙辉,陈书果,曲波,等.异丙苯装置脱丙烷方案优化[J].石化技术,13(2):13-16
    [232]雷志刚,代成娜.化工节能原理与技术[M].北京:化学工业出版社,2012
    [233]王福安.化工数据导引[M].北京:化学工业出版社,1995
    [234]聂永生,张吉瑞,杜迎春.FX-01催化剂上苯与丙烯烷基化-Ⅰ反应本征动力学[J].石油化工,2000,29(2):105-110
    [235]高滋.沸石催化与分离技术[M].北京:中国石化出版社,1999,279-310
    [236]雷志刚,李成岳,陈标华.合成异丙苯的烷基化与烷基转移催化精馏[J].现代化工,2001,21(12):41-43
    [237]Morton F, King P J, Atkinson B. Operating characteristics of packed columns I. Below the load point[J]. Trans.Inst. Chem. Eng.,1964,42:T35-T43
    [238]Stichlmair J, Bravo, J L, Fair J R. General model for prediction of pressure drop and capacity of countercurrent gas/liquid packed columns[J]. Gas. Sep. Purif.,1989,3(1):19-28
    [239]谭天恩,麦本熙,丁惠华.化工原理(下)[M].北京:化学工业出版社,1998
    [240]Schiller, L. Naumann, L. A drag coefficient correlation [J]. Z. Ver. Deutsch. Ing.,1935,77: 318-320

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700