(2+1)维非线性系统的局域激发模式及其分形和混沌行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
孤子、分形和混沌是非线性科学的三个重要方面。传统的学术研究,这三部分是彼此分开独立讨论的,因为人们一般地认为孤子是可积系统的基本激发模式而分形和混沌是不可积系统的基本行为。也就是说,人们不会去考虑孤子系统中存在分形和混沌行为。但是,上述这些传统观点可能不全面,仍至有待修正,特别是在高维系统中的情形。
     本论文围绕一些具有广泛物理背景的(2+1)维非线性系统的局域激发模式及其相关非线性特性一分形特征和混沌行为展开讨论,这些(2+1)维非线性系统源于流体,等离子体,场论,凝聚态物理,力学和光学等实际问题。首先借鉴线性物理中的分离变量理论和非线性物理的对称约化思想,本文对处理非线性问题的多线性分离变量法和直接代数法进行研究和推广,对形变映射理论进行创新,得到了一些新的结果。然后,根据非线性系统的多线性分离变量解和广义映射解,分别讨论了(2+1)维局域激发模式及其相关的非线性动力学行为。本文研究表明,多线性分离变量方法与广义映射方法甚至Charkson-Kruskal约化方法蕴藏着内在的有机联系。另外,本文所得结果说明混沌和分形存在于高维非线性系统是相当普遍的现象。现将本文的主要内容概述如下:
     第一章简要回顾了孤波的发现与研究历史,总结了当前研究的状况,并概述了孤子、混沌和分形三者之间的传统学术关系,列举了一些新的或典型的(2+1)维非线性系统,最后给出了本论文的研究工作按排。
     第二章将多线性分离变量法推广应用到若干(2+1)维非线性系统,如:广义Broer-Kaup系统、广义Ablowitz-Kaup-Newell-Segur系统、广义Nizhnik-Novikov-Vesselov系统、广义非线性Schrodinger扰动系统、及Boiti-Leon-Pempinelli系统等,并得到一个相当广义的多线性分离变量解,可以用来描述系统场量或相应势函数,进而讨论基于多线性分离变量解引起的(2+1)维系统局域激发及其相关非线性特性。文中报导了一些典型的局域激发模式,如:平面相干孤子dromions为所有方向都呈指数衰减的相干局域结构,可以由直线孤子,也可以由曲线孤子形成,不仅局域在直线或曲线的交点,也可以存在与曲线的近邻点上。而dromions格子则为多dromions点阵,振荡型dromions在空间某一方向上产生振荡。环孤子为非点状的局域激发,在闭合曲线的内部不为零,闭合曲线外部指数衰减。呼吸子则是孤子的幅度、形状、峰间的距离及峰的数目可能
Chaos, fractals and solitons are three important parts of nonlinearity. Conventionally, these three aspects are treated independently since one often considers solitons are basic excitations of an integrable model while chaos and fractals are elementary behaviors of non-integrable systems. In other words, one does not analyze the possibility of existence of chaos and fractals in a soliton system. However, the above consideration may not be complete, or even should be modified, especially in some higher dimensions.In this dissertation, we will discuss the localized excitations and related fractal and chaotic behaviors in (2+1)-dimensional (two spatial-dimensions and one time dimension) nonlinear systems, which were originated from many natural sciences, such as fluid dynamics, plasma physics, field theory, condensed matter physics, mechanical and optical problems. With help of variable separation approach in linear physics and symmetry reduction theory in nonlinear physics, the multilinear variable separation approach and the direct algebra method were extended to nonlinear physics successfully, then a new algorithm, a general extended mapping approach, was proposed and applied to various (2+1)-dimensional nonlinear systems. Based on multilinear variable separation solutions and general mapping solutions respectively, abundant localized excitations and related fractal and chaotic behaviors for (2+1)-dimensional nonlinear models are investigated as well as rich evolution properties for these localized structures are discussed. The research results indicate that fractals and chaos in higher-dimensional soliton systems are quite universal phenomena. Meanwhile, it is also shown that one can establish the relationship between multilinear variable separation approach and extended mapping approach, and even Charkson-Kruskal reduction method. The main contents are summarized as follows.In the first chapter, we outline a brief history and the current state on studying solitary waves and solitons, as well as review the traditional theoretical relations among solitons, chaos and fractals and list some new or typical (2+1)-dimensional nonlinear systems. The research arrangements of the dissertation are also given out in the end of the chapter.In the second chapter, the multilinear variable separation approach is extended and
    applied to several (2+l)-dimensional nonlinear models, such as generalized Ablowitz-Kaup-Newell-Segur system, generalized Broer-Kaup system, generalized Nizhnik-Novikov-Veselov model, general perturbed nonlinear Schrodinger equation, Boiti-Leon-Pempinelli system, and new dispersive long water wave system etc. A quite "universal" variable separation formula with several arbitrary function which is valid for a large classes of (2+l)-dimensional nonlinear models is obtained. In terms of the "universal" formula, various localized excitations, such as multi-dromion solutions, multi-lump solutions, multi-compacton solutions, multi-peakon solutions, multi-foldon solutions, lattice dromion solutions, oscillating dromion solutions, ring-soliton solutions, motiving or static breather solutions, instanton solutions, periodic wave solutions, chaotic pattern structures and fractal pattern structures for (2+l)-dimensional nonlinear systems are revealed by selecting appropriate initial and/or boundary conditions. Based on the plots and theoretical analysis, we explored some typical localized excitaions. Dromions are localized solutions decaying exponentially in all directions, which can be driven not only by straight line solitons but also driven by curved line solitons and can be located not only at the cross points of the lines but also at the closed points of the curves. Dromion lattice is a special type of multi-dromion solution. The oscillating dromion solution is a dromion oscillating in special dimensional direction. Ring solitons are not the point-like localized excitations, which are not equal to zero identically at some closed curves and decay exponentially away from the closed curves. The breathers may breath in their amplitudes, shapes, distances among the peaks and even the number of the peaks. The amplitudes of instantons will change fleetly with the time. Peakons are peaked-like solitons at their wave crests in which one-order derivatives are not continuous. Compactons with finite wavelengths are a class of solitary waves with compact supports. Foldons are a class of multi-valued solitary waves, which can be folded in all directions. The fractal solitions and chaotic solitons reveal fractal characteristic and chaotic dynamic behaviors in solitary waves, respectively.In the third chapter, the direct algebraic method based on traveling wave reduction is generalized to solve nonlinear partial differential systems and (2+l)-dimensional nonlinear models with constants and variable coefficients respectively. The tanh function approach, Ja-cobi elliptic function method and deformation mapping approach are introduced and extended respectively, then applied to several class of nonlinear models, such as Ablowitz-Ladik-Lattice system, Hybrid-Lattice system, Toda Lattices system, relativity Toda Lattices system, discrete mKdV system and variable coefficient KdV system etc. by making use of computer algebra. Rich solitary wave solutions and Jacobian doubly periodic wave structures for the
    above mentioned nonlinear partial differential systems are obtained, as well as abundant solitary waves, periodic waves, Jacobian doubly periodic waves and Weierstrass doubly periodic waves, rational function solutions and exponential function solutions to (2+l)-dimensional nonlinear models with constants and variable coefficients are derived.In the forth chapter, a new algorithm, i.e. a general extended mapping approach, was proposed and applied to various (2+l)-dimensional nonlinear systems, such as Broer-Kaup-Kupershmidt system, Boiti-Leon-Pempinelli system, generalized Broer-Kaup system and dispersive long water-wave model. A new type of variable separation solution (also named extended mapping solution) with two arbitrary functions, which is valid for all the above-mentioned nonlinear systems, is derived. Then making further the new mapping approach in a symmetric form, we find abundant mapping solutions to above-mentioned (2+l)-dimensional nonlinear systems. In terms of the new type of mapping solution, we can find rich localized excitations. Actually, all the localized excitations based on the multilinear variable separation solutions can be re-derived from the new mapping solutions.Based on a new universal extended mapping solution derived from (2+l)-dimensional nonlinear systems in chapter 4, chapter 5 is devoted to revealing some new or typical localized coherent excitations and their evolution properties contained in (2+l)-dimensional nonlinear systems. By introducing suitably these arbitrary functions, we constructed considerably novel localized structures, such as solitons with and without propagating properties, some semi-folded localized structures with and without phase shafts, and certain localized excitations with fission and fusion behaviors. Some typical localized excitations with fractal properties and chaotic behaviors are also discussed. Why the localized excitations possess such kinds of chaotic behaviors and fractal properties? If one considers the boundary or initial conditions of the chaotic and fractal solutions obtained here, one can straightforwardly find that the initial or boundary conditions possess chaotic and fractal properties. These chaotic and fractal properties of the localized excitations for an integrable model essentially come from certain "nonintegrable" chaotic and fractal boundary or initial conditions. From these theoretical results, one may interpret that chaos and fractals in higher-dimensional integrable physical models would be a quite universal phenomenon. Meanwhile, we have established a simple relation between the multilinear variable separation solutions and the universal extended mapping solutions, which are essentially equivalent by taking certain variable transformation. Therefore, all the localized excitations based on the multilinear variable separation solution can be re-derived by the universal extended mapping solution. The general extended map-
引文
[1] Ablowitz M J and Clarkson P A, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society, Lecture Note Series 149, Cambridge University Press, England, (1991).
    [2] Whitham G B, Line and nonlinear waves, Wiley-Interscience Publication, New York, (1973).
    [3] 郭柏灵编著,非线性演化方程,上海科学技术出版社,(1995).
    [4] 王明亮,非线性发展方程与孤立子,兰州大学出版社,(1990).
    [5] 刘式达,刘式适编著,物理学中的非线性方程,北京大学出版社,(2000).
    [6] 庞小峰编著,孤子物理学,四川科学技术出版社,(2003).
    [7] 谷超豪等著,孤立于理论与应用,浙江科学技术出版社,(1990).
    [8] 周凌云等编著,非线性物理理论及应用,科学出版社,(2000).
    [9] 陆同兴,非线性物理概论,中国科学技术大学出版社,(2002).
    [10] 李翊神编著,孤子与可积系统,上海科学技术出版社,(1999).
    [11] 刘式达,刘式适编著,孤波和湍流,上海科学技术出版社,(1997).
    [12] 潘祖梁,非线性问题的数学方法,浙江大学出版社,(1998).
    [13] 黄念宁,孤子理论与微扰方法,上海科学技术出版社,(1997).
    [14] 谷超豪,胡和生,周子翔著,孤子理论中的达布变换及其几何应用,上海科学技术出版社,(1999).
    [15] Lou S Y, Searching for higher dimensional integrable models from lower ones via Painleve analysis, Phys. Rev. Lett., 1998, 80(6): 5027-5031.
    [16] Hirota R and Lwao M, Time-discretization of soliton equation, eds. Levi D and Ragnisco O, SIDE Ⅲ-symmetries and integrabilities of difference equations, CRM Proc. Lect. Notes 25, Ams, Pro., Rhode Island, 217-229, (2000).
    [17] Hasegawa A and Kodama Y, Solitons in Communications, Clarendon Press, Oxford, (1995); Davydov A S, Solitons in Molecular Systems, Kluwer Academic Publishers, (1991).
    [18] Infeld E and Rowlands G, Nonlinear Waves, Solitons and Chaos, Cambridge: Cambridge University Press, (1990).
    [19] Russell J S, Report of the committee on waves, rep. meet., Brit. Assoc. Adv. Sci. 7th. Livepool, London, John Murray, 417, (1837).
    [20] Russell J S, Report on waves, rep. 14th. meet., Brit. Assoc. Adv. Sci., London, John Murray, 311, (1844).
    [21] Stockes G G, On a difficulty in the theory of sound, Phil. Mago, 1848, 23: 349-356.
    [22] Riemann B, Uber die fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Gottingen Abhandlungen, 1858, 8: 43.
    [23] Boussinesq J, Theorie de l'intumescencs liquid appelee ondesolitaire ou de translation se propageant dans un canalrectangulaire, Comptes Rendus Acad. Sci. Paris, 1871, 72: 755-759.
    [24] Rayleigh Lord, On Waves, Phil. Mag., 1876, 1: 257-279.
    [25] Korteweg D J and de Vries G, On the Change of form of long waves adavancing in a rectangular channel, and on a new-type of long stationary waves, Phil. Mag. 1895, 39(5): 422-443.
    [26] Miura R M, Backlund transformations, Vol. 515 in Lecture Notes in Math, Springer-Verlag, Berlin, (1976).
    [27] Fermi E, Pasta J and Ulam S, Studies of Nonlinear Problems, in collected papers of E. Fermi Vol. 2 (1940) 978, Univ. of Chicago Press, Chicago, (1962).
    [28] Gardner C S, Greene J M, Kruskal M D and Miura R M, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett. 1967, 19: 1095-1097 and references therein.
    [29] Perring J K and Skyrme T H R, A model unified field equation, Nucl. Phys. 1962, 31: 550-555.
    [30] Zabusky N J and Kruskal M D, Interactions of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 1965, 15: 240-243.
    [31] Toda M, Wave propagation in anharmonic lattices, J. Phys. Sco. Jpn., 1967, 23b: 501-506.
    [32] Wu J R, Keolian R, and Rudnick I, Observation of a monpropagating hydrodynamic soliton, 1984, Phys. Rev. Lett., 52(16): 1421-1424.
    [33] Peregrine D H, Water waves, nonlinear Schrodinger erquations andtheir solutions, J. Austral. Math. Soc. Ser. B, 1983, 25: 16-21.
    [34] Scott A C, Active and nonlinear wave propagation in electronics, Wiley-Interscience, (1970).
    [35] Camassa R and Holm D D, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 1993, 71(11): 1661-1664.
    [36] Kraenkel R A and Zenchuk A, Camassa-Holm equation: transformation to deformed sinh-Gordon equations, cuspon and soliton solutions, J. Phys. A: Math. Gen., 1999, 32(25): 4733-4748.
    [37] Ferriera M C, Kraenkel R A, and Zenchuk A, Soliton-Cuspon interaction for the Camassa-Holm equation, J. Phys. A: Math. Gen., 1999, 32(49): 8665-8670.
    [38] Beals R, Sattinger D H, and Szmigielski J, Peakon-antipeakon interaction, J. Nonl. Math. Phys., 2001, 8: 23-27.
    [39] Qian T F and Tang M Y, Peakons and periodic cus waves in ageneralized Camassa-Holm equation, Chaos, Solitons & Fractals, 2001, 12: 1347-1360.
    [40] Liu Z R and Qian T F, Peakons of the Camassa-Holm equation, Appl. Math. Modelling, 2002, 26: 473-480.
    [41] Schiff J, The Camassa-Holm equation: a loop group approach, Physica. D, 1998, 121(1-2): 24-43.
    [42] Boyd J P, Peakons and coshoidal waves: travelling wave solutions of the Camassa-Holm equation, Appl. Math. Comput., 1997, 81: 173-181.
    [43] 郑春龙,张解放, (2+1) 维 Camassa-Holm 方程的相似约化与解析解,物理学报, 2002, 51 (11): 2426-2430.
    [44] Cooper F and Shepard H, Solitons in the Camassa-Holm shallow water equation, Phys. Lett. A, 1994, 194: 246-251.
    [45] Rosenau P and Hyman J, Compactons - solitons with finite wavelength, 1993, Phys. Rev. Lett., 70(5): 564-567.
    [46] Rosenau P, Nonlinear dispersion and compact structures, 1993, Phys. Rev. Lett., 73(9): 1737-1741.
    [47] Cooper F, Rosenau P, and Hyman J M, Compacton solutions in a class of generalized fifth-order KdV equation, Phys. Rev. E, 2001, 64: 026608-026620.
    [48] Rosenau P, Compact and compact dispersive patterns, Phys. Lett. A, 2000, 275: 193-203.
    [49] Wazwaz A M, Compactons and solitary patterns structures for variants of the KdV and the KP nequations, Appl. Math. Comput., 2003, 139: 37-43.
    [50] Wazwaz A M, Compactons dispersive structures for variants of the K(n, m) and the KP nequations, Chaos, Solitons & Fractals, 2002, 13: 1053-1062.
    [51] Wazwaz A M, New solitary-wave special solutions with compact support for the nonlinear dispersive K(n,m) equations, Chaos, Solitons & Fractals, 2002, 13: 321-330.
    [52] Yan Z Y, New families of solitons with compact support for Boussinesq-like B(m,n) equations with fully nonlinear dispersion, Chaos, Solitons & Fractals, 2002, 14: 1151-1158.
    [53] Yan Z Y, New families of exact solitary pattern solutions for the nonlinearly dispersive R(m, n) equations, Chaos, Solitons & Fractals, 2003, 15: 891-896.
    [54] Lou S Y, (2+l)-dimensional compacton solutions with and without completely elastic interaction properties, 2002, J. Phys. A: Math. Gen., 35: 10619-10628.
    [55] Konno K, Ichikawa Y, and Wadati M, A loop soliton propagating along a stretched rope, J. Phys. Soc. Jpn., 1981, 50(3): 1025-1026.
    [56] Vakhnenko V O and Parkes E J, The two loop soliton solution of the Vakhnenko equation, Nonlinearity, 1998, 11(6): 1457-1464.
    [57] Morrison A J, Parkes E J and Vakhnenko V O, The N loop soliton solution of the Vakhnenko equation, Nonlinearity, 1999, 12(5): 1427-1437.
    [58] Tang X Y, Lou S Y, and Zhang Y, Localized exicitations in (2+1)-dimensional systems, Phys. Rev. E., 2002, 66: 046601-0466017.
    [59] Verosky J M, Negative powers of olver recursion operators, J. Math. Phys., 1991, 32(7): 1733-1736.
    [60] Nimmo J J C, A class of solutions of the Konopelchenko-Rogers equations, Phys. Lett. A, 1992, 168(2): 113-119.
    [61] Calogero F, Degasperis A and Xiaoda J, Nonlinear Schrodinger-type equations from multiscale reduction of PDEs. I. Systematic derivation, J. Math. Phys., 2000, 41(9): 6399-6443.
    [62] Calogero F, Degasperis A and Xiaoda J, Nonlinear Schrodinger-type equations from multiscale reduction of PDEs. II. Necessary conditions of integrability for real PDEs. J. Math. Phys., 2001, 42(6): 2635-2652.
    [63] Wang S, Tang X Y, and Lou S Y, Soliton fission and fusion: Burgers equation and Sharma- Tasso-Olver equation, Chaos, Solitons & Fractals, 2004, 21: 231-239.
    [64] Zheng C L and Chen L Q, Peakon, compacton and loop excitations with periodic behavior in KdV type models related to Schrodinger system, Phys. Lett. A, 2005, 340: 397-402.
    [65] Dhillon H S, Kusmartsev F V, and Kurten K E, Fractal and chaotic solutions of the discrete nonlinear Schrodinger equation in classical and quantum systems, J. Nonl. Math. Phys., 8 (2001) 38-49.
    [66] Tang X Y, What will happen when a dromion meets with a ghoston? Phys. Lett. A, 2003, 314: 286-291.
    [67] Fringer and Holm D D, Integrable vs. nonintegrable geodesic solition behavior, Physica D, 2001, 150: 237-263.
    [68] Lou S Y, (2+1)-dimensional compacton solutions with and without completely elastic interaction properties, J. Phys. A: Math. Gen., 2002, 35: 10619-10628.
    [69] Tang X Y, Lou S Y, and Zhang Y, (1+1)-dimensional turbulent and chaotic systems re duced from (2+1)-dimensional Lax integrable dispersive long wave equation, Commun. Theor. Phys., 2003, 39: 129-134.
    [70] Akylas T R, Three-dimensional long water-wave phenomena, Annu. Rev. Fluid Mech. 1994, 26: 191-210.
    [71] Lou S Y, Hu H C, and Tang X Y, Interactions among periodic waves and solitary waves of the (N+1)-dimensional sine-Gordon field, Phys. Rev. E, 2005, 71: 036604-036611.
    [72] 郝柏林著,从抛物线谈起-混沌动力学引论,上海科学技术出版社,(1993).
    [73] 王树禾编著,微分方程模型和混沌,中国科学技术大学出版社,(1999).
    [74] Wiggins S, Nonlinear dynamical systems and choas, Springer-Verlag, (1991).
    [75] Lorenz E N, Deterministic nonperiodic flow, Journal of Atmospheric Sciences, 1963, 20: 130-141.
    [76] 方锦清,非线性系统中混沌控制方法、同步原理及其应用前景,物理学进展,1996,16(1):1-23;16(2):137-160.
    [77] Peak D and Frame M, Chaos under control, New York: Freeman, (1994).
    [78] 王东生等编著,混沌、分形及其应用,中国科学技术大学出版社,(1999).
    [79] Wiggins S, Introduction to applied nonlinear dynamical systems and choas, Springer-Verlag, World Publishing Corp., (1990).
    [80] 曼德布罗特著,分形对象-形、机遇与维数,北京图书出版公司,(1999).
    [81] Mandelbrot B B, The fractal geometry of nature, San Francisco, California: Freeman, (1982).
    [82] Leach J, Padgett M J, and Courtial J, Fracals in pixellated video feedback, Contemporary Physiscs, 2003, 44(2): 137-143 and references therein.
    [83] 扬展如编著,分形物理学,上海科技教育出版社,(1996).
    [84] Gwinn E G and Westervelt R M, Fractal basin boundaries and intermittency in the driven damped pendulum, Phys. Rev. A, 1986, 33: 431-434.
    [85] Zhang S L, Wu B, and Lou S Y, Painleve analysis and special solutions of generalized BroerKaup equations, Phys. Lett. A, 2002, 300: 40-48.
    [86] Kadomtsev B B and Petviashavili Ⅵ, On the stability of solitary waves in weakly dispersing media, Sov. Phys. Dokl., 1970, 15: 539-541.
    [87] Radha R and Lakshmanan M, Dromions like structures in the (2+1)-dimensional breaking soliton systems, Phys. Lett. A, 1995, 197: 7-12.
    [88] Nizhnik L P, Sov. Phys. Dolk.,25 (1980) 706; Veselov A P and Novikov S P, Sov. Math. Dolk.,30 (1984) 588; Novikov S P and Veselov A P, Physica D, 18 (1986) 267.
    [89] Radha R and Lakshmanan M, Singularity analysis and localized coherent structures in (2+1)-dimensional generalized Korteweg-de Vries equations, 1994, J. Math. Phys., 35(9): 4746-4756.
    [90] Boiti M, Leon J P P, Manna M and Peminelli F, On the spectral transform of a Korteweg-de Vries equation in two spatial dimensions, Inverse problems, 1986, 2: 271-279; Boiti M, Leon J P P, Manna M and Peminelli F, On a spectral transform of a KDV-like equation related to the Schrodinger operator in the plane, Inverse problems, 1987, 3: 25-36.
    [91] Grimshaw R, Evolution equations for weakly nonlinear, long internal waves in a rotating fluid, Stud. Appl. Maths., 1985, 73: 1-67; Grimshaw R and Melville W K., On the derivation of the modified KP equation, Stud. Appl. Maths., 1989, 80: 183-258.
    [92] Johnson R S, A two-diemnsional Boussinesq equation for water wavesand some of its solutions, J. Fluid Mech., 1996, 323: 65-73.
    [93] Wu Y and Zhang J E, On modeling nonlinear long waves, SIAM, In Mathematics for Solving Problems, Edited by Cook P, Roytburd V, and Tulin M, 233, (1996).
    [94] Davey A and Stewartson K, Proc. R. Soc. A, 1974, 338: 101-109; Zakharov V E and Shabat A B, Exact theory of two-dimensional self focusing and one-dimensional self modulation of waves in nonlinear media. Soviet Physics JETP, 1972, 34: 62-69.
    [95] Okiawa M, Okamura M, and Funakoshi M, Two-dimensional resonant interaction between long and short waves, J. Phys. Soci. Jpn., 1989, 58: 4416-4429.
    [96] Kraenkel R A and Zenchuk A, Two-dimensional integrable generalization of the Camassa-Holm equation, Phys. Lett. A, 1999, 260(9): 218-224.
    [97] Ludlow D K, Clarkson P A, and Bassom A P, Similarity reductions and exact solutionsfor the two-dimensional incompressible Navier-Stockes equations, Studies in Appl. Math., 1999, 103: 183-240.
    [98] Fokas A S, On the simplest integrable equation in 2+1, Inverse Problems, 1994, 10: L19-L22.
    [99] Radha R and Lakshmanan M, Localized coherent structures and integrability in a generalized (2+1)-dimensional nonlinear Schrodinger Equation, 1997, Chaos, Solitons & Fractals, 8, 17-25.
    [100] Lou S Y and Lu J Z, Special solutions from variable separation approach: Davey-Stewartson equation, J. Phys. A: Math. Gen., 1996, 29: 4209-4215.
    [101] Tang X Y and Lou S Y, Extended multilinear variable separation approach and multivalued localized excitations for some (2+1)-dimensional integrable systems. J. Math. Phys., 2003, 44(9): 4000-4025.
    [102] Hu H C, Tang X Y, Lou S Y, and Liu Q P, Variable separation solutions obtained from Darboux transformations for the asymmetric Nizhnik-Novikov-Veselov system, Chaos, Solitons & Fractals, 2004, 22: 327-334.
    [103] Tang X Y, Lin J, Qina X M, and Lou S Y, A new kind of localized excitations for a large class of (2+l)-dimensional systems, Int. J. Mod. Phys. B, 2003, 17: 4343-4348.
    
    [104] Tang X Y and Lou S Y, Variable separation solutions for the (2+1)-dimensional Burgers equations, Chin. Phys. Lett., 2003, 3: 335-337.
    [105] Tang X Y and Lou S Y, Folded dolitary waves and foldons in (2+1)-dimensions, Commun. Theor. Phys., 2003, 40: 62-66.
    [106] Tang X Y, Chen C L, and Lou S Y, Localized solutions with chaotic and fractal behaviours in a (2+1)-dimensional dispersive long-wave system, J. Phys. A: Math. Gen., 2002, 35: L293-L301.
    [107] Tang X Y and Lou S Y, Abundant coherent structures of the dispersive long-wave equation in (2+1)-dimensional spaces, Chaos, Solitons & Fractals, 2002, 14: 1451-1456.
    [108] Tang X Y and Lou S Y, A variable separation approach for integrable and nonintegrable models: coherent structures of (2+1)-dimensional KdV equation, Commun. Theor. Phys., 2002, 38: 1-8.
    [109] Chen C L, Tang X Y and Lou S Y, Exact solutions of (2+1)-dimensional dispersive long wave equation, Phys. Rev. E., 2002, 66: 036605-036612.
    [110] Lou S Y, Tang X Y, and Chen C L, Fractal solutions of the Nizhnik-Novikov-Veselov equation, Chin. Phys. Lett., 2002, 19: 769-771.
    [111] Lou S Y, Tang X Y, Qian X M, Chen C L, J Lin and Zhang S L, New localized excitations in (2+1)-dimensional intergrable systems, Mod. Phys. Lett. B, 2002, 28: 1075-1079.
    [112] Lou S Y, Chen C L, and Tang X Y, (2+1)-dimensional (M+N)-component AKNS system: Painleve integrability, infinitely many symmetries and similarity reductions, J. Math. Phys., 2002, 43: 4078-4109.
    [113] Lou S Y, Tang X Y, and Lin J, Exact solutions of the coupled KdV system via a formally variable separation approach, Commun. Theor. Phys., 2001, 36: 145-148.
    [114] Lou S Y, Lin J, and Tang X Y, Painleve integrability and multi-dromion solutions of the (2+1)-dimensional AKNS system, Eur. Phys. J. B., 2001, 22: 473-478.
    [115] Lou S Y, J. Yu, and Tang X Y, Higher dimensional integrable models from lower ones via Miura type deformation relation, Z. Naturforsch., 2000, 55a: 867-876.
    [116] Zheng C L and Zhang J F, General solution and fractal localized structures for the (2+1)-dimensional generalized Ablowitz-Kaup-Newell-Segur system, Chinese Physics Letters, 2002, 19 (10): 1399-1402.
    [117] Zheng C L, Zhang J F, Wu F M, Sheng Z M, and Chen L Q, Solitons in a (2+1)-dimensional generalized Abowitz-Kaup-Newell-Sugur system, Chinese Physics, 2003. 12(5): 472-478.
    [118] Zheng C L and Zhang J F, General excitation and fractal localized structures of the (2+1)-dimensional generalized perturbed AKNS system, Communications in Theoretical Physics, 2003, 39(1): 9-14.
    [119] Hirota R, Exact solution of korteweg-de vries equation for multiple collisions of solitons, Phys. Rev. Lett., 1971, 27(18): 1192-1194.
    [120] Zheng C L, Zhu H P, and Chen L Q, Exact solution and semifolded localized excitations of (2+1)-dimensional generalized Broer-Kaup system in (2+1)-dimensions, Chaos, Solitons & Fractals, 2005, 26(1): 187-194.
    [121] Zheng C L and Chen L Q, Semifolded localized coherent structures in generalized (2+1)-dimensional Korteweg de Vries system, Journal of Physical Society of Japan, 2004, 73(2): 293- 295.
    [122] Zheng C L, Zhang J F, and Sheng Z M, Chaos and fractals in a soliton system, Chinese Physics Letters, 2003, 20, (3): 331-334.
    [123] Zheng C L, Coherent solition structures with chaotic and fractal behaviors in a generalized (2+1)-dimensional Korteweg-de Vires system, Chinese Journal of Physics, 2003. 41 (10): 442- 454.
    [124] Zheng C L and Chen L Q, New localized excitations in (2+1)-dimensional generalized Nozhnik-Novikov-Veselov system, Chinese Journal of Physics, 2005 43 (3): 393-399.
    [125] Zhang J F and Zheng C L, Abundant localized coherent structures of the (2+1)- dimensional generalized NNV system. Chinese Journal of Physics, 2003, 41(3): 242-253.
    [126] 郑春龙,方建平,陈立群,(2+1)维Boiti-Leon-Pempinelli系统的钟状和峰状圈孤子,物理学报,2005,54(4):1468-1475.
    [127] Zheng C L, Fang J P, and Chen L Q, Soliton fission and fusion in (2+1)-dimensional Boiti-Leon-Pempinelli system, Communications in Theoretical Physics, 2005, 43 (4): 681-686.
    [128] Lu Z S and Zhang H Q, Soliton like and multi-soliton like solutions of (2+1)-dimensional Boiti-Leon-Pempinelli equation, Chaos, Solitons & Fractals, 2004, 19: 527-531.
    [129] Zheng C L and Sheng Z M, Localized coherent soliton structures for a (2+1)-dimensional generalized Schrodinger system, International Journal of Modern Physics B, 2003, 17(22-24): 4407-4414.
    [130] Zheng C L, Zhang J F, Sheng Z M, and Huang W H, Exact solution and exotic coherent soliton structures of the (2+1)-dimensional nonlinear Schrodinger equation, Chinese Physics, 2003, 12(1): 11-16.
    [131] Zheng C L, Zhang J F, and Chen L Q, Folded localized excitations in a generalized (2+1)-dimensional perturbed nonlinear Schrodinger system, Communications in Theoretical Physics, 2003, 40(4): 385-389.
    [132] Zheng C L, Zhu J M, Zhang J F, and Chen L Q, Fractal dromion, fractal lump and multiple peakon excitations in a new (2+1)-dimensional long dispersive wave system, Communications in Theoretical Physics, 2003, 39 (3): 261-266.
    [133] Zhang J F, Zheng C L, Meng J P, and Fang J P, Chaotic dynamic behavior in soliton solutions for a new (2+1)-dimensional long dispersive wave system, Chinese Physics Letters, 2003, 20(4): 448-451.
    [134] Zheng C L and Chen C Q, Solitons with fission and fusion behaviors in a variable coefficient Broer-Kaup sysem, Chaos, Solitons & Fractals, 2005, 24(5): 1347-1351.
    [135] Zheng C L, Zhang J F, Huang W H, and Chen L Q, Peakon and foldon excitations in a (2+1)-dimensional breaking soliton system, Chinese Physics Letters, 2003, 20(6): 783-786.
    [136] Zheng C L, Localized coherent structures with chaotic and fractal behaviors in a modified (2+1)-dimensional long dispersive wave system, Communications in Theoretical Physics, 2003, 40(1): 25-32.
    [137] Zheng C L, Variable separation approach to solve (2+1)-dimensional generalized Burgers system: solitary wave and Jacobin periodic wave excitations, Communications in Theoretical Physics, 2004, 41(3): 391-396.
    [138] Zheng C L, Interactions among peakons, dromions, and compactons for a (2+1)-dimensional soliton system, Communications in Theoretical Physics, 2004, 41(4): 513-520.
    [139] Zhang J F, Meng Jian-Ping, Zheng C L, and Huang W H, Folded solitary waves and foldons in the (2+1)-dimensional breaking soliton equation. Chaos, Solitons & Fractals, 2004, 20(5): 523-527.
    [140] Zheng C L, Chen L Q, and Zhang J F, Multivalued solitary waves in multidimensional soliton system, Chinese Physics, 2004, 13(5): 592-597.
    [141] Fang J P, Zheng C L, and Chen L Q, Semifolded localized structres in three-dimensional soliton systems, Communications in Theoretical Physics, 2004, 42(2): 175-179.
    [142] Ma Z Y, Zhu J M, and Zheng C L, Fractal localized structures related to Jacobian elliptic functions in the high-order Broer-Kaup system, Chinese Physics, 2004, 13(9): 1382-1385.
    [143] 朱加民,马正义,郑春龙,(2+1)维Broer-Kaup方程的分形局域结构,物理学报,2004,53(10):3248-3251.
    [144] Zheng C L, Fang J P, and Chen L Q, Evolution property of multisoliton excitations for a higher dimensional coupled Burgers system, Communications in Theoretical Physics, 2004, 41(6): 903-906.
    [145] Zheng C L, Huang W H, and Zhang J F, General excitations and exotic localized coherent structures for a (2+1)-dimensional generalized Davey-Stewarson system, Communications in Theoretical Physics, 2002, 38 (6): 653-656.
    [146] Zhang J F, Huang W H, and Zheng C L, Exotic localized coherent structures of new (2+1)-dimensional soliton equation, Communications in Theoretical Physics, 2002, 38 (5): 517-522.
    [147] 张解放,黄文华,郑春龙,一个新(2+1)维非线性演化方程的相干孤子结构,物理学报,2002,51(12):2676-2682.
    [148] Ma Z Y, Zhu J M, and Zheng C L, New fractal localized structures in Boiti-Leon-Pempinelli system, Communications in Theoretical Physics, 2004, 42(4): 521-523.
    [149] Zhang J F and Zheng C L, New multi-soliton solutions of the (2+1) -dimensional breaking soliton equations, International Journal of Modern Physics B, 2003, 17(22-24): 4376-4381.
    [150] Maccari A, Chaos, solitons and fractals in the nonlinear Dirac equation, Physics Letters A, 2005, 336: 117-125.
    [151] Toda M, Theory of Nonlinear Lattices, Springer Verlag, Berlin, Germany, (1981); Toda M, Vibration of a chain with nonlinear interaction, J. Phys. Sco, Japan, 1967, 22a: 431-436.
    [152] Parkes E J, Exact solutions to the two-dimensional Korteweg-de Vries-Burgers equation, J. Phys. A: Math. Gen., 1994, 27: L497-L501.
    [153] Parkes E J and Duffy B R, Travelling solitary wave solutions to a compound KdV-Burgers equation, Phys. Lett. A, 1997, 229(19): 217-220.
    [154] Fan E G, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, 2000, 277: 212-218.
    [155] Fan E G, Soliton solutions for a generalized HirotaSatsuma coupled KdV equation and a coupled MKdV equation, Phys. Lett. A, 2001, 282(9): 18-22.
    [156] Fan E G and Hon Y C, Double periodic solutions with Jacobi elliptic functions for two generalized Hirota-Satsuma coupled KdV systems, Phys. Lett. A, 2002, 292(14): 335-337.
    [157] Baldwin D, Goktas U, Hereman W, Symbolic computation of hyperbolic tangent solutions for nonlinear differential-difference equations, Computer Physics Communications, 2004, 162: 203-217.
    [158] Dai C Q, Yang Q, and Zhang J F, New exact travelling wave solutions of the discrete sine-Gordon equation, 2004, Z. Naturforsch., 59a: 635-639.
    [159] 朱加民,马正义,郑春龙,改进的双曲函数法和Hybrid-Lattice系统与Ablowitz-Ladik-Lattice系统的新解探索,物理学报,2005,54(2):483-489.
    [160] Ma Z Y, Zhu J M, and Zheng C L, Solitary wave and periodic wave solutions for the relativistic Toda lattices, Communications in Theoretical Physics, 2005, 43(1): 27-30.
    [161] Zhu J M, Ma Z Y, Fang J P, and Zheng C L, General Jacobian elliptic function expansion method and its applications, Chinese Physics, 2004, 13(6): 798-804. Zhu J M and Ma Z Y, An extended Jacobian elliptic function method for the discrete mKdV lattice, Chinese Physics, 2005, 14(1): 17-20.
    [162] Fan E G, Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics, Chaos, Solitons & Fractals, 2003, 16: 819-839.
    [163] Hon Y C and Fan E G, A series of new exact solutions for a complex couples KdV system, Chaos, Solitons & Fractals, 2004, 19: 515-525. Hon Y C and Fan E G, Solitary wave and doubly periodic wave solutions for the KerstenKrasil'shchik coupled KdVmKdV system, Chaos, Solitons & Fractals, 2004, 19: 1141-1146.
    [164] Bridges T J and Fan E G, Solitary waves, periodic waves, and a stability analysis for Zufiria's higher-order Boussinesq model for shallow water waves, Physics Letters A, 2004, 326: 381-390.
    [165] Darwish A and Fan E G, A series of new explicit exact solutions for the coupled KleinGordon-Schrodinger equations, Chaos, Solitons & Fractals, 2004, 20: 609-617.
    [166] Zheng C L and Chen L Q, A general mapping approach and new traveling wave solutions to (2+1)-dimensional Boussinesq equation, Communications in Theoretical Physics, 2004, 41(5): 671-674.
    [167] Zhu J M, Zheng C L, and Ma Z Y, A general mapping approach and new traveling solutions to general variable coefficient KdV equation. Chinese Physics, 2004, 13(12): 2008-2012.
    [168] Zheng C L, Fang J P, and Chen L Q, Localized excitations with and without propagating properties in (2+1)-dimensions obtained by a mapping approach, Chinese Physics, 2005, 14 (4): 676-682. Fang J P, Zheng C L, and Liu Q, Nopropagating solitons in dispersive long-water wave system system, Communications in Theoretical Physics, 2005, 43(2): 245-250.
    [169] Zheng C L, Fang J P, and Chen L Q, New variable separation excitations of (2+1)-dimensional dispersive long-water wave system obtained by an extended mapping approach, Chaos, Solitons & Fractals, 2005, 23(5): 1741-1748.
    [170] Zheng C L, Fang J P, and Chen L Q, Localized excitations in (2+1)-dimensions obtained by a mapping approach, Chinese Journal of Physics, 2005, 43 (1): 17-25.
    [171] Zheng C L, Fang J P, and Chen L Q, New variable separation excitations of a (2+1)-dimensional Broer-Kaup-Kupershmidt system obtained by an extended mapping approach, Z. Naturforsch. A, 2004, 59 (12): 912-918.
    [172] 方建平,郑春龙,朱加民,(2+1)维Boiti-Leon-Pempinelli系统的变量分离解及其方形孤子和分形孤子,物理学报,2005,54(7):in press.
    [173] Zheng C L, Variable separation solutions of generalized Broer-Kaup system via a projective method, Communications in Theoretical Physics, 2005, 43 (6): 1061-1067.
    [174] Fang J P and Zheng C L, New exact solutions and fractal patterns generalized Broer-Kaup system in (2+1)-dimensions via an extended mapping method, Chaos, Solitons & Fractals, 2005, inpress.
    [175] Fang J P, Ren Q B, and Zheng C L, New exact solutions and fractal localized structures for the (2+1)-dimensional Boiti-Leon-Pempinelli system, Z. Naturforsch., 2005, 60a(4): 245-251.
    [176] Fang J P and Zheng C L, New exact excitations and solitons fission and fusion in (2+1)-dimensional Broer-Kaup-Kupershmidt system, Chinese Physics, 2005, 14 (4): 669-675.
    [177] Lu F, Lin Q, Knox W H, and Agrawal G P, Vector Soliton Fission, Phys. Rev. Lett. 2004, 93 (18): 183901-183904.
    [178] White B S and Forsberg B, On the chance of freak waves at sea, J. Fluid Mech., 1998, 355: 113-138.
    [179] Osborne A R, Onorato M, and Serio M, The nonlinear dynamics of rouge waves and holes in

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700