基于小波变换的线性及弱非线性结构动力学系统辨识方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
需要建立描述结构性能的模型时,对系统的辨识就显得尤为重要。近几年来,在应用数学、理论物理和信号处理领域的研究者发展了一种能够对信号进行多分辨率分析的有效工具,这种工具就是小波变换。对结构动力学系统的自由衰减响应信号进行连续小波变换能将信号中包含的大量信息集中到一系列脊中,这些脊与信号中每一个频率成分的幅度和相位直接相关。通过提取脊并根据脊上的连续小波变换系数可以辨识系统的参数。
     为了辨识密集模态,本文改进了传统的从线性系统的自由衰减响应中应用连续小波变换估计模态参数的方法。研究了特别是当需要辨识密集模态时自由衰减响应信号的连续小波变换。提出用一种鲁棒的重新加权迭代最小二乘法来拟合小波的幅度和相位曲线。为了识别密集模态的参数,提出选择最优分析尺度的方法,这种方法通过搜索拟合误差函数局部极小值的位置来实现。为了实现模态分离并抑制边界效应,通过使拟合误差函数局部极小值的和达到最小值实现了小波函数参数的选择。在两个三自由度有阻尼系统上的数值仿真结果表明本文提出的改进方法能够更加准确地估计包含密集模态的线性系统的自然频率和阻尼比。
     利用脊上连续小波变换系数的幅度和相位,从结构动力学系统的自由衰减响应中辨识了弱非线性阻尼和刚度。为了消除连续小波变换幅度极值的频移,小波脊是通过在每一个时刻搜索规范化量图局部极大值的尺度位置来提取的。指出在单自由度系统的辨识过程中没有必要选择小波参数。辨识方法的有效性在两个包含非线性阻尼和刚度的单自由度仿真算例中得到了证明。
     为了高效地估计渐进信号的瞬时频率和幅度,提出一种提取小波脊的方法。推导了尺度间隔和采样频率应当满足的不等式。任意给定一个小波脊提取的精度,通过解这些不等式并考虑到使连续小波变换计算的复杂性达到最小能够得到尺度间隔和采样频率的一对最优值。在使用这对最优参数计算连续小波变换之后,仅用传统方法提取的脊上的间断点就可形成一个更加可靠的新脊。提出的脊提取方法在一个弱非线性系统辨识的仿真算例上得到了验证,测试结果表明提出方法的计算量与传统方法相比有了明显降低。
     最后,对研制的高精度转动惯量测量仪的相关技术参数进行了辨识。辨识结果表明:采用了提出的非线性系统辨识方法以后,仪器测量转动惯量的精度得到有效提高。
The identification of structural systems is very important when models for theprediction of systems performance are developed. In recent years, researchers inapplied mathematics, theoretical physics and signal processing have developed apowerful time-frequency signal-analysis tool, called wavelet transform, for themultiresolution analysis of signals. The continuous wavelet transform (CWT) of freedecay response signal of structural dynamic system concentrates the maximumamount of information contained in data near a series of ridges, which are directlylinked to the amplitude and phase of each component within the signal. From theextraction of the ridge and from the values of the CWT coefficients along the ridges,systemparameters can beidentified.
     In order to identify closely spaced modes, the traditional method for theestimation of modal parameters from free decay response of a linear system usingCWT isimproved. The CWT of free decay response is investigated especially for thecase when closely spaced modes need to be analyzed. Arobust iteratively reweightedleast-squares (IRLS) linear regression method is introduced to fit wavelet amplitudeand phase curves. The selection of the appropriate analyzing scale is proposed toimprove the modal parameter estimation of the system with poorly separated modes,which is performed by searching the locations of the local minima of fitting errorfunctions. The parameter selection of wavelet function achieved by minimizing thesum of the local minimum values of fitting error function is also presented forachieving modal separation and minimizing edge-effect. The results of a numericalsimulation on two 3dof damped systems shown that the improved method canprovide a more accurate estimation of the natural frequencies and damping ratios forthelinear system withcloselyspaced modes.
     Utilizing the amplitude and phase of CWT coefficients on ridge, weaknonlinearities on damping and stiffness are identified from the freedecay response ofa structural dynamic system. In order to eliminate the frequency-shift of CWTamplitude extreme, wavelet ridge is determined for each time by finding the scalewhere the normalized scalogram is a local maximum. The choice of the waveletfunction is not useful for the improvement of the sdof system identification accuracy.Theeffectiveness of the proposed method is demonstrated using numerical results for twosdof systems with nonlinearities on damping and stiffness.
     A wavelet ridge extraction method is proposed for efficient estimation ofinstantaneous frequency and amplitude of the asymptotic signal. Inequalities arederived to provide limitations on scale interval and sampling frequency. The optimalscale interval and sampling frequency at any given accuracy can be evaluated bysolving these inequalities and minimizing the computational complexity of CWT.After the CWT of the signal is completed with these optimal parameters, a morereliable ridge can be formed using only the discontinuity points on the ridgeextracted using the conventional method. The results of a weak nonlinear systemidentification simulation test performed to verify the efficiency of the proposedmethod indicate that the computational load of the proposed method is much lowerthanthat ofthe conventional method.
     At last, the technical parameters of self-developed high accuracy instrument formeasuring moment of inertia (MOI) are measured. The results show that theinstrument adopting the proposed technique for nonlinear system identification canimprove the measurement precision of MOI.
引文
1刘君,夏智勋.动力学系统辨识与建模.国防科技大学出版社.2007:12~13
    2蔡金狮.动力学系统辨识与建模.国防工业出版社. 1991:4~10
    3谭冬梅,姚三,瞿伟廉.振动模态的参数识别综述.华中科技大学学报(城市科学版), 2002,19(3):73~78
    4张志谊,续秀忠,华宏星,黄震.基于信号时频分解的模态参数识别.振动工程学报. 2002,15(4):389~394
    5 R. Balaji, S.A. Sannasiraj and V. Sundar. Identification of Modal Parameters ofa Floating System from Impulse Motion. Ocean Engineering. 2008,35(14-15):1560~1564
    6 P. Bonato, R. Ceravolo and A.D. Stefano. Time-frequency and AmbiguityFunction Approaches in Structural Identification. Journal of EngineeringMechanics. 1997,123(12):1260~1267
    7 P. Bonato, R. Ceravolo, A.D. Stefano and F. Molinari. Use of Cross-Time-Frequency Estimators for Structural Identification in Non-Stationary Conditionsand under Unknown Excitation. Journal of Sound and Vibration.2000,237(5):775~791
    8 P. Bonato, R. Ceravolo, A. De Stefano and F. Molinari. Cross-Time FrequencyTechniques for the Identification of Masonry Buildings. Mechanical Systemsand Signal Processing. 2000,14(1):91~109
    9 A. Roshan-Ghiasa, M.B. Shamsollahi, M. Mobed and M. Behzad. Estimation ofModal Parameters Using Bilinear Joint Time-Frequency Distributions.Mechanical Systems and Signal Processing. 2007,21(5):2125~2136
    10 N.E. Huang, Z. Shen and S.R. Long. The Empirical Mode Decomposition andthe Hilbert Spectrum for Nonlinear and Non-Stationary Time-Series Analysis.Proceedings of the Royal Society London,A, 1998,454:903~995
    11 J.N. Yang, Y. Lei, S.W. Pan and N.E. Huang. System Identification of LinearStructures Based on Hilbert-Huang Spectral Analysis. Part 1: Normal Modes.Earthquake Engineering & Structural Dynamic.2003,32(9):1443~1467
    12 J.N. Yang, Y. Lei, S.W. Pan and N.E. Huang. System Identification of LinearStructures Based on Hilbert-Huang Spectral Analysis. Part 2: Complex Modes.Earthquake Engineering & Structural Dynamic. 2003,32(10):1533~1554
    13 J. Chen, Y.L. Xu and R.C. Zhang. Modal Parameter Identification of Tsing MaSuspension Bridge under Typhoon Victor: EMD-HT Method. Journal of WindEngineering and IndustrialAerodynamics.2004,92(10):805~827
    14罗奇峰,石春香. Hilbert-Huang变换理论及其计算中的问题.同济大学学报,2003,31(6):637~640
    15黄天立.结构系统和损伤识别的若干方法研究.同济大学博士论文.2007:43~45
    16 B.F.Yan, A.Miyamoto. AComparativeStudyofModal Parameter IdentificationBased on Wavelet and Hilbert-Huang Transforms. Computer-Aided Civil andInfrastructure Engineering, 2006,21(1):9~23
    17 S.K. Tang. On the Time-Frequency Analysis of Signals that DecayExponentially with Time. Journal of Sound and Vibration, 2000,234(2):241~258
    18 Z.K. Zhang, H.X. Hua, X.Z. Xu and Z. Huang. Modal Parameter Identificationthrough Gabor Expansion of Response Signals. Journal of Sound and Vibration,2003,266(5):943~955
    19 R. Ruzzene, A. Fasana, L. Garibaldi and B. Piombo. Natural Frequencies andDampings Identification Using Wavelet Transform: Application to Real Data.Mechanical Systems and Signal Processing. 1997,11(2):207~218
    20 N. Delprat, B. Escudie, P. Guillemain, R.K. Martinet, P. Tchamitchian and B.Torresani.Asymptotic Wavelet and Gabor Analysis: Extraction of InstantaneousFrequencies. IEEE Transactions on Information Theory.1992,38(2):644~664
    21刘绍奎,闫桂荣.基于Gauss滤波和Hilbert变换的模态参数辨识方法.机械工程学报,2005,41(5):161~164
    22 J. Lardies and S. Gouttebroze. Identication of Modal Parameters Using theWavelet Transform. International Journal of Mechanical Sciences, 2002,44(11):2263~2283
    23 J.A. Demarchi and K.C. Craig. Comments on‘Natural Frequencies andDampings Identification Using Wavelet Transform: Application to Real Data’.Mechanical Systems and Signal Processing, 2003,17(2):483~488
    24 W.J. Staszewski. Identification of Damping in MDOF Systems Using Time-Scale Decomposition.Journal of Sound andVibration,1997,203(2):283~305
    25 J. Slavic, I. Simonovski and M. Boltezar. Damping Identification Using aContinuous Wavelet Transform: Application to Real Data. Journal of Sound andVibration, 2003,262(2):291~307
    26 C.S. Huang and W.C. Su. Identification of Modal Parameters of a TimeInvariant Linear System by Continuous Wavelet Transform. MechanicalSystems and Signal Processing.2007,21(4):1642~1664
    27 M. Meo, G Zumpano, X. Meng, E. Cosser, G. Roberts and A. Dodson.Measurements of Dynamic Properties of a Medium Span Suspension Bridge byUsing the Wavelet Transforms. Mechanical Systems and Signal Processing,2006,20(5):1112~1133
    28 J-B.Tan,Y. Liu, L. Wang and W-G. Yang. Identification of Modal Parameters ofa System with High Damping and Closely Spaced Modes by CombiningContinuous Wavelet Transform with Pattern Search. Mechanical Systems andSignal Processing, 2008,22(5):1055~1060
    29 K. Yu, J. Ye, J. Zou, B. Yang andH. Yang, Missile Flutter Experiment and DataAnalysis Using Wavelet Transform. Journal of Sound and Vibration.2004,269(3-5):899~912
    30 T-P. Le and P. Argoul. Continuous Wavelet Transform for Modal IdentificationUsing Free Decay Response. Journal of Sound and Vibration, 2004,277(1-2):73~100
    31 T-P. Le and P.Argoul. Instantaneous Indicators of Structural Behavior Based onthe Continuous Cauchy Wavelet Analysis. Mechanical Systems and SignalProcessing, 2003,17(1):243~250
    32 S. Erlicher and P. Argoul. Modal Identification of Linear Non-ProportionallyDamped Systems by Wavelet Transform. Mechanical Systems and SignalProcessing, 2007,21(3):1386~1421
    33 D.E. Newland. Harmonic Wavelet Analysis. Proceedings of the Royal SocietyLondon, A,1993,443:203~225
    34 D.E. Newland. Harmonic and Musical Wavelets. Proceedings of the RoyalSociety London, A,1993,444:605~620
    35 D.E. Newland. Wavelet Analysis of Vibration, Part 1: Theory. Journal ofVibration andAcoustics,1994,116(4):409~416
    36 D.E. Newland. Wavelet Analysis of Vibration, Part 2: Wavelet Maps. Journal ofVibration andAcoustics,1994,116(4):417~425
    37 D.E. Newland. Ridge and Phase Identification in the Frequency Analysis ofTransient Signals by Harmonic Wavelets. Journal of Vibration and Acoustics,1999,121(2):149~155
    38 A. Chakraborty, B. Basu and M. Mitra. Identification of Modal Parameters of aMDOF System by Modified L-P Wavelet Packets. Journal of Sound andVibration, 2006,295(3-5):827~837
    39 M. Boltezar and J. Slavic. Enhancements to the Continuous Wavelet Transformfor Damping Identifications on Short Signals. Mechanical Systems and SignalProcessing, 2004,18(5):1065~1076
    40伊廷华,李宏男,王国新.基于小波变换方法的结构模态参数识别.振动工程学报, 2006,19(1):51~56
    41徐增丙,轩建平,史铁林,吴波,胡友民. LS-SVM在基于小波变换的模态分析中端部效应的应用.中国机械工程, 2008,19(13):1614~1620
    42 T. Kijewski and A. Kareem. Wavelet Transforms for System Identification inCivil Engineering. Computer-Aided Civil and Infrastructure Engineering, 2003,18(5):339~355
    43 B.F. Yan, A. Miyamoto and E. Bruhwiler. Wavelet Transform-Based ModalParameter Identification Considering Uncertainty. Journal of Sound andVibration, 2006, 291(1-2):285~301
    44 C-H.Lamarque, S. Pernot and A. Cuer. Damping Identification in Multi-Degree-of-Freedom Systems via a Wavelet-Logarithmic Decrement-Part 1: Theory.Journal of Sound andVibration, 2000,235(3):361~374
    45 S. Hans, E. Ibraim, S. Pernot, C. Boutin and C-H. Lamarque. DampingIdentification in Multi-Degree-of-Freedom System via a Wavelet-LogarithmicDecrement-Part 2: Study of a Civil Engineering Building. Journal of Sound andVibration, 2000,235(3):375~403
    46 C.S. Huang, S.L. Hung, C.I. Lin and W.C. Su. A Wavelet-based Approach toIdentifying Structural Modal Parameters from Seismic Response and FreeVibration Data. Computer-Aided Civil and Infrastructure Engineering,2005,20(6):408~423
    47张波,李建君.一种基于小波变换与奇异值分解对振动系统模态频率进行识别的新方法.振动与冲击, 2006, 25(6):88~91
    48 H.P. Yin, D. Duhamel and P. Argoul. Natural Frequencies and DampingEstimation Using Wavelet Transform of a Frequency Response Function.Journal of Sound andVibration, 2004,271(3-5):999~1014
    49祁克玉,向家伟,訾艳阳,何正嘉.基于Laplace小波相关滤波的结构模态参数精确识别方法.机械工程学报,2007,43(9):167~172
    50 H.B. Dong, X.F. Chen, B. Li, K.Y. Qi and Z.J. He. Rotor Crack Detection Basedon High-Precision Modal Parameter Identification Method and Wavelet FiniteElement Model. Mechanical Systems and Signal Processing, 2009,23(3):869~883
    51汪凤泉.电子设备振动与冲击手册.科学出版社.1998:106~107
    52陈予恕,吴志强.非线性模态理论的研究进展.力学进展. 1997,27(3):289~300
    53 D.E.Adams and R.J.Allemang. A FrequencyDomain Method for EstimatingtheParameters of a Non-linear Structural Dynamic Model through FeedBack.Mechanical Systems and Signal Processing. 2000,14(4):637~656
    54 R.O. Curadelli, J.D. Riera, D. Ambrosini and M.G. Amani. Damage Detectionby Means of Structural Damping Identification. Engineer Structures.2008,30(12):3497~3504
    55 Z.K. Peng and F.L. Chu. Application of the Wavelet Transform in MachineCondition Monitoring and Fault Diagnostics: a Review with Bibliography.Mechanical Systems and Signal Processing, 2004,18(2):199~221
    56 S. Marchesiello and L. Garibaldi. A Time Domain Approach for IdentifyingNonlinear Vibrating Structures by Subspace Methods. Mechanical Systems andSignal Processing.2008,22(1):81~101
    57 G. Kerschen, K. Worden, A.F. Vakakis and J-C. Golinval. Past, Present andFuture of Nonlinear System Identification in Structural Dynamic. MechanicalSystems and Signal Processing.2006,20(3):505~592
    58 S. Braun and M. Feldman. Time-frequency Characteristics of Non-LinearSystems.Mechanical Systems and Signal Processing. 1997,11(4):611~620
    59 L. Wang, J. Zhang, C. Wang and S. Hu, Time-frequency Analysis of NonlinearSystems: the Skeleton Linear Model and the Skeleton Curves. Journal ofVibration andAcoustics.2003,125(2):170~177
    60 P.F. Pai and A.N. Palazotto. Detection and Identification of Nonlinearities byAmplitude and Frequency Modulation Analysis.Mechanical Systems and SignalProcessing.2008,22(5):1107~1132
    61 P.F. Pai and A.N. Palazotto. HHT-based Nonlinear Signal Processing Method forParametric and Non-parametric Identification of Dynamic Systems.International Journal of Mechanical Sciences.2008,50(12):1619~1635
    62 W.J. Staszewski. Identification of Non-linear Systems Using Multi-scale Ridgesand Skeletons of the Wavelet Transform. Journal of Sound and Vibration.1998,214(4):639~658
    63 M.N. Ta, J. Lardies. Identification of Weak Nonlinearities on Damping andStiffness bythe Continuous Wavelet Transform.Journal of Sound and Vibration,2006,293(1-2):16~37
    64 T. Tjahjowidodo, F. Al-Bender and H.V. Brussel. Experimental DynamicIdentification of Backlash Using Skeleton Methods. Mechanical Systems andSignal Processing.2007,21(2):959~972
    65 M. Feldman.Non-linear Free Vibration Identification via the Hilbert Transform.Journal of Sound andVibration.1997,208(3):475~489
    66 M. Feldman. Considering High Harmonics for Identification of Non-LinearSystems by Hilbert Transform. Mechanical Systems and Signal Processing.2007,21(2):943~958
    67 G.R. Stephane, C. Tristan, G. Samuel, L. Philippe and B. Nathalie. A Wavelet-based Method for Local Phase Extraction from a Multi-frequency OscillatorySignal. Journal of Neuroscience methods. 2007,160(1):135~143
    68 Z. Nenadic and J.W. Burdick. Spike Detection Using the Continuous WaveletTransform.IEEETransactions on Biomedical Engineering. 2005,52(1):74~87
    69 D. Jordan, R.W. Miksad and E.J. Powers. Implementation of the ContinuousWavelet Transform for Digital Time Series Analysis. Review of ScientificInstruments.1997,68(3):1484~1494
    70 C. Pislaru, J.M. Freeman and D.G. Ford. Modal Parameter Identification forCNC Machine Tools Using Wavelet Transform. International Journal ofMachineTools and Manufacture.2003,43(10):987~993
    71 http://www.mathworks.com/access/helpdesk/help/toolbox/wavelet/index.html?/access/helpdesk/help/toolbox/wavelet/cwt.html
    72 http://www-stat.stanford.edu/software/wavelab/index.html
    73杨福生.小波变换的工程分析与应用.科学出版社. 2000:145~156
    74 S. Mallat(著).信号处理的小波导引.杨力华,戴道清,黄文良(译).机械工业出版社. 2002:122~141
    75张晓东.基于脊提取的信号表示和重建.东南大学博士论文. 2003:10~24
    76 R.A. Carmona, W.L. Hwang and B. Torresani. Multiridge Detection and Time-Frequency Reconstruction. IEEE Transaction on Signal Processing,1999,47(2):480~492
    77 R.M. Lin, M.K. Lim. Modal Analysis of Close Modes Using PerturbativeSensitivityApproach. Engineering Structures, 1997,19(6):397~406
    78刘利军,樊江玲,张志谊,华宏星.密频系统模态参数辨识及其振动控制的研究进展.振动与冲击. 2007,26(4):109~115
    79陈德成,杨靖波.密频子空间的可控度与可观度.应用力学学报. 2001,18(2):15~20
    80 R. Ruotolo and D.M. Storer. A Global Smoothing Technique for FRF DataFitting. Journal of Sound andVibration.2001,239(1):41~56
    81 H.P. Yin, and D. Duhamel. Substraction Technique and Finite DifferenceFormulas for Modal Parameter Estimation. Mechanical Systems and SignalProcessing.2004,18(6):1497~1503
    82 R.A. Jabr. Power System State Estimation Using an Iteratively ReweightedLeast Squares Method for Sequential L1-regression. International Journal ofElectrical Power and EnergySystems,2006,28(2):86~92
    83 I. Fomenko, M. Durst and D. Balaban. Robust Regression for High ThroughputDrug Screening. Computer Methods and Programs in Biomedicine,2006,82(1):31~37
    84 E. Hund, D. Luc Massart and J. Smeyers-Verbeke. Robust Regression andOutlier Detection in the Evaluation of Robustness Tests with DifferentExperimental Designs.Analytica ChimicaActa, 2002,463(1):53~73
    85刘延柱,陈立群.非线性振动.高等教育出版社.2001:73~83
    86 A.V. Oppenheim, R.W. Schafer and J.R. Buck(著).离散时间信号处理.刘树棠,黄建国(译).西安交通大学出版社. 2001:507~528
    87谷良贤,温炳恒.导弹总体设计原理.西北工业大学出版社. 2004:210~212
    88吴波,于明进,程勇,张立梅.内燃机转动惯量试验推算方法的研究.内燃机学报. 2000,18(4):443~446
    89于明进,程勇,吴波,张立梅.试验确定发动机转动惯量的一种新方法.农业机械学报. 2005,36(6):34~37
    90赵学荟,侯文,陈鸿,陈闽鄂.基于三线摆运动完整描述的转动惯量测量方法.弹箭与制导学报. 2006,26(4):362~364
    91张代胜,胡玺良,袁玲.三线摆法测量复杂构件转动惯量的误差分析.农业机械学报. 2008,39(3):37~40
    92王阿春.单兵弹箭转动惯量的精密测量.弹箭与制导学报. 2005,25(1):350~353
    93李彤华,朱占刚,尚春民,周化文,张心明.扭摆法测弹体转动惯量的误差分析.长春理工大学学报. 2007,30(3):63~65
    94 G.T. Gillies and R.C. Ritter. Torsion Balances, Torsion Pendulums, and RelatedDevices. Review of Scientific Instruments.1993,64(2):283~309
    95 E.B. Hermida and L.J. Cieri. Extended Capabilities of an Inverted TorsionPendulum.PolymerTesting. 2006,25(2):276~279
    96 E.B. Hermida, F. Povolo and P. Porta. Internal Friction and Loss Tangent ofNonlinear Viscoelastic Materials: Different Concepts, Different Results. JournalofAlloys and Compounds. 2000,310(9):280~283
    97朱贤方,水嘉鹏.自由衰减法测量线性内耗的准确公式.物理学报. 1996,45(6):1010~1015
    98李慧鹏.弹头主惯性轴线及形心轴线测量关键技术研究.哈尔滨工业大学博士论文.2006:11~35
    99徐华,刘淑琴,虞烈.转动惯量测试台磁悬浮系统电磁阻尼的研究.西安交通大学学报. 2001,35(2):1288~1291
    100 C.G. Shao, E.J. Luan and J. Luo. On the Significance of the Period FittingMethod. Review of ScientificInstruments. 2003,74(5):2849~2852
    101 J. Luo, Z.K. Hu, X.H. Fu, S.H. Fan and M.X. Tang. Determination of theNewtonian Gravitational Constant G with a Nonlinear Fitting Method. PhysicalReview D. 1998,59(4):042001-1~042001-6
    102 C.E. Goldblum, R.C. Ritter and G.T. Gillies. Using the Fast Fourier Transformto Determine the Period of a Physical Oscillator with Precision. Review ofScientific Instruments. 1988,59(5):778~782
    103 Y.L. Tian, Y.Tu and C.G. Shao. Correlation Method in Period Measurement of aTorsion Pendulum. Review of Scientific Instruments. 2004,75(6):1971~1974
    104 J.J. Snyder.Algorithm for Fast Digital Analysis of Interference Fringes. AppliedOptics. 1980,19(8):1223~1225
    105 Z.K. Hu and J. Luo. Amplitude Dependence of Quality Factor of the TorsionPendulum.Physics LettersA. 2000,268(4-6):255~259
    106 Y. Tu, L. Zhao, Q. Liu, H-L. Ye and J. Luo. An Abnormal Mode of TorsionPendulum and ItsSuppression. Physics Letters A.2004,331(6):354~360

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700