鸭瘟病毒gC基因疫苗在鸭体内分布规律及gC、gE基因缺失株的构建和生物学特性的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为疱疹病毒目(Herpesvirales)疱疹病毒科(Herpesvirales)α-疱疹病毒亚科(Alphaherpesvirinae)马立克病毒属(Mardivirus)的一员,鸭瘟病毒(Duck plague virus, DPV)是一种泛嗜性全身性感染病毒,主要引起鸭、鹅、天鹅等雁形目水禽的急性接触性传染病——鸭瘟。该病以血管损伤、组织出血、消化道黏膜糜烂、淋巴器官出现病变及实质器官的退行性变化为特征,是影响水禽养殖业的重要疫病。
     目前,主要依靠接种灭活疫苗和鸡胚化弱毒苗来预防鸭瘟的发生。灭活疫苗安全性好,但免疫维持期短、剂量较大、成本较高;鸡胚化弱毒苗虽然免疫效果较好,但是存在毒力返强和隐性带毒等安全隐患,而且现有的诊断方法无法区别自然感染野毒和弱毒疫苗免疫的动物。因此,研制更为安全有效的新型基因工程疫苗具有重要的理论和应用价值。
     生物信息学分析表明鸭瘟病毒糖蛋白C (glycoprotein C, gC)在不同毒株间高度保守,原核表达结果显示gC具有良好的免疫原性。因此,本研究选择gC基因作为保护性抗原基因,将其克隆至真核表达载体pcDNA3.1(+)以构建鸭瘟病毒gC基因疫苗。酶切分析和间接免疫荧光法证实gC基因正确插入并能够在COS7细胞中表达。为了大量获取构建的真核表达质粒,本研究初步摸索了该质粒高密度发酵的条件,随后进行了质粒大抽和纯化,分光光度计、酶切分析和琼脂糖电泳结果表明获得的质粒杂质少、超螺旋结构含量达90%以上。
     为了阐明免疫佐剂及免疫途径对鸭瘟病毒gC基因疫苗的影响,本研究应用gC特异的基于TaqMan探针的定量PCR分析脂质体/gC基因疫苗复合物及壳聚糖/gC基因疫苗复合物通过肌注、口服、滴鼻等途径进入鸭体内后在各组织器官的分布规律,同时与基因枪轰击和肌注裸质粒不同剂量进行比较。试验结果表明脂质体和壳聚糖能够有效提高鸭瘟病毒gC基因疫苗在鸭体内的分布,而基因枪轰击的转染效率最高,口服有利于基因疫苗在消化道和法氏囊的分布,滴鼻能提高基因疫苗在呼吸道的分布,肌肉注射能使基因疫苗更快速地分布到各组织;另外,肌肉注射和基因枪轰击法均与免疫剂量呈现一定的相关性。
     当前3株已经完成全基因测序的鸭瘟病毒,CHv株基因组最大,由162175碱基对构成。作为一种强毒株,对其进行基因重组研究,能够更有效地揭示基因在鸭瘟病毒中的作用。本研究首先以CHv gC基因为靶位点,克隆了该基因两侧各1.3kb左右的片段作为同源臂,将增强绿色荧光蛋白(enhanced green fluorescent protein, EGFP)基因插入其中,构建了被EGFP替换了gC基因前1246bp的DPV重组转移载体pUC-△gC-EGFP。为了有效控制EGFP基因的插入方向以使其表达不受gC启动子影响,本研究首先删除了pEGFP-C1上Xho Ⅰ和Xba Ⅰ(不包括二者)之间的多克隆位点,接着通过PCR的方式扩增出包含CMV立即早期启动子、EGFP基因、转录终止信号SV40polyA共1579bp的片段,再将其克隆至T载体。随后,将pUC-△gC-EGFP质粒和DPV CHv共同转染鸭胚成纤维细胞(duck embryo fibroblast, DEF),倒置荧光显微镜下结合绿色荧光进行空斑纯化,成功获得了纯化的表达EGFP基因的DPVgC缺失株DPV-△gC-EGFP.
     将DPV-△gC-EGFP在DEF上连续传30代以上,并进行PCR检测、测序分析及其在鸭体内、体外生物学特性研究。DPV-△gC-EGFP在DEF上连续传代表明EGFP基因能够稳定遗传并正确表达。PCR和测序结果显示DPV-△gC-EGFP中gC片段内部序列与预期一致。与DPV亲本株相比,DPV-△gC-EGFP病毒总的滴度下降了约50倍,受影响最大的是病毒释放到上清中的滴度下降了40倍;MEM液体培养基中可见DPV-△gC-EGFP主要通过细胞间传递;透射电镜下,很难发现游离的DPV-△gC-EGFP病毒颗粒;这些结果表明gC在病毒的装配中发挥作用。另外,可以观察到感染DPV-△gC-EGFP的DEF形成了多核巨细胞病毒,说明gC在鸭瘟病毒形成的细胞融合中发挥抑制作用。接种鸭的试验表明DPV-△gC-EGFP致病性降低,能诱发一定的中和抗体,并为接种鸭提供100%抗强毒攻击的保护,揭示DPV gC缺失株有望发展成为有效预防鸭瘟的基因工程疫苗。
     鸭瘟病毒糖蛋白E (glycoprotein E, gE)基因在不同毒株间相似性为99%,因为具有较好的免疫原性和免疫反应性,所以已经建立了基于gE的ELISA方法。鉴于在α-疱疹病毒中gE是重要的毒力基因,本研究构建了表达EGFP的鸭瘟病毒gE缺失株DPV-△gE-EGFP。PCR、测序分析及免疫荧光法结果表明DPV-△gE-EGFP中gE基因被EGFP基因替换,不再表达gE蛋白。连续传代结果说明DPV-△gE-EGFP能够稳定遗传并表达EGFP蛋白。与亲本株相比,DPV-△gE-EGFP病毒滴度降低约9倍,形成空斑能力显著降低,一步生长曲线表明病毒感染前期增殖减慢,这些结果表明gE的缺失影响了病毒在细胞间传递的能力。动物试验方面,DPV-△gE-EGFP除了引起接种鸭轻微的体温升高,未表现其它异常症状,说明gE基因是鸭瘟病毒重要的毒力基因。从中和抗体试验结果来看,虽然与gC缺失株相比显著降低,但是DPV-△gE-EGFP同样可为接种鸭提供100%抗强毒攻击的能力,并且接种强毒后,无异常临床变化,揭示DPV gE缺失株更有希望发展成为一种有效预防鸭瘟的标记疫苗。
As one virus of genus Mardivirus, subfamily Alphaherpesvirinae, family Herpesviridae, order Herpesvirales, duck plague virus (DPV), a pan-tropic systemic infection virus, is the cause of an acute contagious disease-duck plague-of ducks, geese, and swans, which is characterized by vascular damage, tissue hemorrhages, digestive mucosal eruptions, lesions of lymphoid organs, and degenerative changes in parenchymatous organs. The disease is an important epidemic affecting waterfowl breeding industry
     At present, the prevention and control of duck plague is mainly depended on both live attenuated and inactivated vaccines. Inactivated vaccines are relative safety, but give only short-term immunity, and need larger doses and higher costs. Although high immunogenicity and longer term of immunoprotection do live attenuated vaccines possess, they still have some problem need to solve, including the latent dangers of persistence infection and virulence reversion, and the difficulty in distinguishing vaccinated birds from infected ones. Therefore, it has important practical significance to develop more safe and effective genetically engineered vaccines.
     Bioinformatic analysis showed that glycoprotein C of duck plague virus is highly conserved among different strains. And it was proved by prokaryotic expression that glycoprotein C had high immunogenicity. Accordingly, gC gene was chosed as the protective antigen gene and subcloned into the eukaryotic expression vector pcDNA3.1(+) in this study. The results of restriction endonuclease digestion and indirect immunofluorescence assay confirmed that the gC gene was inserted correctly and expressed in COS-7cells. In order to obtain a large number of the eukaryotic expression plasmid, the condition of high-cell-density fermentation was studied. Obtained from maxipreparation and purification, plasmid was analyzed by spectrophotometer, restriction analysis and agarose gel electrophoresis. It was showed that plasmid contained little impurity and the supercoiled structure up to90%.
     In order to clarify the effect of immunological adjuvant and immune pathways, complexes of gC gene vaccine with lipid or chitosan were inoculated into ducks by intramuscular, oral and intranasal. At the same time, gC gene vaccine was inoculated into ducks with the gene gun bombardment and intramuscular injection of different doses. And then, the tissue distribution characteristics of gC gene vaccine was analyzed by quantitative real-time PCR based TaqManTM probe. The results showed that1) the liposomes and chitosan can effectively improve the tissue distribution of gC gene vaccine in ducks; 2) the gene gun bombardment has the highest transfection efficiency;3) oral vaccination benefits the distribution of gene vaccine in the digestive tract and bursa of Fabricius;4) intranasal immunization can improve the distribution of gene vaccine in respiratory tract and brain;5) intramuscular injection mediate more rapid plasmid distribution in duck tissues;6) intramuscular and gene gun bombardment are dose-related.
     CHv strain has the largest genome among three strains of duck plague virus which genomes have been sequenced completely. As a virulent strain, CHV strain was choosed to more effectively reveal the role of the gene in duck plague virus by the recombinant studies. In the present study, gC gene was chosed as target gene. Firstly, two fragments flanking gC gene about1.3kb were amplified and subcloned into pUC19. Then, a DPV transfer vector pUC-AgC-EGFP was constructed, which contained an EGFP reporter. In order to effectively control the insertion direction of the EGFP gene to express against gC promoter, multiple cloning sites between Xho I and Xba I pEGFP-C1were first deleted. And then, a1579bp fragment, which contained the sequences of Human cytomegalovirus (CMV), immediate early promoter and SV40early mRNA polyadenylation signal, was amplified and clonee into T vector. PCR fragment, Co-transfected pUC-△gC-EGFP with DPV CHv in DEF, a recombinant DPV, designated as DPV-AgC-EGFP, was successfully obtained after plague purification which combined with green fluorescent under inverted fluorescence microscope.
     DPV-AgC-EGFP was examined by continuous passage30or more, PCR, sequencing and biological characteristics in vitro and in vivo. It was shown that EGFP gene can be stably inherited and correctly expressed. The results of PCR and sequencing showed that the gC gene sequence of DPV-AgC-EGFP in line with expectations. Compared with DPV parental strain, the total virus titer of DPV-AgC-EGFP decreased by approximately50times, and the supernatant virus titer was mostly affected and decreased40times. Additionally, the DPV-AgC-EGFP mainly passed through the cell in MEM and it is difficult to find free the DPV-AgC-EGFP virus particles under transmission electron microscope. All above results showed that the DPV gC played a role in virus assembly. In addition, the fact that DEF infected with DPV-AgC-EGFP DEF formed multinucleated giant cells showed that gc maybe inhibit cell fusion. Furthermore, the results in vivo showed DPV-AgC-EGFP reduced the pathogenicity, induced neutralizing antibodies and protected completely vaccinated ducks from challenge of DPV virulent. Therefore, the gC-deleted DPV can be developed to an effective genetically engineered vaccine for duck plague.
     The similarity of gE gene between different DPV strains Duck Plague virus was99%. A gE-based ELISA method has been established for its good immunogenicity and reactivity. Named as DPV-AgE-EGFP, a gE-deleted DPV, which can express EGFP, was constructed since the gE gene of alphaherpesvirus was an important virulence gene. The results of PCR, sequencing and immunofluorescence assay showed that the gE gene of DPV-△gE-EGFP was replaced by EGFP gene and cannot be expressed no longer. The results of continuous passage showed that the DPV-△gE-EGFP was able to be stably inherited and express EGFP protein. Compared with the DPV parental strain, the virus titer of DPV-AgE-EGFP reduced by about9times, the plaque formed by DPV-AgE-EGFP also decreased, and it was shown by one step growth curves that the proliferation of DPV-AgE-EGFP slowed down in early infection. These results indicated that the deletion of gE impacted the ability of DPV through cell-to-cell spread. Moreover, The results obtained of in vivo studies revealed that the gE gene play an important role in virulence of DPV because there is no abnormal phenomenon in clinical symptoms except slightly increasing in temperature in ducks vaccinated with DPV-△gE-EGFP. Although the neutralizing antibodies induced by DPV-△gE-EGFP were significantly lower than that induced by DPV-AgC-EGFP, the gE-deleted mutant induced completely protection in inoculated ducks from manifestation of clinical symptoms after viral challenge. The results demonstrate that the gE-deletion mutant is good candidate for DPV marker vaccine.
引文
[1]Baudet A. Mortality in ducks in the Netherlands caused by a filtrable virus:fowl plague[J]. Tijdschrift voor Diergeneeskunde,1923,50:1073-1079.
    [2]黄引贤,欧守杼,邝荣禄,等.鸭瘟病毒的研究[J].华南农业大学学报(自然科学版),1980,1(1):2]-36.
    [3]Sandhu T S, Metwally S A. Duck Virus Enteritis (Duck Plague). In:Diseases of Poultry,12th ed[M]. Ames:Blackwell Publishing,2008,384-393.
    [4]Fauquet C, Mayo M, Maniloff J, et al. Virus taxonomy:Eighth report of the international committee on taxonomy of viruses[M]. London:Elsevier Academic Press,2005,208.
    [5]殷震,刘景华.动物病毒学(第二版)[M].北京:科学出版社,1997,1073-1077.
    [6]Breese S S, Dardiri A H. Electron microscopic characterization of duck plague virus[J]. Virology,1968,34(1):160-169.
    [7]Plummer P J, Alefantis T, Kaplan S, et al. Detection of duck enteritis virus by polymerase chain reaction[J]. Avian Diseases,1998,42(3):554-564.
    [8]King A M Q, Lefkowitz E, Adams M J, et al. Virus Taxonomy:Ninth Report of the International Committee on Taxonomy of Viruses[M]. San Diego:Elsevier Academic Press, 2011,99-122.
    [9]Hess W R, Dardiri A H. Some properties of the virus of duck plague[J]. Archiv fur die Gesamte Virusforschung,1968,24(1):148-153.
    [10]Spieker J O, Yuill T M, Burgess E C. Virulence of six strains of duck plague virus in eight waterfowl species[J]. Journal of Wildlife Diseases,1996,32(3):453-460.
    [11]Wolf K, Burke C N, Quimby M C. Duck viral enteritis:microtiter plate isolation and neutralization test using the duck embryo fibroblast cell line[J]. Avian Diseases,1974,18(3): 427-434.
    [12]Islam M R, Nessa J, Halder K M. Detection of duck plague virus antigen in tissues by immunoperoxidase staining[J]. Avian Pathology,1993,22(2):389-393.
    [13]Yang F-L, Jia W-X, Yue H, et al. Development of quantitative real-time polymerase chain reaction for duck enteritis virus DNA[J]. Avian Diseases,2005,49(3):397-400.
    [14]程安春,廖永洪,朱德康,等.原位杂交检测人工感染鸭体内鸭瘟病毒的复制[J].病毒学报,2008,24(1):72-75.
    [15]Ji J, Du L Q, Xie Q M, et al. Rapid diagnosis of duck plagues virus infection by loop-mediated isothermal amplification[J]. Research in Veterinary Science,2009,87(1): 53-58.
    [16]Jia R Y, Cheng A C, Wang M S, et al. Development and evaluation of an antigen-capture ELISA for detection of the UL24 antigen of the duck enteritis virus, based on a polyclonal antibody against the UL24 expression protein[J]. Journal of Virological Methods,2009, 161(1):38-43.
    [17]He Q, Cheng A, Wang M, et al. Recombinant UL16 antigen-based indirect ELISA for serodiagnosis of duck viral enteritis[J]. Journal of Virological Methods,2013,189(1): 105-109.
    [18]程安春,韩晓英,汪铭书,等.用间接免疫荧光染色法检测鸭病毒性肠炎病毒在人工感染鸭体内的侵染过程和分布规律[J].畜牧兽医学报,2007,38(9):942-946.
    [19]Shawky S, Schat K A. Latency sites and reactivation of duck enteritis virus[J]. Avian Diseases, 2002,46(2):308-313.
    [20]岳华,杨发龙,景波,等.鸭瘟病毒在雏鸭体内的动态定量分布及其潜伏部位研究[J].中国预防兽医学报,2007,29(9):671-675.
    [21]Qi X F, Yang X Y, Cheng A C, et al. Replication kinetics of duck virus enteritis vaccine virus in ducklings immunized by the mucosal or systemic route using real-time quantitative PCR[J]. Research in Veterinary Science,2009,86(1):63-67.
    [22]Shawky S A, Sandhu T S. Inactivated vaccine for protection against duck virus enteritis[J]. Avian Diseases,1997,41(2):461-468.
    [23]Proctor S J, Ritchie A E, Erickson G A. Ultrastructural characterization and hepatic pathogenesis of duck plague virus[J]. Archives of Virology,1976,50(1-2):83-95.
    [24]乔代蓉.限制性内切酶分析鸭瘟病毒DNA[J].四川农业大学学报,1992,10(1):172-177.
    [25]Gardner R, Wilkerson J, Johnson J C. Molecular characterization of the DNA of Anatid herpesvirus 1[J]. Intervirology,1993,36(2):99-112.
    [26]程安春,汪铭书,刘菲,等.PCR在鸭瘟临床诊断和免疫及致病机理研究中的初步应用[J].病毒学报,2004,20(4):364-370.
    [27]郭宵峰,廖明,严英华,等.利用PCR检测鸭瘟病毒[J].中国兽医科技,2002,32(4):13-16.
    [28]Pritchard L I, Morrissy C, Van P'huc K, mat. Development of a polymerase chain reaction to detect Vietnamese isolates of duck virus enteritis[J]. Veterinary Microbiology,1999,68(1-2): 149-156.
    [29]Hansen W R, Brown S E, Nashold S W, et al. Identification of duck plague virus by polymerase chain reaction[J]. Avian Diseases,1999,43(1):106-115.
    [30]Zhao Y, Wang J W. Characterization of duck enteritis virus US6, US7 and US8 gene[J]. Intervirology,2010,53(3):141-145.
    [31]Zhao Y, Wang J W, Ma B, et al. Molecular analysis of duck enteritis virus US3, US4, and US5 gene[J]. Virus Genes,2009,38:289-294.
    [32]Zhao Y, Wang J W, Liu F, et al. Molecular analysis of US10, S3, and US2 in duck enteritis virus[J]. Virus Genes,2009,38:289-294.
    [33]Pan H-q, Wang N, Liu L, et al. Molecular Characterization of the Duck Enteritis Virus UL4 Gene[J]. Virologica Sinica,2009,24(3):171-178.
    [34]Liu X L, Liu S W, Li H X, et al. Unique Sequence Characteristics of Genes in the Leftmost Region of Unique Long Region in Duck Enteritis Virus[J]. Intervirology,2009,52(5): 291-300.
    [35]Li H X, Liu S W, Han Z X, et al. Comparative analysis of the genes UL1 through UL7 of the duck enteritis virus and other herpesviruses of the subfamily Alphaherpesvirinae[J]. Genetics and Molecular Biology,2009,32(1):121-128.
    [36]Hu Y, Zhou H B, Yu Z J, et al. Characterization of the genes encoding complete US 10, SORF3, and US2 proteins from duck enteritis virus[J]. Virus Genes,2009,38(2):295-301.
    [37]Pan H, Cao R, Liu L, et al. Molecular cloning and sequence analysis of the duck enteritis virus UL5 gene[J]. Virus Research,2008,136(1-2):152-156.
    [38]Liu S, Li H, Li Y, et al. Phylogeny of duck enteritis virus:evolutionary relationship in the family Herpesviridae[J]. Intervirology,2008,51(3):151-165.
    [39]Liu F, Ma B, Zhao Y, et al. Characterization of the gene encoding glycoprotein C of duck enteritis virus[J]. Virus Genes,2008,37(3):328-332.
    [40]An R, Li H, Han Z, et al. The UL31 to UL35 gene sequences of duck enteritis virus correspond to their homologs in herpes simplex virus 1[J]. Acta Virologica,2008,52(1): 23-30.
    [41]Liu S, Chen S, Li H, et al. Molecular characterization of the herpes simplex virus 1 (HSV-1) homologues, UL25 to UL30, in duck enteritis virus (DEV)[J]. Gene,2007,401(1-2):88-96.
    [42]Li H, Liu S, Kong X. Characterization of the genes encoding UL24, TK and gH proteins from duck enteritis virus (DEV):a proof for the classification of DEV[J]. Virus Genes,2006,33(2): 221-227.
    [43]Han X-j, Wang J-w, Ma B. Cloning and Sequence of Glycoprotein H Gene of Duck Plague Virus[J]. Agricultural Sciences in China,2006,5(5):397-402.
    [44]Han X-j, Wang J-w. Cloning of thymidine kinase gene of duck plague virus using degenerate PCR[J]. Agricultural Sciences in China,2005,4(8):634-640.
    [45]程安春,汪铭书,文明,等.鸭病毒性肠炎病毒基因文库的构建及其核衣壳蛋白基因的发现、克隆与鉴定[J].高技术通讯,2006,16(9):948-953.
    [46]Wu Y, Cheng A, Wang M, et al. Complete Genomic Sequence of Chinese Virulent Duck Enteritis Virus[J]. Journal of Virology,2012,86(10):5965.
    [47]Li Y F, Huang B, Ma X L, et al. Molecular characterization of the genome of duck enteritis virus[J]. Virology,2009,391(2):151-161.
    [48]Wang J, Hoper D, Beer M, et al. Complete genome sequence of virulent duck enteritis virus (DEV) strain 2085 and comparison with genome sequences of virulent and attenuated DEV strains[J]. Virus Research,2011,160(1-2):316-325.
    [49]Wu Y, Cheng A, Wang M, et al. Comparative genomic analysis of duck enteritis virus strains[J]. Journal of Virology,2012,86(24):13841-13842.
    [50]范薇,程安春,汪铭书,等.鸭瘟病毒gD基因胞外区的原核表达及ELISA检测方法的建立与应用[J].中国兽医科学,2012,42(5):488-494.
    [51]He Q, Cheng A, Wang M, et al. Replication kinetics of duck enteritis virus UL16 gene in vitro[J]. Virology Journal,2012,9(1):281.
    [52]Cheng A, Zhang S, Zhang X, et al. Prokaryotic expression and characteristics of duck enteritis virus UL29 gene[J]. Acta Virologica,2012,56(4):293-304.
    [53]Aravind S, Patil B R, Dey S, et al. Recombinant UL30 antigen-based single serum dilution ELISA for detection of duck viral enteritis[J]. Journal of Virological Methods,2012,185(2): 234-238.
    [54]罗丹丹,程安春,汪铭书,等.鸭瘟病毒UL47基因克隆及其分子特性分析[J].中国兽医学报,2011,30(1):29-35.
    [55]Zhu H, Li H, Han Z, et al. Identification of a spliced gene from duck enteritis virus encoding a protein homologous to UL15 of herpes simplex virus 1[J]. Virology Journal,2011,8(1): 156-156.
    [56]Zhong X-R, Cheng A-C, Wang M-S, et al. Characteristics and function of the UL34 gene and its encoding protein in herpesvirus[J]. Reviews in Medical Microbiology,2011,22(2):22-27.
    [57]Zhang S, Xiang J, Cheng A, et al. Characterization of duck enteritis virus UL53 gene and glycoprotein K[J]. Virology-Journal,2011,8(1):235.
    [58]Zhang S, Cheng A, Wang M. Characteristics and functional roles of glycoprotein K of herpesviruses[J]. Reviews in Medical Microbiology,2011,22(4):90-95.
    [59]Xiang J, Zhang S, Cheng A, et al. Expression and characterization of recombinant VP19c protein and N-terminal from Duck Enteritis Virus[J]. Virology Journal,2011,8(1):82.
    [60]Wu Y, Cheng A, Wang M, et al. Serologic Detection of Duck Enteritis Virus Using an Indirect ELISA Based on Recombinant UL55 Protein[J]. Avian Diseases.2011,55(4):626-632.
    [61]Wu Y, Cheng A, Wang M, et al. Establishment of real-time quantitative reverse transcription polymerase chain reaction assay for transcriptional analysis of duck enteritis virus UL55 gene[J]. Virology Journal,2011,8(1):266.
    [62]Wu Y, Cheng A, Wang M, et al. Characterization of the duck enteritis virus UL55 protein[J]. Virology Journal,2011,8(1):256.
    [63]Liu X, Han Z, Shao Y, et al. Different linkages in the long and short regions of the genomes of duck enteritis virus Clone-03 and VAC Strains[J]. Virology Journal,2011,8(1):200-200.
    [64]Li L, Cheng A, Wang M, et al. Expression and Characterization of Duck Enteritis Virus gI Gene[J]. Virology Journal,2011,8(1):241.
    [65]Chang H, Cheng A, Wang M, et al. Expression and immunohistochemical distribution of duck plague virus glycoprotein gE in infected ducks[J]. Avian Diseases,2011,55(1):97-102.
    [66]Chang H, Cheng A, Wang M, et al. Immunofluorescence analysis of duck plague virus gE protein on DPV-infected ducks[J]. Virology Journal,2011,8(1):19.
    [67]蔡铭升,程安春,汪铭书,等.鸭瘟病毒UL35基因克隆、原核表达及在病毒感染宿主中的亚细胞定位[J].病毒学报,2010,26(2):143-149.
    [68]Zou Q, Sun K, Cheng A, et al. Detection of anatid herpesvirus 1 gC gene by TaqMan fluorescent quantitative real-time PCR with specific primers and probe[J]. Virology Journal, 2010,7(1):37.
    [69]Zhang S, Xiang J, Cheng A, et al. Production, purification and characterization of polyclonal antibody against the truncated gK of the duck enteritis virus[J]. Virology Journal,2010,7(1): 241.
    [70]Zhang S, Ma G, Xiang J, et al. Expressing gK gene of duck enteritis virus guided by bioinformatics and its applied prospect in diagnosis[J]. Virology Journal,2010,7(1):168.
    [71]Xie W, Cheng A, Wang M, et al. Molecular cloning and characterization of the UL31 gene from duck enteritis virus[J]. Molecular Biology Reports,2010,37(3):1495-1503.
    [72]Xiang J, Ma G, Zhang S, et al. Expression and intracellular localization of duck enteritis virus pUL38 protein[J]. Virology Journal,2010,7:162.
    [73]Wen Y, Cheng A, Wang M, et al. A Thymidine Kinase recombinant protein-based ELISA for detecting antibodies to Duck Plague Virus[J]. Virology Journal,2010,7(1):77.
    [74]Shen C, Cheng A, Wang M, et al. Expression and distribution of the duck enteritis virus UL51 protein in experimentally infected ducks[J]. Avian Diseases,2010,54(2):939-947.
    [75]Shen C, Cheng A, Wang M, et al. Development and evaluation of an immunochromatographic strip test based on the recombinant UL51 protein for detecting antibody against duck enteritis virus[J]. Virology Journal,2010,7(1):268.
    [76]Shen A-M, Ma G-P, Cheng A-C, et al. Transcription phase, protein characteristics of DEV UL45 and prokaryotic expression, antibody preparation of the UL45 des-transmembrane domain[J]. Virology Journal,2010,7(1):232.
    [77]Lu L, Cheng A, Wang M, et al. Polyclonal antibody against the DPV UL46M protein can be a diagnostic candidate[J]. Virology Journal,2010,7(1):83.
    [78]Liu X, Han Z, Shao Y, et al. Identification of a novel linear B-cell epitope in the UL26 and UL26.5 proteins of Duck Enteritis Virus[J]. Virology Journal,2010,7(1):223.
    [79]Lian B, Xu C, Cheng A, et al. Identification and characterization of duck plague virus glycoprotein C gene and gene product[J]. Virology Journal,2010,7(1):349.
    [80]Chang H, Cheng A, Wang M, et al. Cloning, expression and characterization of gE protein of Duck plague virus[J]. Virology Journal,2010,7(1):120.
    [81]Cai M S, Cheng A C, Wang M S, et al. Characterization of the duck plague virus UL35 gene[J]. Intervirology,2010,53(6):408-416.
    [82]张瑶,程安春,汪铭书,等.鸭瘟病毒UL26.5基因的克隆和编码蛋白的亚细胞定位[J].中国兽医科学,2009,39(11):941-949.
    [83]王克雄,李慧听,李阳,等.鸭肠炎病毒VP22蛋白单克隆抗体的制备及鉴定[J].中国预防兽医学报,2009,31(9):721-725.
    [84]沈婵娟,程安春,汪铭书,等.鸭瘟病毒UL51基因在cos-7细胞中的瞬时表达[J].中国兽医科学,2009,39(10):859-865.
    [85]贾仁勇,程安春,汪铭书,等.鸭瘟病毒UL24基因的分子特征分析[J].中国兽医科学,2009,39(2):110-118.
    [86]程安春,廖永洪,汪铭书,等.生物素标记寡核苷酸探针原位检测石蜡切片鸭瘟病毒核酸[J].中国兽医学报,2009,29(4):403-408.
    [87]陈普成,柳金雄,曾青华,等.鸭肠炎病毒UL41、UL42基因的克隆与分析[J].中国预防兽医学报,2009,31(12):988-990.
    [88]蔡铭升,程安春,汪铭书,等.鸭瘟病毒VP26基因克隆和分子特性分析[J].畜牧兽医学报,2009,40(7):1112-1119.
    [89]Xin H Y, Cheng A C, Wang M S, et al. Identification and characterization of a duck enteritis virus US3-like gene[J]. Avian Diseases,2009,53(3):363-369.
    [90]Xie W, Cheng A, Wang M, et al. Expression and characterization of the UL31 protein from Duck enteritis virus[J]. Virology Journal,2009,6(1):19.
    [91]Shen C J, Guo Y F, Cheng A C, et al. Characterization of subcellular localization of duck enteritis virus UL51 protein[J]. Virology Journal,2009,6:92.
    [92]Shen C J, Cheng A C, Wang M S, et al. Identification and characterization of the duck enteritis virus UL51 gene[J]. Archives of Virology,2009,154(7):1061-1069.
    [93]Jia R, Cheng A, Wang M, et al. Cloning, Expression, Purification and Characterization of UL24 Partial Protein of Duck Enteritis Virus[J]. Intervirology,2009,52(6):326-334.
    [94]Jia R, Cheng A, Wang M, et al. Analysis of synonymous codon usage in the UL24 gene of duck enteritis virus[J]. Virus Genes,2009,38(1):96-103.
    [95]Guo Y, Cheng A, Wang M, et al. Development of TaqMan MGB fluorescent real-time PCR assay for the detection of anatid herpesvirus 1 [J]. Virology Journal,2009,6(1):71.
    [96]Chang H, Cheng A C, Wang M S, et al. Complete nucleotide sequence of the duck plague virus gE gene[J]. Archives of Virology,2009,154(1):163-165.
    [97]Cai M S, Cheng A C, Wang M S, et al. His6-Tagged UL35 Protein of Duck Plague Virus: Expression, Purification, and Production of Polyclonal Antibody [J]. Intervirology,2009, 52(3):141-151.
    [98]Cai M S, Cheng A C, Wang M S, et al. Characterization of Synonymous Codon Usage Bias in the Duck Plague Virus UL35 Gene[J]. Intervirology,2009,52(5):266-278.
    [99]Wang M, Lin D, Zhang S, et al. Prokaryotic expression of the truncated duck enteritis virus UL27 gene and characteristics of UL27 gene and its truncated product[J]. Acta Virologica, 2012,56(4):323-328.
    [100]张荷,毛君婷,杨颖,等.鸭肠炎病毒核衣壳蛋白受体的筛选与鉴定[J].病毒学报,2012,28(1):63-66.
    [101]Liu J, Chen P, Jiang Y, et al. Recombinant duck enteritis virus works as a single-dose vaccine in broilers providing rapid protection against H5N1 influenza infection[J]. Antiviral Research, 2013,97(3):329-333.
    [102]Liu J, Chen P, Jiang Y, et al. A duck enteritis virus-vectored bivalent live vaccine provides fast and complete protection against H5N1 avian influenza virus infection in ducks[J]. Journal of Virology,2011,85(21):10989-10998.
    [103]Yu X, Jia R, Huang J, et al. Attenuated Salmonella typhimurium delivering DNA vaccine encoding duck enteritis virus UL24 induced systemic and mucosal immune responses and conferred good protection against challenge[J]. Veterinary Research,2012,43(1):56.
    [104]Xiang J, Cheng A, Wang M, et al. Computational identification of microRNAs in anatid herpesvirus 1 genome[J]. Virology Journal,2012,9(1):93.
    [105]Yao Y, Smith L P, Petherbridge L, et al. Novel microRNAs encoded by duck enteritis virus[J]. Journal of General Virology,2012,93:1530-1536.
    [106]徐超,李欣然,信洪一,等.鸭瘟病毒gC基因的克隆及其分子特性分析[J].中国兽医科学,2008,38(12):1038-1044.
    [107]崔立虹,宋鸽,王晓东,等.鸭肠炎病毒gC糖蛋白胞外区优势抗原表位的筛选与鉴定[J].畜牧兽医学报,2011,42(8):1126-1133.
    [108]Wang J, Osterrieder N. Generation of an infectious clone of duck enteritis virus (DEV) and of a vectored DEV expressing hemagglutinin of H5N1 avian influenza virus[J]. Virus Research, 2011,159(1):23-31.
    [109]Yong H, Liu X, Zou Z, et al. Glycoprotein C plays a role in the adsorption of duck enteritis virus to chicken embryo fibroblasts cells and in infectivity[J]. Virus Research,2013,174(1-2): 1-7.
    [110]Wolff J A, Malone R W, Williams P, et al. Direct gene transfer into mouse muscle in vivo[J]. Science,1990,247(4949):1465-1468.
    [111]Williams R S, Johnston S A, Riedy M, et al. Introduction of foreign genes into tissues of living mice by DNA-coated microprojectiles[J]. Proceedings of the National Academy of Sciences of the United States of America,1991,88(7):2726-2730.
    [112]Tang D C, DeVit M, Johnston S A. Genetic immunization is a simple method for eliciting an immune response[J]. Nature,1992,356(6365):152-154.
    [113]Ulmer J B, Donnelly J J, Parker S E, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein[J]. Science,1993,259(5102):1745-1749.
    [114]孙树汉.核酸疫苗[M].上海:第二军医大学出版社,2000,53-107.
    [115]Ghanem A, Healey R, Adly F G. Current trends in separation of plasmid DNA vaccines:A review[J]. Analytica Chimica Acta,2013,760:1-15.
    [116]Rajawat Y S, Sundaresan N R, Ravindra P V, et al. Immune responses induced by DNA vaccines encoding Newcastle virus haemagglutinin and/or fusion proteins in maternal antibody-positive commercial broiler chicken[J]. British Poultry Science,2008,49(2): 111-117.
    [117]Chen J, Zhang F, Fang F, et al. Vaccination with hemagglutinin or neuraminidase DNA protects BALB/c mice against influenza virus infection in presence of maternal antibody[J]. BMC Infectious Diseases,2007,7:118.
    [118]Hsieh M K, Wu C C, Lin T L. DNA-mediated vaccination conferring protection against infectious bursal disease in broiler chickens in the presence of maternal antibody[J]. Vaccine, 2010,28(23):3936-3943.
    [119]周雪,程安春,汪铭书,等.基因枪轰击注射鸭α-干扰素基因疫苗对免疫鸭抗鸭瘟强毒感染的影响[J].中国兽医科学,2007,37(7):583-587.
    [120]程志萍,程安春,汪铭书,等.鸭IFN-a真核表达质粒基因枪免疫对鸭瘟弱毒疫苗免疫鸭细胞免疫调节作用初探[J].畜牧兽医学报,2007,38(10):1066-1071.
    [121]段坤,程安春,汪铭书,等.鸭α-干扰素基因疫苗在鸭体内动态分布规律的定量检测[J].中国兽医科学,2007,37(5):390-395.
    [122]Guo P X, Goebel S, Davis S, et al. Expression in recombinant vaccinia virus of the equine herpesvirus 1 gene encoding glycoprotein gpl3 and protection of immunized animals[J]. Journal of Virology,1989,63(10):4189-4198.
    [123]Awasthi S, Lubinski J M, Friedman H M. Immunization with HSV-1 glycoprotein C prevents immune evasion from complement and enhances the efficacy of an HSV-1 glycoprotein D subunit vaccine[J]. Vaccine,2009,27(49):6845-6853.
    [124]Awasthi S, Lubinski J M, Shaw C E, et al. Immunization with a vaccine combining herpes simplex virus 2 (HSV-2) glycoprotein C (gC) and gD subunits improves the protection of dorsal root ganglia in mice and reduces the frequency of recurrent vaginal shedding of HSV-2 DNA in guinea pigs compared to immunization with gD alone[J]. Journal of Virology,2011, 85(20):10472-10486.
    [125]Okazaki K, Honda E, Kono Y. Expression of bovine herpesvirus 1 glycoprotein gIII by a recombinant baculovirus in insect cells[J]. Journal of General Virology,1994,75:901-904.
    [126]Stokes A, Alber D G, Cameron R S, et al. The production of a truncated form of baculovirus expressed EHV-1 glycoprotein C and its role in protection of C3H (H-2Kk) mice against virus challenge[J]. Virus Research,1996,44(2):97-109.
    [127]Xuan X, Maeda K, Mikami T, et al. Characterization of canine herpesvirus glycoprotein C expressed by a recombinant baculovirus in insect cells[J]. Virus Research,1996,46(1-2): 57-64.
    [128]Ben-Porat T, DeMarchi J M, Lomniczi B, et al. Role of glycoproteins of pseudorabies virus in eliciting neutralizing antibodies[J]. Virology,1986,154(2):325-334.
    [129]Zuckermann F A, Zsak L, Mettenleiter T C, et al. Pseudorabies virus glycoprotein gIII is a major target antigen for murine and swine virus-specific cytotoxic T lymphocytes [J]. Journal of Virology,1990,64(2):802-812.
    [130]Mettenleiter T C. Immunobiology of pseudorabies (Aujeszky's Disease)[J]. Veterinary Immunology and Immunopathology,1996,54(1-4):221-229.
    [131]Gerdts V, Jons A, Mettenleiter T C. Potency of an experimental DNA vaccine against Aujeszky's disease in pigs[J]. Veterinary Microbiology,1999,66(1):1-13.
    [132]Xiao S, Chen H, Fang L, et al. Comparison of immune responses and protective efficacy of suicidal DNA vaccine and conventional DNA vaccine encoding glycoprotein C of pseudorabies virus in mice[J]. Vaccine,2004,22(3-4):345-351.
    [133]徐超.鸭瘟病毒gC基因的发现、原核表达和应用研究[D].雅安,四川农业大学,2008.
    [134]Winegar R A, Monforte J A, Suing K D, et al. Determination of tissue distribution of an intramuscular plasmid vaccine using PCR and in situ DNA hybridization[J]. Human Gene Therapy,1996,7:2185-2194.
    [135]Gonin P, Gaillard C. Gene transfer vector biodistribution:pivotal safety studies in clinical gene therapy development[J]. Gene Therapy,2004,11:S98-S108.
    [136]Higuchi R, Fockler C, Dollinger G, et al. Kinetic PCR Analysis:Real-time Monitoring of DNA Amplification Reactions[J]. Bio/Technology,1993,11(9):1026-1030.
    [137]Higuchi R, Dollinger G, Walsh P S, et al. Simultaneous amplification and detection of specific DNA sequences[J]. Bio/Technology,1992,10(4):413-417.
    [138]Bustin S A, Benes V, Garson J A, et al. The MIQE guidelines:minimum information for publication of quantitative real-time PCR experiments [J]. Clinical Chemistry,2009,55(4): 611-622.
    [139]Bustin S A. Developments in real-time PCR research and molecular diagnostics[J]. Expert review of molecular diagnostics,2010,10(6):713-715.
    [140]Kubista M, Andrade J M, Bengtsson M, et al. The real-time polymerase chain reaction[J]. Molecular Aspects of Medicine,2006,27(2-3):95-125.
    [141]Tuomela M, Malm M, Wallen M, et al. Biodistribution and general safety of a naked DNA plasmid, GTU-MultiHIV, in a rat, using a quantitative PCR method[J]. Vaccine,2005,23(7): 890-896.
    [142]Walther W, Minow T, Martin R, et al. Uptake, biodistribution, and time course of naked plasmid DNA trafficking after intratumoral in vivo jet injection[J]. Human Gene Therapy, 2006,17(6):611-624.
    [143]Plog M S, Guyre C A, Roberts B L, et al. Preclinical safety and biodistribution of adenovirus-based cancer vaccines after intradermal delivery [J]. Human Gene Therapy,2006, 17(7):705-716.
    [144]Liu C, Fan M, Xu Q, et al. Biodistribution and expression of targeted fusion anti-caries DNA vaccine pGJA-P/VAX in mice[J]. Journal of Gene Medicine,2008,10(3):298-305.
    [145]Fu J, Li D, Xia S, et al. Absolute Quantification of Plasmid DNA by Real-time PCR with Genomic DNA as External Standard and Its Application to a Biodistribution Study of an HIV DNA Vaccine[J]. Analytical Sciences,2009,25(5):675-680.
    [146]Heid C, Stevens J, Livak K, et al. Real time quantitative PCR[J]. Genome Research,1996, 6(10):986-994.
    [147]Clegg R M. Fluorescence resonance energy transfer[J]. Current Opinion in Biotechnology, 1995,6(1):103-110.
    [148]Devlin J M, Browning G F, Gilkerson J R. A glycoprotein I-and glycoprotein E-deficient mutant of infectious laryngotracheitis virus exhibits impaired cell-to-cell spread in cultured cells[J]. Archives of Virology,2006,151(7):1281-1289.
    [149]Schumacher D, Tischer B K, Reddy S M, et al. Glycoproteins E and I of Marek's disease virus serotype 1 are essential for virus growth in cultured cells[J]. Journal of Virology,2001,75(23): 11307-11318.
    [150]Tsujimura K, Yamanaka T, Kondo T, et al. Pathogenicity and immunogenicity of equine herpesvirus type 1 mutants defective in either gI or gE gene in murine and hamster models[J]. Journal of Veterinary Medical Science,2006,68(10):1029-1038.
    [151]Chowdhury S I, Lee B J, Ozkul A, et al. Bovine herpesvirus 5 glycoprotein E is important for neuroinvasiveness and neurovirulence in the olfactory pathway of the rabbit[J]. Journal of Virology,2000,74(5):2094-2106.
    [152]Rebordosa X, Pinol J, Perez-Pons J A, et al. Glycoprotein E of bovine herpesvirus type 1 is involved in virus transmission by direct cell-to-cell spread[J]. Virus Research,1996,45(1): 59-68.
    [153]Saldanha C E, Lubinski J, Martin C, et al. Herpes simplex virus type 1 glycoprotein E domains involved in virus spread and disease[J]. Journal of Virology,2000,74(15): 6712-6719.
    [154]Collins W J, Johnson D C. Herpes simplex virus gE/gI expressed in epithelial cells interferes with cell-to-cell spread[J]. Journal of Virology,2003,77(4):2686-2695.
    [155]Johnson D C, Webb M, Wisner T W, et al. Herpes simplex virus gE/gI sorts nascent virions to epithelial cell junctions, promoting virus spread[J]. Journal of Virology,2001,75(2): 821-833.
    [156]Zerboni L, Berarducci B, Rajamani J, et al. Varicella-zoster virus glycoprotein E is a critical determinant of virulence in the SCID mouse-human model of neuropathogenesis[J]. Journal of Virology,2011,85(1):98-111.
    [157]Tsujimura K, Shiose T, Yamanaka T, et al. Equine herpesvirus type 1 mutant defective in glycoprotein E gene as candidate vaccine strain[J]. Journal of Veterinary Medical Science, 2009,71(11):1439-1448.
    [158]Al-Mubarak A, Simon J, Coats C, et al. Glycoprotein E (gE) specified by bovine herpesvirus type 5 (BHV-5) enables trans-neuronal virus spread and neurovirulence without being a structural component of enveloped virions[J]. Virology,2007,365(2):398-409.
    [159]Chowdhury S 1, Ross C S, Lee B J, et al. Construction and characterization of a glycoprotein E gene-deleted bovine herpesvirus type 1 recombinant[J]. American Journal of Veterinary Research,1999,60(2):227-232.
    [160]Kaashoek M J, van Engelenburg F A C, Moerman A, et al. Virulence and immunogenicity in calves of thymidine kinase-and glycoprotein E-negative bovine herpesvirus 1 mutants[J]. Veterinary Microbiology,1996,48(1-2):143-153.
    [161]Kalthoff D, Konig P, Trapp S, et al. Immunization and challenge experiments with a new modified live bovine herpesvirus type 1 marker vaccine prototype adjuvanted with a co-polymer[J]. Vaccine,2010,28(36):5871-5877.
    [162]Ali M A, Li Q, Fischer E R, et al. The insulin degrading enzyme binding domain of varicella-zoster virus (VZV) glycoprotein E is important for cell-to-cell spread and VZV infectivity, while a glycoprotein I binding domain is essential for infection[J]. Virology,2009, 386(2):270-279.
    [163]McGraw H M, Friedman H M. Herpes simplex virus type 1 glycoprotein E mediates retrograde spread from epithelial cells to neurites[J]. Journal of Virology,2009,83(10): 4791-4799.
    [164]Dingwell K S, Doering L C, Johnson D C. Glycoproteins E and I facilitate neuron-to-neuron spread of herpes simplex virus[J]. Journal of Virology,1995,69(11):7087-7098.
    [165]Dingwell K S, Johnson D C. The herpes simplex virus gE-gI complex facilitates cell-to-cell spread and binds to components of cell junctions[J]. Journal of Virology,1998,72(11): 8933-8942.
    [166]Matsumura T, Kondo T, Sugita S, et al. An Equine Herpesvirus Type 1 Recombinant with a Deletion in the gE and gI Genes Is Avirulent in Young Horses[J]. Virology,1998,242(1): 68-79.
    [167]Mijnes J D, Lutters B C, Vlot A C, et al. Structure-function analysis of the gE-gl complex of feline herpesvirus:mapping of gI domains required for gE-gI interaction, intracellular transport, and cell-to-cell spread[J]. Journal of Virology,1997,71(11):8397-8404.
    [168]Tyborowska J, Bienkowska-Szewczyk K, Rychlowski M, et al. The extracellular part of glycoprotein E of bovine herpesvirus 1 is sufficient for complex formation with glycoprotein I but not for cell-to-cell spread[J]. Archives of Virology,2000,145(2):333-351.
    [169]Kaashoek M J,Rijsewijk F A,Ruuls R C, et al.Virulence, immunogenicity and reactivation of bovine herpesvirus 1 mutants with a deletion in the gC, gG, gI, gE, or in both the gI and gE gene[J]. Vaccine,1998,16(8):802-809.
    [170]Vannie P, Capua I, Le Potier M F, et al. Marker vaccines and the impact of their use on diagnosis and prophylactic measures[J]. revue scientifique et technique de 1 office international des epizooties (REV SCI TECH OIE),2007,26(2):351-372.
    [171]Marchetti M, Trybala E, Superti F, et al. Inhibition of herpes simplex virus infection by lactoferrin is dependent on interference with the virus binding to glycosaminoglycans[J]. Virology,2004,318(1):405-413.
    [172]Rue C A, Ryan P. Characterization of pseudorabies virus glycoprotein C attachment to heparan sulfate proteoglycans[J]. Journal of General Virology,2002,83:301-309.
    [173]Mardberg K, Trybala E, Tufaro F, et al. Herpes simplex virus type 1 glycoprotein C is necessary for efficient infection of chondroitin sulfate-expressing gro2C cells[J]. Journal of General Virology,2002,83:291-300.
    [174]Mardberg K, Trybala E, Glorioso J C, et al. Mutational analysis of the major heparan sulfate-binding domain of herpes simplex virus type 1 glycoprotein C[J]. Journal of General Virology,2001,82:1941-1950.
    [175]Flynn S J, Ryan P. The receptor-binding domain of pseudorabies virus glycoprotein gC is composed of multiple discrete units that are functionally redundant[J]. Journal of Virology, 1996,70(3):1355-1364.
    [176]Shieh M T, WuDunn D, Montgomery R I, et al. Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans[J]. Journal of Cell Biology,1992,116(5):1273-1281.
    [177]Okazaki K, Matsuzaki T, Sugahara Y, et al. BHV-1 adsorption is mediated by the interaction of glycoprotein gIII with heparinlike moiety on the cell surface[J]. Virology,1991,181(2): 666-670.
    [178]WuDunn D, Spear P G. Initial interaction of herpes simplex virus with cells is binding to heparan sulfate[J]. Journal of Virology,1989,63(1):52-58.
    [179]Azab W, Tsujimur K, Maed K, et al. Glycoprotein C of equine herpesvirus 4 plays a role in viral binding to cell surface heparan sulfate[J]. Virus Research,2010,151:1-9.
    [180]Hook L M, Huang J, Jiang M, et al. Blocking antibody access to neutralizing domains on glycoproteins involved in entry as a novel mechanism of immune evasion by herpes simplex virus type 1 glycoproteins C and E[J]. Journal of Virology,2008,82(14):6935-6941.
    [181]Hook L M, Lubinski J M, Jiang M, et al. Herpes simplex virus type 1 and 2 glycoprotein C prevents complement-mediated neutralization induced by natural immunoglobulin M antibody[J]. Journal of Virology,2006,80(8):4038-4046.
    [182]Chang Y J, Jiang M, Lubinski J M, et al. Implications for herpes simplex virus vaccine strategies based on antibodies produced to herpes simplex virus type 1 glycoprotein gC immune evasion domains[J]. Vaccine,2005,23(38):4658-4665.
    [183]Lubinski J M, Wang L, Soulika A M, et al. Herpes simplex virus type 1 glycoprotein gC mediates immune evasion in vivo[J]. Journal of Virology,1998,72(10):8257-8263.
    [184]Huemer H P, Nowotny N, Crabb B S, et al. gp13 (EHV-gC):a complement receptor induced by equine herpesviruses[J]. Virus Research,1995,37(2):113-126.
    [185]Friedman H M, Cohen G H, Eisenberg R J, et al. Glycoprotein C of herpes simplex virus 1 acts as a receptor for the C3b complement component on infected cells[J]. Nature,1984, 309(5969):633-635.
    [186]周雪.鸭α-干扰素基因疫苗高密度发酵及免疫鸭抗鸭瘟强毒人工感染的研究[D].雅安,四川农业大学,2007.
    [187]Mao H Q, Roy K, Troung-Le V L, et al. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency[J]. Journal of Controlled Release,2001, 70(3):399-421.
    [188]蒋金凤.鸭肠炎病毒gC基因疫苗诱导BALB/c小鼠免疫发生的研究[D].雅安,四川农业大学,2010.
    [189]Rosada R S, de la Torre L G, Frantz F G, et al. Protection against tuberculosis by a single intranasal administration of DNA-hsp65 vaccine complexed with cationic liposomes[J]. BMC Immunology,2008,9:38.
    [190]蒋虹,乔红伟,丛喆,等SARS-CoV细胞空斑试验[J].中国比较医学杂志,200919(8):65-66.
    [191]Attanasio R, Olson R, Johnson J C. Improvement in plaquing methods for the enumeration of anatid herpesvirus (duck plague virus)[J]. Intervirology,1980,14(5-6):245-252.
    [192]Zhu L, Yi Y, Xu Z, et al. Growth, physicochemical properties, and morphogenesis of Chinese wild-type PRV Fa and its gene-deleted mutant strain PRV SA215[J]. Virology Journal,2011, 8(1):272.
    [193]郭宇飞,程安春,汪铭书,等.鸭病毒性肠炎病毒CH强毒株感染鸭胚成纤维细胞的超微结构观察[J].中国兽医学报,2005,25(6):632-635.
    [194]Bode C, Zhao G, Steinhagen F, et al. CpG DNA as a vaccine adjuvant[J]. Expert Review of Vaccines,2011,10(4):499-511.
    [195]韩新锋,程安春,汪铭书,等.小鹅瘟病毒VP3基因疫苗的构建及其诱导小鼠和鹅中和抗体的初报[J].高技术通讯,2008,18(5):542-549.
    [196]Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs[J]. Nucleic Acids Research,1987,15(20):8125-8148.
    [197]Kozak M. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes[J]. Proceedings of the National Academy of Sciences,1990,87(21): 8301-8305.
    [198]Kozak M. An analysis of vertebrate mRNA sequences:intimations of translational control[J]. The Journal of Cell Biology,1991,115(4):887-903.
    [199]李民,陈常庆.重组大肠杆菌高密度发酵研究进展[J].生物工程进展,2000,20(2):26-31.
    [200]Felgner P L, Gadek T R, Holm M, et al. Lipofection:a highly efficient, lipid-mediated DNA-transfection procedure[J]. Proceedings of the National Academy of Sciences of the United States of America,1987,84(21):7413-7417.
    [201]Mao S, Sun W, Kissel T. Chitosan-based formulations for delivery of DNA and siRNA[J]. Advanced Drug Delivery Reviews,2010,62(1):12-27.
    [202]Wolff J A, Dowty M E, Jiao S, et al. Expression of naked plasmids by cultured myotubes and entry of plasmids into T tubules and caveolae of mammalian skeletal muscle[J]. Journal of Cell Science,1992,103:1249-1259.
    [203]Davis H L, Whalen R G, Demeneix B A. Direct gene transfer into skeletal muscle in vivo: factors affecting efficiency of transfer and stability of expression[J]. Human Gene Therapy, 1993,4:151-159.
    [204]Danko I, Fritz J D, Jiao S, et al. Pharmacological enhancement of in vivo foreign gene expression in muscle[J]. Gene Therapy,1994,1(2):114-121.
    [205]练蓓.鸭瘟病毒gC基因部分特征分析及gC基因疫苗诱导鸭免疫发生的研究[D].雅安,四川农业大学,2011.
    [206]沈福晓.鸭瘟病毒gC基因疫苗在雏鸭体内的抗原表达时相和分布规律[D].雅安,四川农业大学,2010.
    [207]Fynan E F, Webster R G, Fuller D H, et al. DNA vaccines:protective immunizations by parenteral, mucosal, and gene-gun inoculations[J]. Proceedings of the National Academy of Sciences of the United States of America,1993,90(24):11478-11482.
    [208]Steinman R M. The Dendritic Cell System and its Role in Immunogenicity[J]. Annual Review of Immunology,1991,9(1):271-296.
    [209]Streilein J W. Skin-associated lymphoid tissues (SALT):origins and functions[J]. Journal of Investigative Dermatology,1983,80 Suppl:12s-16s.
    [210]Yang N S, Burkholder J, Roberts B, et al. In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment[J]. Proceedings of the National Academy of Sciences of the United States of America,1990,87(24):9568-9572.
    [211]邹庆.基于DEV gC基因FQ-PCR方法建立及gC基因疫苗在免疫小鼠体内分布规律的研究[D].雅安,四川农业大学,2010.
    [212]黎敏.小鹅瘟病毒VP3基因疫苗在免疫雏鹅体内动态分布及表达规律的研究[D].雅安, 四川农业大学,2007.
    [213]段坤.鸭α-干扰素核酸疫苗在鸭体内的动态分布及表达产物抗鸭瘟强毒效果初探[D].雅安,四川农业大学,2007.
    [214]Smith G A, Enquist L W. A self-recombining bacterial artificial chromosome and its application for analysis of herpesvirus pathogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97(9):4873-4878.
    [215]Delecluse H J, Hilsendegen T, Pich D, et al. Propagation and recovery of intact, infectious Epstein-Barr virus from prokaryotic to human cells[J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(14):8245-8250.
    [216]Messerle M, Crnkovic I, Hammerschmidt W, et al. Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome [J]. Proceedings of the National Academy of Sciences of the United States of America,1997,94(26):14759-14763.
    [217]Robbins A K, Whealy M E, Watson R J, et al. Pseudorabies virus gene encoding glycoprotein gIII is not essential for growth in tissue culture[J]. Journal of Virology,1986,59(3):635-645.
    [218]Pavlova S P, Veits J, Blohm U, et al. In vitro and in vivo characterization of glycoprotein C-deleted infectious laryngotracheitis virus[J]. Journal of General Virology,2010,91: 847-857.
    [219]Osterrieder N. Construction and characterization of an equine herpesvirus 1 glycoprotein C negative mutant[J]. Virus Research,1999,59(2):165-177.
    [220]Liang X, Babiuk L A, van Drunen Littel-van den Hurk S, et al. Bovine herpesvirus 1 attachment to permissive cells is mediated by its major glycoproteins gI, gIII, and gIV[J]. Journal of Virology,1991,65(3):1124-1132.
    [221]Holland T C, Homa F L, Marlin S D, et al. Herpes simplex virus type 1 glycoprotein C-negative mutants exhibit multiple phenotypes, including secretion of truncated glycoproteins[J]. Journal of Virology,1984,52(2):566-574.
    [222]Cohen J I, Seidel K E. Absence of varicella-zoster virus (VZV) glycoprotein V does not alter growth of VZV in vitro or sensitivity to heparin[J]. Journal of General Virology,1994,75: 3087-3093.
    [223]Davison A J. Herpesvirus systematics[J]. Veterinary Microbiology,2010,143(1):52-69.
    [224]Guo Y, Shen C, Cheng A, et al. Anatid herpesvirus 1 CH virulent strain induces syncytium and apoptosis in duck embryo fibroblast cultures[J]. Veterinary Microbiology,2009,138(3-4): 258-265.
    [225]Turner A, Bruun B, Minson T, et al. Glycoproteins gB, gD,and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a Cos cell transfection system[J]. Journal of Virology,1998,72(1):873-875.
    [226]Schreurs C, Mettenleiter T C, Zuckermann F, et al. Glycoprotein gIII of pseudorabies virus is multifunctional[J]. Journal of Virology,1988,62(7):2251-2257.
    [227]Lee G T-Y, Pogue-Geile K L, Pereirat L, et al. Expression of herpes simplex virus glycoprotein C from a DNA fragment inserted into the thymidine kinase gene of this virus[J]. Proceedings of the National Academy of Sciences of the United States of America,1982, 79(21):6612-6616.
    [228]Sattentau Q. Avoiding the void:cell-to-cell spread of human viruses[J]. Nature Reviews Microbiology,2008,6(11):815-826.
    [229]Mettenleiter T C, Schreurs C, Zuckermann F, et al. Role of glycoprotein gIII of pseudorabies virus in virulence[J]. Journal of Virology,1988,62(8):2712-2717.
    [230]Wang F, Zumbrun E E, Huang J, et al. Herpes simplex virus type 2 glycoprotein E is required for efficient virus spread from epithelial cells to neurons and for targeting viral proteins from the neuron cell body into axons[J]. Virology,2010,405(2):269-279.
    [231]van Engelenburg F A C, Kaashoek M J, Rijsewijk F A M, et al. A glycoprotein E deletion mutant of bovine herpesvirus 1 is avirulent in calves[J]. Journal of General Virology,1994, 75(9):2311-2318.
    [232]Neidhardt H, Schroder C H, Kaerner H C. Herpes simplex virus type 1 glycoprotein E is not indispensable for viral infectivity[J]. Journal of Virology,1987,61(2):600-603.
    [233]Ben-Porat T, DeMarchi J, Pendrys J, et al. Proteins specified by the short unique region of the genome of pseudorabies virus play a role in the release of virions from certain cells[J]. Journal of Virology,1986,57(1):191-196.
    [234]Mallory S, Sommer M, Arvin A M. Mutational analysis of the role of glycoprotein I in varicella-zoster virus replication and its effects on glycoprotein E conformation and trafficking[J]. Journal of Virology,1997,71(11):8279-8288.
    [235]Trapp S, Osterrieder N, Keil G M, et al. Mutagenesis of a bovine herpesvirus type 1 genome cloned as an infectious bacterial artificial chromosome:analysis of glycoprotein E and G double deletion mutants[J]. Journal of General Virology,2003,84:301-306.
    [236]Polcicova K, Goldsmith K, Rainish B L, et al. The extracellular domain of herpes simplex virus gE is indispensable for efficient cell-to-cell spread:evidence for gE/gI receptors[J]. Journal of Virology,2005,79(18):11990-12001.
    [237]Santos R A, Hatfield C C, Cole N L, et al. Varicella-Zoster Virus gE Escape Mutant VZV-MSP Exhibits an Accelerated Cell-to-Cell Spread Phenotype in both Infected Cell Cultures and SCID-hu Mice[J]. Virology,2000,275(2):306-317.
    [238]Kimman T G, de Wind N, Oei-Lie N, et al. Contribution of single genes within the unique short region of Aujeszky's disease virus (suid herpesvirus type 1) to virulence, pathogenesis and immunogenicity[J]. Journal of General Virology,1992,73:243-251.
    [239]Card J P, Whealy M E, Robbins A K, et al. Pseudorabies virus envelope glycoprotein gI influences both neurotropism and virulence during infection of the rat visual system[J]. Journal of Virology,1992,66(5):3032-3041.
    [240]Ackermann M, Engels M. Pro and contra IBR-eradication[J]. Veterinary Microbiology,2006, 113(3-4):293-302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700