模拟失重环境下BMP-2对成骨细胞诱导作用变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类在借助现代科学技术进行太空探险的同时,也遇到了许多意想不到的困难。如何在太空维持生命并有效地发挥自己的各种功能,这是人类在航天探险过程中遇到的十分重要和急需解决的课题。其中,失重性骨质疏松已经成为目前航天医学界研究的重点,因为在太空失重环境下人体的骨骼系统会发生一系列结构和功能的变化,主要表现在骨量丢失、骨骼脱钙、负钙平衡和骨力学性能下降,而且是非自限性的病理变化,长期暴露在失重环境中可能导致骨折、电解质平衡紊乱、泌尿系结石、肌肉功能下降等表现,对人类征服太空的梦想提出了严峻的挑战。通过人们的不懈努力,在探讨失重性骨质疏松发病机制和寻找有效对抗措施方面已经取得了许多成果,但是有些难题尚未取得突破性进展。
     现在比较一致的见解认为,失重时的骨丢失是一种局部机理起主导作用,并受多层次调节的复杂变化过程。也就是说,失重首先影响骨的再建系统,进而影响钙的内环境稳定调节系统,反过来再影响骨的再建系统。多数研究已经表明,失重和模拟失重导致的骨丢失是一个以骨形成抑制起主导作用的过程,因此成骨细胞和调节它的各种细胞因子,尤其是促进骨形成的因子之间的相互作用就成为目前研究的热点之一,这也是寻找有效对抗措施的重要突破口。骨形成蛋白(BMP)作为一种很强的促进骨质形成的细胞因子,在骨吸收方面也有重要的调节作用,近年来对它的研究非常广泛深入,但是在失重性骨质疏松中的相关研究却极少。因此,为了探讨失重环境下BMP在诱导成骨细胞发挥骨代谢作用方面
    
     第四军医大学博士学位论文 中文钓耍
    ttase
     的变化,以期进一步探索失重仕骨质丢失发病机末柳开辟新的对抗措施,我们设
     计并进行了如下研究:
     l 利用回转器建立模拟失重环境下大鼠颅骨成骨细P培养模型。对成骨活
     性标志物碱性磷酸酶(AlP)、骨钙素(OC)和体夕旧此能力u以确
     定模型的成立。
     二 采用一定齐临司叁诅BMPZ作为诱 咖入细 中,在主朗以失自摹付竟下
     及正常重力下比较不同的时间段成骨细胞表达碱性磷酸酶和骨钙素量的变
     化,以研究BMPZ fll=rsx同重力环杉引勺方齿骨细胞成骨能力诱导作用的变化。
     3 以破骨细胞活化因子(OPGL)和破骨细0因子(OPG)作为成骨细
     胞调节骨吸收代谢的标志物,在模拟失重和正常重力环境下,比较不同的时
     间段BMP-2诱导成骨细胞对这两种细胞因子表达的变化。
     结果发现:
     l 模拟失重环境下,成骨细胞对BMP-2诱导产生WN敏感性陶B,对OC
     的诱g敏感牲未见显著变化,提示成骨细胞对BMPZ的成骨诱导作用敏感性
     降低。
     2 模拟失重环摸和正常重力环境下,BMPZ诱导成骨细胞产生的Oo ITlrtrvA
     较非诱导组均有显著增高,产生的 OPGL d较非诱导组均显著陶氏。
     3 模拟失重环境下,BMP-2诱导成骨细胞产生的 Oo InRNA和 OPGL InRNA
     与正常重力环境下培养细胞的表现相比没有显著差异,但是蛋白表达较正常
     重力环境下细胞内的表达显著降低。提示模拟失重环境主要影响OPG和
     OPGL的转录后调节过程。
     4 模拟失重环境和正常重力环梭下,BMPZ诱导产生MwtA的表
     达比值均较4[@导组显著增高。
     5.模拟失重环境下,成肴细胞诱导BMP-2产生的OWPGLANA表达t0直
     与正常重力环杉n相比没有显著差异,提示BMI,J在促进骨吸收代谢的下调
     方面有独特的作用,并有应用于治疗失重性骨质疏松的前景。
     n
     (
    
     第o军医大学博士学位论文?RNZ
    ’、
     6.摸拟失重环境和正常重力环境下,BMP-2诱导产生OPG/OPG蛋白表达比值
     均较非诱导组有显著性增高。
     7.模拟失重环境下,成骨细胞诱导BMP-2产生的OIMpPGL蛋e表达t以彭咬
     正常重力环境下的表达比值有显著降低。
     总之,通过以上研究,我们认为:在模拟失重环境下,成骨细胞对BMPZ
     成骨诱导作用敏感性阐氏,但是BMPZ对成骨细胞介导的骨吸 棺显著的下
     调作用,一方面为失重性骨质疏松的发病机$揽收了有力的证据,另一方面为失
     重性骨质疏松的对抗措施提供了可能的新途径。
While human exploit the space taking advantage of modern technology, we also have encountered many unexpected problems. Among them the most important and urging one is how to sustain man's life and function effectively in space. Osteoporosis induced by microgravity, one of the serious diseases acquired in space, is now becoming a more and more absorbing target in the space medicine field. Exposure to microgravity or weightlessness will cause a series of malignant alterations to human's skeleton system, including loss of bone mass and bone mineral, declines in bone mechanical function and negative calcium balance which all cannot ameliorate automatically at all. A long period of time staying in space may lead to bone fracture, unstable in inner environment balance, stone forming
    
    
    in urine system and decline in muscle function as a result, which make great challenges toward realizing our dreams of conquering space. Although scientists have achieved fruitful success during investigation of pathogenesis of osteoporosis under microgravity and finding effective countermeasures, several difficult problems are remained unsolved yet.
    Until now it's well recognized that the bone loss under microgravity is caused by a malfunction in focal area concerning many complex modulation systems. Studies have confirmed that the decline of bone formation is mainly responsible for the bone loss induced by microgravity or weightlessness. So the mutual reaction between osteoblasts and their regulators-relative growth factors has now become a focus in this field, which will also be one of the break points in finding effective countermeasures. Bone morphogenetic proteins, as a proteins family which have remarkable stimulation both on bone formation and on bone absorption, are studied profoundly and exclusively in recent years. But they are seldom concerned in studies of osteoporosis induced by microgravity. In terms of this context we designed and carried out the experiment below in order to uncover the alterations on the induction of osteoblasts by BMP under simulated weightlessness and to explore the further pathogenesis in osteoporosis induced by simulated weightlessnes, expecting to find any possibilities of new countermeasures.
    1. Study on culture of osteoblasts from neonatal rat's calvaria in simulated weightlessness. Constructed cell model under simulated weightlessness by clinostat and confirmed the credibility by assessing the expression of biomarkers-alkaline phosphatase and osteocalcin.
    2. Addition of recombinant human BMP-2 into the culture media and
    
    
    observed the alteration on the exact expression of ALP and osteocalcin under simulated weightlessness in different period of time.
    3. Addition of recombined human BMP-2 into the culture media and observed the alteration on the mRNA and protein expression of osteoprotegerin and osteoprotegerin ligand under simulated weightless -ness in different period of time.
    Results as follows.
    1. Under simulated weightlessness, the ALP expression of osteoblasts induced by BMP-2 was remarkably lower than that under normal gravity. No difference was found in expression of osteocalcin between groups under simulated weightlessness and the ones under normal gravity. The data indicated that the osteoblasts' osteogenic sensitivity against BMP-2 was lower than normal.
    2. Under simulated weightlessness or normal gravity conditions, BMP-2 induced osteoblasts to produce more OPG mRNA and inhibited the OPGL mRNA production.
    3. There's no significant difference in the expression of OPG mRNA and OPGL mRNA under simulated weightlessness or normal gravity. But simulated weightlessness inhibited both two factors' protein expression. The data indicated that there may be some posftranscriptional factors downregulating the protein expression of OPG and OPGL.
    4. The proportion of OPG mRNA compared with OPGL mRNA was increased remarkably in BMP-2 stimulating groups.
    5. There was no significant difference in the proportion between BMP-2 stimulating groups under simulat
引文
1. 刘成林,崔伟.失重条件下的骨质疏松症.见:刘忠厚骨质疏松学.北京:科技出版社,1998: 662-671
    2. Bikle DD. Harris J. Halloran BP et al. Skeletal unloading induces resistance to insulin-like growth factor I. J.Bone Miner.Res. 1994; 9. 1789-1796.
    3. Carmeliet G, Nys G, Bouillon R. Microgravitv reduces the differentiation of human osteoblastic MG-63 cells. J Bone Miner.Res. 1997; 12: 786-794.
    4. Rijken PJ, de Groot RP. van Belzen N et al. Inhibition of EGF-induced signal transduction by microaravity is independent of EGF receptor redistribution in the plasma membrane of human A431 cells. Exp.Cell Res. 1993; 204: 373-377.
    5. Davidson JM, Aquino AM. Woodward SC et al. Sustained microgravity reduces intrinsic wound healing and growth factor responses in the rat. FASEB J. 1999;13: 325-329.
    6. Suda T, Udagawa N.Nakamura I, et al. Modulation of osteoclast differentiation by local factors. Bone. 1995; 17:87s-91s.
    7. Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998, 93: 165-176.
    8. Yasuda H, Shima N, Nakagawa N. et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/ RANKL( 1) . Proc Natl Acad Sci USA. 1998; 95: 3597-3600.
    9. Matsuzaki K, Udagawa N, Takahashi N, et al. Osteoclast differentiation factor (ODF) induces osteoclast-like cell formation in human peripheral blood mononuclear cell cultures. Biochem Biophys Res Commun, 1998,246: 199-204.
    10. Julian MW Quinn, Elliott J, Gillespie MT, et al. A combination of osteoclast differentiation factor and macrophage-colony stimulating factor is sufficient for both human and mouse osteoclast formation in vitro. Endocrinology, 1998, 139: 4424-427.
    11. Tsukii K, Shima N, Mochizuki S, et al. Osteoclast differentiation factor mediates an essential signal for bone resorption induced by 1 , 25-dihydroxyvitamin D3, prostaglandin E2, or parathyroid hormone in the microenvironment of bone. Biochem Biophys Res Commun. 1998; 246: 337-341.
    12. Tsuda E, Goto M, Mochizuki S, et al. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun, 1997; 234: 137-142.
    13. Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin:a novel secreted protein involved in the regulation of bone density. Cell, 1997; 89: 309-319
    14. Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 1998; 93: 165-176.
    15. Yasuda H, Shima N, Nakagawa N. et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin(OPG):a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology, 1998; 139:1329-1337.
    16 Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/ RANKL(2) . Proc Natl Acad Sci USA, 1998; 95: 3600-3602.
    17. Wan,-M; Shi,-X; Feng,-X; Cao,-X Transcriptional mechanisms of bone morphc-genetic protein-induced osteoprotegrin gene expression. J Biol Chem. 2001 Mar 30; 276(13) : 10119-10125
    18 Koide-M; Murase-Y; Yamato-K.et al. Bone morphogenetic protein-2 enhances osteoclast formation mediated by interleukin-1 alpha through upregulation of osteoclast differentiation factor and cyclooxygenase-2. Biochem Biophys Res Commun. 1999,27; 259(1) : 97-102
    19 Franklin HE. Bone marrow, cytolanes and bone remodeling. N Engl Med, 1995; 332. 305. 20 Zheng MH, Wood DJ, Papadimitrion JM. What' s new in the role of cytokines on osteoblast proliferation and differentiation. Pathol Res Pract, 1992; 188:1104.
    21 Thies RS, Bauduy M, Ashton BA, et al. Recombinant human bone morphogenetic protein-2 induces osteoblastic differentiation in W-20-17 stromal cells. Endocrinology, 1992; 130:1318.
    22 McCabe LR, Last TJ, Lian JB. et al. Expression of cell growth and bone phenotypic genes during the cell cycle of normal diploid osteoblasts and osteosarcoma cells. J Cell Biochem, 1994; 56: 274.
    
    
    23 Jane BJ, Gary SS. Osteoblast biology. In:Robert M, Davd F, Jennifer K. eds. Osteoporosis. San Diego, California, U.S.A: Academic Press, 1996; 23-59.
    24 Owen TA, Aronow M. Shalhoub V. et al. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell PhysioL 1990; 143: 42G.
    25 McCabe LR, Kundu BR, Harrison RJ, et al. Developmental expression and activities of specific fos and jun proteins are functionally related to osteoblast maturation: role of Fra-2 and jun D during differentiation. Endocrinology, 1996; 137:4398.
    26 Lynch MP. Stein GS, Stein L, et al. Apoptosis during in vitro bone formation. J Bone Miner Res, 1994;9:S352.
    27 Paul A, Price PA, Joseph V Absence of the Vitamin K-dependent bone protein in fetal rat mineral. J Biol Chem, 1980; 255: 2938-2942
    28 Wozneg JM, Rosen V. Celeste AJ, et al. Novel regulators of bone formation: molecular clones and activities.Science, 1988; 242: 1528-1534.
    29 Thies RS, Bauduy M. Ashton BA. et al. Recombinant human bone morphogenetic protein induces osteoblastic differentiation in W-20-17 stromal cells. Endocrinology, 1992; 130: 1318-1324.
    30 Yamaguchi A.Katagiri T,Ikeda T, et al.Recombinant human bone morphogenetic protein-2 stimulates osteoblastic maturation and inhibits myogenic differentiation in vitro.J Cell Biol, 1991; 113: 681-687.
    31 Haaijman A, D'Souza RN, Bronckers AL, et al. OP-l(BMP-T) affects mRNA expression of type Ⅰ,Ⅱ, X collagen, and matrix Gla protein in ossifying long bones in vitro. J Bone Miner Res. 1997; 12: 1815-1823
    32 Kunisada-T; Kawai-A; Inoue-H et al. Effects of simulated microgravity on human osteoblast-like cells in culture. Acta-Med-Okayama. 1997 Jun; 51(3) : 135-140
    33 Bikle DD, Harris J, Halloran BP, et al. Altered skeletal pattern of gene expression in response to spaceflight and hindlimb elevation. Am J Physiol, 1994; 267: E822-E827
    34 Vico L, Aleandre C. Bone celluar effects after weightlessness exposure-an hypothesis. Physiologist, 1990; 33: s8-s11
    35 Kanatani-M, Sugimoto-T,Kaji-H et al.Stimulatory effect of bone morphogenetic protein-2 on osteoclast-like cell formation and bone-resorbing activity. J Bone Miner Res, 1995; 10(11) : 1681-1690
    36 Wong BR, Rho J, Arron J, et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-jun N-terminal kinase in T cells. J Biol Chem 1997; 272: 25190-25194.
    37 Anderson MA, Maraskovsky E, Billingsley WL, ct al. A homologue of the IMF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997; 390: 175-179.
    38 Hofbauer LC. Gori F, Riggs BL, Lacey DL, et al. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: Potential paracrine mechanism of glucocorticoid-induced osteoporosis. Endocrinology 1999; 140: 4382-389.
    39 Takai H, Kanematsu M, Yano K, et al. Transforming growth factor-beta stimulates the production of osteoprotegerin:osteoclastogenesis inhibitory factor by bone marrow stromal cells. J Biol Chem 1998; 273: 27091-27096.
    40 张舒,不同重力环境对大鼠成骨细胞力学信号转导功能的影响.第四军医大学博士学位论文.2000:49
    41 Rambaut PC. Prolonged weightlessness and calcium loss in man. Acta Astronautica, 1979; 9: 1113-1122
    42 Kaplanskii-AS; Sakharova-ZF; Erina-Kakueva-EI Morphological study of early changes in rat bones during exposure to simulated weightlessness .Kosm Biol Aviakosm Med 1987 Nov-Dec; 21(6) : 36-39
    43 Convertino VA, Doerr DF, Mathes KL. Changes in volume, muscle compartment, and compliance of the lower extremities in man following 30 days of exposure to simulated microgravity. Aviat Space Environ Med. 1989 Jul; 60(7) : 653-658
    44 Patterson Buckendahl P, Amaud-SB, Mechanic GL Fragility and composition of growing rat bone after one week in spaceflight. Am-J-Physiol. 1987 Feb; 252(2 Pt 2) : R240-246
    45 Tanner H. Competing antagonists to energv production in space and their effect on calcium metabolism. Med-Hypotheses. 1990 Aug; 32(4) : 283-288
    
    
    46 Morey-Holton. ER, Arnaud, SB. Skeletal responses to spacefliahL: Adv-Space-Biol-Med. 1991; 137-169
    47 Roberts WE, Fielder PJ, Rosenoer LM, et al. Nuclear morphometric analysis of osteoblast precursor cells in periodontal ligament, SL-3 rats. Am-J-Physiol. 1987 Feb; 252(2 Pt 2) : R247-251
    48 Stupakov GP, Kazeikin VS. Morukov BV. Microgravity-induced changes in human bone strength. Physiologist. 1989 Feb; 32( 1 Suppl): S41-S44
    49 Senia K, Sandu P, Ayala G, et al. Bone marrow from mechanically unload rats bone expresses reduced osteogenesis capacity in vitro. J Bone Miner Res, 1994; 9; 321
    50 Zhang RW. Simmons DJ, Growther RS, et al. Contribution of marrow stromal cells to the regulation of osteoblast proliferation in rats: evidence for the involvement of insulin-like growth factors. Bone Miner, 1991; 13:201
    51 Daniel DB, Jonathan H. Bernard PH, et al. Skeleton unloading induces response to insulin-like growth factor I. Bone Miner Res. 1994; 9: 1789
    52 Turner RT, Bell NH, Duvall P, et al. Spaceflight results in formation of defective bone. Proc-Soc-Exp-Biol-Med. 1985 Dec, 180(3) : 544-549
    53 Vogel HG. Biomechanical studies of human and animal skin in vivo and in vitro Z-Hautkr 1984 Aug 15; 59(16) : 1098-1100
    54 Tipton Charles M, Greenleaf John E, Jackson Catherine GR. Neuroendocrine and immune system responses with spaceflights. Med. Sci. Sports Exercise; 1996; 28:8, 988-998,
    55 Apukhovskaia LL, Khrestovaia ML, Antonenko LV. Effect of varying vitamin D status in the body on intestinal absorption and metabolism of vitamin D in the rat liver Ukr Biokhim Zh. 1990 Nov-Dec; 62(6) : 88-92
    56 Spengler DM, Morey ER; Carter DR Effects of spaceflight on structural and material strength of growing bone. Proc-Soc-Exp-Biol-Med. 1983 Nov, 174(2) : 224-228
    57 Gazenko-OG Investigations in outer space conducted in the USSR during 1982. Aviat Space Environ Med. 1983 Oct; 54(10) : 949-951
    58 Anderson SA, Cohn-SH. Bone demineralization during space flight Physiologist 1985 Aug; 28(4) : 212-217
    59 Pool SL, Nicogossian A Biomedical results of the Space Shuttle orbital flight test program. Aviat Space Environ Med. 1983 Dec; 54(12 Pt 2) : S41-9
    60 Cooper MS. Electrophysiology of bone and osteoporosis of weightlessness. 1986-1987 NASA Space/Gravitational Biology Accomplishments. 1987 NASA technical memorandum, 89951, p205
    61 Stephen B The effect of supplemental oral phosphate on the bone mineral changes during prolonged bed rest. J Clin Invest. 1971; 50; 2506
    62 Hattner RS. Influence of weightlessness upon the skeleton-A Review. Aerospace Medicine. 1968; 39(8) : 849
    63 Patterson Buckendahl P, Amaud SB, Mechanic GL. Fragility and composition of growing rat bone after one week in spaceflight. Am J Physiol. 1987 Feb; 252(2 Pt 2) : R240-246
    64 Shaker JL, Fallen MD, Goldfarb S. WR-2721 reduces bone loss after hindlimb tenotomy in rats. J Bone Miner Res. 1989 Dec; 4(6) : 885-890
    65 Ushakov AS, Spirichev VB, Sergeev IN. Bone tissue of hypokinetic rats: effects of 24,25-dihydroxycholecalciferol and varying phosphorous content in the diet. Aviat Space Environ Med, 1983 May, 54(5) : 447-51
    66 Rao SK, Roland DA, Hoerr FJ. Response of early-and late-maturing commercial Leghorn pullets to low levels of dietary phosphorus. Poult Sci. 1992 Apr, 71(4) : 691-699
    67 Flisano S, Yamane I, Ueda K, Kawagoe M. Renal osteodystrophy in patients on continuous ambulatory peritoneal dialysis. Acta Paediatr Jpn. 1990 Feb; 32(1) : 44-50
    69 Linkhant TA, Mohan S, Baylink DJ. Growth factors for bone growth and repair: IGF, TGFD and BMP. Bone, 1996; 19: 1S.
    70 Schmid C, Ernst M. Insulin-like growth factors. In: Maxine G, eds. Cytokines and bone metabolism. CRC Press, 1992; 229.
    71 丁桂芝.类胰岛素生长因子对骨代谢的调节作用.中国骨质疏松杂志, 1995,1: 73.
    72 Kanzaki S, Hilliker S, Baylink DJ, et al. Evidence that HBC in culture produce IGFBP-4 and-5 proteases. Endocrinology, 1994; 134: 383.
    
    
    73 Centrella M, Horowits MC, Wozney JM, et al. Transforming growth factor-D gene family members and bone. Endocrine Rev. 1994; 15:27.
    74 Hock J. Canalis E, Centrella M. Transforming growth factor beta(TGF-beta-l) stimulates bone matrix apposition and bone cell replication in cultured fetal rat calvariae. Endocrinology. 1990; 126:421.
    75 Rosen D. Miller SC, Deleon E, et al. Systemic administration of recombinant transforming growth factor beta 2(rTGF-β2) stimulates parameters of cancellous bone formation in juvenile and adult rats. Bone, 1994; 15: 355.
    76 Zheng MH, Wood DJ. Papadunitrion JM. What' s new in the role of cytokines on osteoblast proliferation and differentiation. Pathol Res Pract, 1992, 188: 1104.
    77 Rnusten R. Honda Y. Strong DO. et al. Regulation of IGF system components by OP-1(Osteogenic Protein-1) in human bone. Endocrinology. 1995; 136: 857.
    78 Kanzaki S; Baxter RC, Knutsen R, et al. Evidence that HBC in culture secrete IGF-Ⅱ and IGFBP-3. but not acid-labile subunit both under basal and regulated conditions. J Bone Miner Res, 1995; 10:854.
    79 Jane BJ, Gary SS. Osteoblast biology. In:Robert M, Davd F, Jennifer K. eds. Osteoporosis. San Diego, California, U.S.A: Academic Press, 1996; 23-59.
    80 Shadman S. Interleukin-1 □ has biphasic effects on bone formation by rat bone marrow stromal cells. J Bone Miner Res, 1995; 10: T219.
    81 Roodman GD. Advances in bone biology:the osteoclast. Endocr Rev, 1996; 17: 308.
    82 Frost A, Jonsson KB, Nission O, et al. Inflammatory cytokines regulate proliferation of cultured human osteoblast. Acta Orthop Scand, 1997; 68: 91.
    83 Ducy, P. Osf2/Cbfal. a transcriptional activator of osteoblast differentiation.Cell, 1997; 89: 747-754
    84 Otto, F. Cbfal, a candidate gene for cleidocranial dysplasia syndromeis essential for osteoblast differentiation and bone development. Cell, 1997; 89: 765-771
    85 Komori, T. Targeted disruption of Cbfal results in a complete lack of boneformation owing to maturational arrest of osteoblasts. Cell, 1997, 89: 755-764
    86 Mundlos, S. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell, 1997, 89: 773-779
    87 Ducy,-P; Zhang.-R; Geoffroy, et al. Osf2/Cbfal: a transcriptional activator of osteoblast differentiation. Cell. 1997 May 30; 89(5) . 747-754
    88 Kim, I.S. Regulation of chondrocyte differentiation by Cbfal. Mech.Dev. 1999; 80: 159-170
    89 Inada, M. Maturational disturbance of chondrocytes in Cbfal-deficient mice. Dev. Dyn. 1999; 214: 279-290
    90 Lanske, B. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science, 1996; 273: 663-666
    91 St-Jacques, B. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 1996; 13: 2072-2086
    92 Munay GR, Boyce BF,Yoneda T,et al.Cytokines and bone remodeling.In:Marcus R, ed. Osteoporosis.Academic Fress,1996:301-313.
    93 Uy HL, Dallas C. Use of an in vivo model to determine the effects of interleukin-1 on cells at different stages in the osteoclast lineage. J Bone Miner Res, 1995; 10: 295-301.
    94 Horowitz MC. Cytokines and estrogen in bone antiosteoporotic effects. Science, 1993; 260: 626-627.
    95. Iitaka M, Kitahama. Involvement of protein kinase A and C in the production of interleukin-l alpha-induced prostaglandin E2 from mouse osteoblast-like cell line MC3T3-E1. Biochim Biophys Acta, 1994; 122: 78-82.
    96 Shen V, Kohler G, Jeffrey JJ, et al. Bone resorting agents promote and interferon-gamma inhibits bone cell collagenase production. J Bone Miner Res, 1988; 3: 657-666.
    97 Debart AC, Quax PH, Lowik CW, et al. Regulation of plasnunogen activation, matrix metalloproteinases and urokmase-type plasminogen activator-mediated extracellular matrix degradation in human osteosarcoma cell line MG63 by IL-1 alpha. J Bone Miner Res, 1995; 10: 1374-1384.
    98 Romas E, Udagawa N, Zhon H, et al. The role of gp130 mediated signals in osteoclast development regulation of interleukin 11 production by osteoblasts and distribution of its receptor in
    
    bone marrow cultures. J Exp Mid, 1996; 183. 2581-2591.
    99 Panagakos FS, Kumar S. Modulation of protease and their inhibitors in immortal human osteoblast-like cells by tumor necrosis factor-alpha in vitro. Inflammation. 1994; 18: 243-265.
    100 Pivirotto LA, Cissel DS. Keeling PR. Sex hormones mediated interleukin-1 beta production by human osteoblastic HOBIT cells. Mol Cell Endocrinol, 1995; 111: 67-74.
    101 Rifas L. Kenney JS. Marceli M, et al. Production of interleukin-6 in human osteoblasts and human bone marrow stromal cells:evidence that induction by interleukin-1 and tumor necrosis factor-alpha is not regulated by ovarian steroids. Endocrinology, 1995; 136:4056-4067.
    102 Kitazawa R, Kimble RB, Vannice JI, et al. Interieukin-1 receptor antagonist and tumor necrosis factor binding protein osteoclast formation and bone resorption in ovariectomized mice. J Clin Invest, 1994, 94: 2397-2406.
    103. 郭世绂.原发性骨质疏松发病机制.中华骨科杂志,199S,15: 312-316.
    104 Raisz LG. Physiologic and pathologic roles of prostaglandins and other arachidonic acids in bone metabolism. J Nutr, 1995; 125: 2024S-2027S.
    105 Teitelbaum SL, Tondravi MM, Ross FP. Osteoclast biology. In: Marcus R,ed, Osteoporosis, Academic Press, 1996. 61-94.
    106 Arnano S, Naganuma K, Kawata Y, et al. Prostaglandin E2 stimulates osteoclast formation via endogenous IL-1 beta expressed through protein kinase A. J Immunol. 1996; 156: 1931-1936.
    107 Roodman GD. Advances in bone biology: the osteoclast.Endocrinol Rev, 1996; 17: 308-332.
    108 Suda T, Udagawa N, Nakamure L et al. Modulation of osteoclast differentiation by local factors. Bone, 1995; 17: 87S-91S.
    109 Amano H, Hofstctter W, Cecchini MG, et al. Down regulation of colony stimulating factor-l(CSF-l)binding by SCF-1 in isolated osteoclasts. Calcif Tissue Int, 1995; 57: 367-370.
    110 Mundy GR. Peptides and growth regulatory factors in bone. Rheum Dis Clin North Am, 1994; 20: 577-588.
    111 Mandagas SC, Jilka RL. Cytokines, hematopoiesis, osteoclastogenesis and estrogens. Calcif Tissue tat, 1992; 50: 199-202.
    112 Manolagas SC, Jilka RL. Bone marrow, cytokines and bone remodeling. N Engl Med, 1995; 332: 305-311.
    113 Girasole G, Passed G, Jilka RL, et al. Interleukin-1 l:a new cytokine critical for osteoblast development. J Clin Invest, 1994; 93: 1516-1524.
    114 Elias JA, Tang W, Horowitz MC. Cytokine and hormonal stimulation of human osteosarcoma interleukin-11 production. Endocrinology, 1995; 136:489-498.
    115 Suda T, Udagawa N, Nakamura I, et al. Modulation of osteoclast differentiation by local factors. Bone, 1995, 17:87s-91s.
    116 Tan KB, Harrop J, Reddy M, et al. Characterization of a novel TNF-like ligand and recently described TNF ligand and TNF receptor superfamily genes and their constitutive and inducible expression in hematopoietic and non-hematopoietic cells. Gene, 1997; 204: 35-46.
    117 Kwon BS, Wang S, Udagawa N, et al. TR1, a new member of the tumor necrosis factor receptor family, induces fibroblast proliferation and inhibits osteoclastogenesis and bone resorption. FASEB J 1998; 12: 845-854.
    118 Yamaguchi K, Kinosaki M, Goto M, et al. Characterization of structural domainsof human osteoclastogenesis inhibitor factor. J Biol Chem 1998; 273: 5117-5123.
    119 Akatsu T, Murakami T, Nishikawa M, et al. Osteoclastogenesismhibitor factor suppresses osteoclast survival by interfering in the interaction of stromal cells with osteoclast. Biochem Biophys Res Commun 1998; 250: 229-234.
    120 Kong Y-Y, Yoshida H, Sarosi Let al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999; 397: 315-323.
    121 Bucay N, Sarosi I, Dunstan CR,et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 1998; 12: 1260-268.
    122 Pan G, O'Rourke K, Chinnaiyan AM,et al. The receptor for the cytotoxic ligand TRAIL. Science 1997; 276: 111-113.
    123 Pan G, Ni J, Wei Y-F, et al. An antagonist decoy receptor and a death domain-containing receptor-for TRAIL. Science 1997; 277: 815-818.
    
    
    124 Emery JG, McDonnell P, Brigham et al. Osteoprotegenn is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 1998; 273: 14363-14367.
    125 Bekker PJ. Holloway D, Nakanishi A, et al. Osteoprotegerin (OPG) has potent and sustained anti-resorptive activity in postmenopausal women. J Bone Miner Resl999; 14: S180 (abstract).
    126 Honore P. Luger NM. Sabino MAC. et al. Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nat Med 2000; 6: 521-528.
    127 Kong Y-Y, Feige U, Sarosi I, et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through Osteoprotegerin ligand. Nature 1999; 402: 304-308.
    128 Gao Y-H, Shinki T, Yuasa T, et al. Potential role of cbfal, an essential transcriptional factor for osteoblast differentiation, in osteoclastogenesis: regulation of mRNA expression of osteoclast differentiation factor (ODF). Biochem Biophys Res Commun 1998; 252: 697-702.
    129 O'Brien CA, Farrar NC, Manolagas SC. Identification of an OSF-2 binding site in the murine RANKL:OPGL gene promoter, a potential link between osteoblastogenesis and osteoclastogenesis. Bone 1998;23(Suppl 1) : 1003.
    130 Ducy P, Zhang R, Geoffrey V, et al. Osf2: Cbfal: A transcriptional activator of osteoblast differentiation. Cell 1997; 89: 747-754.
    13 IKomori T, Yagi H, Nomura S,et al. Targeted disruption of Cbfal results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 1997; 89: 755-764.
    132 Kim N, Odgren PR, Kim D-K, et al. Diverse roles of the tumor necrosis factor family member TRANCE in skeletal physiology revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed TRANCE transgene. Proc Natl Acad Sci USA 2000; 97: 10905-10910.
    133 Cenci S, Weitzmann MN, Roggia C, et al. Estrogen deficiency induces bone loss by enhancing T-cell production of TNA-a. J Clin Invest 2000; 106: 1229-1237.
    134 Hsu H, Lacey DL, Dunstan CR, et al. Tumor necrosis factor receptor family RANK mediates osteoclast differentiation and activation induced by Osteoprotegerin ligand. Proc Natl Acad Sci USA 1999;96: 3540-3545.
    135 Nakagawa N, Kinosaki M, Yamaguchi K, et al. RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun 1998: 253: 395-400.
    136 Nishii M, Niforas P, Martin TJ, Gillespie MT. Structure and expression of the murine rank gene. J Bone Miner Res 1999; 14: 483S
    137 Damay BG. Haridas V, Ni J, et al. Characterization of the intracellular domain of receptor activator of NF-kB (RANK). J Biol Chem 1998; 273: 20551-20555.
    138 Wong BR, Josien R, Young Lee S, et al. The TRAF family of signal transducers mediates NF-kB activation by the TRANCE receptor. J Biol Chem 1998; 273: 28355-28359.
    139 Hughes AE, Ralston SH, Marken J, et al. Mutations in TNFRSF11 A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet 2000; 24: 45-48.
    140 Hughes AE, Shearman AM, Weber JL, et al. Genetic linkage of familial expansile osteolysis to chromosome 18q. Hum Mol Genet 1994; 3: 359-361.
    141 Arch RH, Gedrich RW, Thompson CB. Tumor necrosis factor receptor-associated factors (TRAFs)-A family of adapter proteins that regulates life and death. Genes Dev 1998; 12: 2821-2830.
    142 Damay BG, Ni J, Moore PA, Aggarwal BB. Activation of NF-kB by RANK requires tumor necrosis factor receptor-associated factor (TRAF6) and NF-kB-inducing kinase. Identification of a novel TRAF6 interaction motif. J Biol Chem 1999; 274: 7724-7731.
    143 Lomaga MA, Yeh W-C, Sarosi I, et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 1999; 13:1015-1024.
    144 Takayanagi H, Ogasawara K, Hida S, et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFNg. Nature 2000; 408: 600-605.
    145 Childs L, Paschalis E, Shigeyama Y, et al. Long term protection from wear debris-induced bone resorption and amelioration of established osteolysis by RANiyc. J Bone Miner Res 2000; 15: S192.
    146 Gmunder FK, Cogoli A. Cultivation of single cells in space. Appl microgravity tech, 1988, 9:115-122
    147 Rijken PJ, Boonstra J, Verkleij AJ et al. Effects of gravity on the cellular response to epidermal
    
    9:115-122
    147 Rijken PJ, Boonslra .J. Verkleij A.1 et al. Effects of gravity on the cellular response to epidermal growth factor. Adv Space Biol Med, 1994, 4: 159-188
    148 Bikle DD, Halloran BP, Morey-Holton E. Space flight and the skeleton: lessons for the earthbound. Endocrinologist, 1997,7: 10-22
    149 Cogoli A, Tschopp A, Fuchs-Bislin P. Cell sensitivity' to gravity Science, 1984, 225(4658) : 228-230
    150 Boonstra J, Rijken PJ, Humbel B, Cremers F et al. The epidermal growth factor. Cell Biol, 1995, 129(3) : 413-430
    151 Marias R, Marchall CJ. Control of the ERK MAP kinase cascade by Ras and Rab. Cancer Surveys, 1996,27: 101-125
    152 Massague J, Weis-Garcia F. Serine/threonine kinase receptors: mediators of transforming growth factor beta family signalsl. Cancer Surveys, 1996, 27: 41-64
    153 Moran MF, Koch CA, Anderson D, Ellis C, England L et al. Src homology region 2 domains direct protein-protein interactions in signal transduction. Proc Natl Acad Sci USA, 1990, 87(21) : 8622-8626
    154 Zhang XF, Settleman J, Kyriakis JM, Takeuchi-Suzuki E et al. Normal and oncogenic p21ras proteins bind to the ammo-terminal regulating domain of c-Raf-1. Nature, 1993, 364(6435) : 308-313
    155 Damn G, Eisenmann-Tappe I, Fries HW et al. The ins and outs of Raf kinases. Trends Biol Sci, 1994, 19(11) : 474-480
    156 De Groot RP, Rijken PJ, Boostra J et al. Epidermal growth factor induced expression of c-fos is influenced by altered gravity conditions. Aviat Space Env Med, 1991, 62(1) : 37-40
    157 De Groot RP, Rijken PJ, Boostra J et al. Microgravity decreases c-fos induction and SRE activity. J Cell Sci, 1990, 97(Pt1) : 33-38
    158 Boostra J, Rijken PJ et al. Growth factor-induced signal transduction in mammalian cells is sensitive to gravity. In: Frontiers in Biological Science in Space (Sato A, ed.) 1997, pp.2-18, Taiyo Printing, Tokyo.
    159 Rijken PJ, de Groot RP, van Belzen N et al. Inhibition of EGF-induced signal transduction by microgravity is independent of EGF receptor redistribution in the plasma membrane of human A431 cells. Exp Cell Res, 1993,204(2) : 373-377
    160 Limouse M, Manie S, Konstantinova L Ferrua R et al. Inhibition of phorbol ester-induced cell activation in microgravity. Exp Cell Res, 1991, 197(1) : 82-86
    161 De Groot RP, Rijken PJ, den Hertog J et al. Nuclear responses to protein kinase C signal transduction are sensitive to gravity changes. Exp Cell Res, 1991, 197(1) : 87-90
    162 Rijken PJ, Hage WJ, van Bergen en Henegouwen P et al. Epidermal growth factor induces rapid reorganization of the actin microfilament system in human A431 cells. J Cell Sci, 1991, 100(Pt3) : 491-499
    163 Den Hartigh JC, van Bergen en Henegouwen PMP, Verkleij AJ et al. The EGF receptor is an actin-binding protein. J Cell Biol, 1992, 119(2) :349-355
    164 Payrastre B, van Bergen en Henegouwen PMP, Breton M et al. Phosphoinositide kinase, diacylglycerol kinase, and phospholipase C activities associated to the cytoskeleton: effect of epidermal growth factor. J Cell Biol, 1991,115(1) : 121-128
    165 Van der Heyden MAG, Oude Weernink PA, van Oirschot BA et al. Epidermal growth factor-induced activation and translocation of c-Src to the cytoskeleton depends on the actin binding domain of the EGF receptor. Biochem Biophys Acta, 1997, 1359: 211-221
    166 Diakonova M, Payrastre B, van Velzen AG et al. Epidermal growth factor induces rapid and transient association of phospholipase C-□1 with EGF receptor and filamentous actin at membrane ruffles of A431 cell. J Cell Sci, 1995, 108(Pt6) : 2499-2509
    167 Rijken PJ, van Hal GJ, van der Heyden MAG et al. Actin polymerization is required for negative feedback regulation of epidermal growth factor-induced signal transductioa Exp Cell Res, 1998,234(2) : 254-262

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700