弓形虫表面抗原SAG3单克隆抗体的制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过原核表达去信号肽的RH株弓形虫表面抗原SAG3蛋白,并制备SAG3的单克隆抗体,建立间接ELISA法和双抗夹心ELISA方法,并进行初步应用。
     SAG3去信号肽基因的克隆和原核表达提取RH株弓形虫的总RNA,反转录为cDNA为模板, PCR扩增SAG3基因。构建其原核表达载体pET-28a(+)-SAG3,并转化至E.coli BL21(DE3)中,IPTG诱导表达, SDS-PAGE检测蛋白表达情况,western blotting检测其反应性。结果显示,成功扩增了去信号肽的SAG3基因,测序结果与GenBank公布的弓形虫RH株SAG3基因序列同源性为100%。SDS-PAGE表明成功表达了去信号肽的SAG3蛋白,分子量大小为38Kda,western blotting结果显示重组蛋白能够被鼠抗弓形虫血清识别,具有很好的反应原性。
     刚地弓形虫RH株SAG3蛋白抗体检测的间接ELISA方法建立利用Ni-NTA亲和层析柱对SAG3蛋白进行纯化,并以纯化的SAG3蛋白作为抗原,建立弓形虫RH株蛋白抗体检测的ELISA方法。结果显示,经Ni-NTA亲和层析柱纯化后,SDS-PAGE分析在38kDa处有一条单一的目的蛋白带,成功纯化SAG3蛋白。建立的ELISA方法的最佳工作条件为:最佳封闭液是5%脱脂奶粉的PBST溶液,最佳检测条件是抗原包被浓度0.25μg/孔、被检血清稀释度1∶400、羊抗鼠二抗稀释倍数1:3000。建立的ELISA方法具有较高的敏感性,此方法与鼠抗C. andersoni阳性血清、鼠抗C. parvum阳性血清鼠、抗G. lamblia阳性血清、鼠抗E. tenella阳性血清和鼠抗Neosporacaninum阳性血清均无交叉反应,具有较强的特异性。用所建立的SAG3-ELISA方法检测了10份阳性血清,符合率100%。检测了24份普通级小鼠血清进行检测,阳性率为20.8%。
     弓形虫表面蛋白SAG3的单克隆抗体的制备及纯化以纯化的SAG3为免疫原,免疫小鼠,进行融合,制备抗SAG3的单克隆抗体。利用建立的SAG3-ELISA方法筛选出了2株能够稳定分泌抗体的细胞株1A1和3E5。腹水效价约为1:102400,单克隆抗体亚类鉴定1A1为IgG2a,3E5为IgM。Western blotting结果表明,1A1和3E5单克隆抗体均可识别重组SAG3蛋白。SDS-PAGE结果表明成功纯化了单抗腹水,能够清晰的观察到轻链和重链两条带。
     双抗夹心ELISA检测方法的建立以纯化的1A1单克隆抗体作为捕获抗体,以HRP标记的3E5单克隆抗体作为检测抗体,建立弓形虫的双抗夹心ELISA方法。所建立的夹心ELISA方法的最佳检测条件分别为:包被抗体1:100,HRP标记抗体1:400,被检血清最佳稀释度为1:10,最佳封闭剂为1%BSA。经验证此方法与犬新孢子虫阳性血清没有交叉反应,特异性较强。批内和批间重复试验表明建立的ELISA方法具有重复性。利用建立的ELISA方法对人工感染弓形虫的小鼠阳性血清(小鼠腹水经检测含有弓形虫虫体),和无弓形虫的SPF小鼠血清进行检测,结果符合率为100%。应用已建立的双抗夹心ELISA方法对85份弓形虫感染情况不明确的牛血清,63份鸡血清,58份犬血清和67份猪血清进行检测,发现阳性结果率分别为:7.06%,12.70%,10.34%和28.36%。本研究的检测方法要求的被检样品为血清,需要量少,易于采取,处理简单,特异性好,操作方便,利于推广,有一定的应用前景。
The research was conducted to prokaryotic express the SAG3gene containing nosignal peptide of Toxoplasma gondii(T.gondii), and then preparation of the SAG3monoclonal antibody which were used for establishing the double-antibody sandwichELISA.
     Clone, express and identify the SAG3gene containing no signal peptide ofT.gondii Total RNA was extracted from T. gondii and SAG3gene containing nosignal peptide was amplified by RT-PCR, then sub-cloned into the pET-28a(+). Therecombinant plasmid pET-28a(+)-SAG3was transformed into E. coli BL21(DE3)and induced with IPTG. The expression of pET-28a-SAG3was induced by IPTG in E.coli BL21(DE3)system; then the fusion protein was identified by SDS-PAGE andWestern blotting. SDS-PAGE result showed that the recombinant protein(Mr38000)was expressed in the form of inclusion body and could specially recognize bypolyclonal antibody against the SAG3of T. gondii.
     Develop an indirect ELISA which used for detecting SAG3antibodyCheckerboard titration was used to determine the optimal conditions of the indirectELISA. The optimal antigen concentration for coating was0.25μg/hole, and theoptimal dilutions of the sera of T. gondii and enzyme-labeled the second antibodywere1:400and1:3000respectively, blocking agent was the PBST solution of5%nonfat dry milk by chessboard titration. The developed indirect ELISA had no crossreaction with positive serums which mentioned in the following brackets (Neosporacaninum, G. lamblia, C. andersoni, E. tenella and C. parvum). It showed highsensitivity of1:1600and strong specificity.10positive samples and24unknownsamples were detected by the indirect ELISA, the positive rate are100%and20.8%respectively.
     Preparation and purification of monoclonal antibodies of SAG3proteinRecombinant protein SAG3was purified as immunogen for preparing the monoclonal antibody. Two cell lines (1A1and3E5) were screened by indirect SAG3-ELISA. Bothtiters about1:102400. The immunoglobulin subclass of the1A1and3E5are IgG2aandIgM. Western blotting showed that SAG3protein could specially recognize by1A1and3E5. The light chain and the heavy chain of the antibody could be distinguishedwell by SDS-PAGE means that antibodies were purified successfully.
     Establishment of double monoclonal antibody sandwich ELISA Purified1A1monoclonal antibody as the capture antibody, HRP-labeled3E5monoclonalantibodies as the detection antibody were used for establishing double monoclonalantibody sandwich ELISA of T. gondii. The optimum conditions established by thesandwich ELISA method was: coated antibody1:100, HRP labeled antibody1:400,test serum dilution of1:10, the best blocking agent for1%BSA. The developedsandwich ELISA had no cross reaction with N. caninum positive serum. The intra andbetween repeated experiments showed that the ELISA has repeatability. The positivesamples and negative samples were detected by this way, the coincidence was100%.85bovine sera samples,63chicken sera samples,58dog sera samples and67pig serasamples were detected by sandwich ELISA, the positive rate are7.06%,12.70%,10.34%and28.36%. The developed sandwich ELISA requires that the seizure samplefor serum, easy to collect, easy to prepare, good specificity, easy to operate,conducive to the promotion and has well application prospects.
引文
[1] Hassl A., Auer H., Hermentin K., et al. Experimental studies on circulating antigen ofToxoplasma gondii in intermediate hosts: criteria for detection and structural properties[J].Zentralbl Bakteriol Mikrobiol Hyg.1987,263:625–34.
    [2] Araujo F.G., Handman E., Remington J.S. Use of monoclonal antibodies to detect antigens ofToxoplasma gondii in serum and other body fluids[J]. Infect Immun1980,30:12–16.
    [3] Ise Y., Iida T., Sato K., et al.Detection of circulating antigens in sera of rabbits infected withToxoplasma gondii[J]. Infect Immun1985,48:269–72.
    [4]邓韵竹.先天性弓形虫脑病11例报告[J].临床儿科杂志,1995,13(2):110-111.
    [5] M Odenthal-Schnittler, S Tomavo, D Becker, et al. Evidence for N-linked glycosylation inToxoplasma gondii.[J] Biochem J.1993,291(3):713–721.
    [6] M Odenthal-Schnittler, S Tomavo, D Becker, et al. Evidence for N-linked glycosylation inToxoplasma gondii.[J] Biochem J.1993,291(3):713–721.
    [7]孙新,细胞培养和动物接种分离弓形虫病原比较研究[J].蚌埠医学院学报,1996,21:5291-292.
    [8]于恩庶主编.弓形虫病学[M].福州:福州科学技术出版社.1992,360-363.
    [9]吕元聪,崔君兆,郑挺,等.不同血清学方法诊断弓形虫病的比较[J]广西预防医学,1995,1(5):278-280.
    [10]谢霖崇.人体弓形虫病的临床诊断[J].中国人兽共患病杂志1997,13(6):60-62.
    [11]崔君兆,郑挺,邹宝生等,应用染色试验检测人及鼠血清弓形虫抗体[J].中国寄生虫学与寄生虫病学杂志,1990,8:2,146
    [12]张德林,李学瑞,杜重波.用弓形虫代谢分泌抗原之辈间接血凝诊断试剂的研究[J].中国兽医科技.2003,33:9,15-18.
    [13]江涛,姚宝安,赵俊龙.重组抗原rMIC3-ELISA检测猪弓形虫抗体的研究[J].安徽农业科学.2009,37(34):17286-17287.
    [14] Sandra M. Arend, Annemieke Geluk, Krista E. van Meijgaarden, et al. Antigenic Equivalenceof Human T-Cell Responses to Mycobacterium tuberculosis-Specific RD1-Encoded ProteinAntigens ESAT-6and Culture Filtrate Protein10and to Mixtures of SyntheticPeptides[J].Infect Immun.2000;68(6):3314–3321.
    [15]于恩庶,黄桂森.免疫斑点法快速检测弓形虫抗体[J].中国寄生虫病防治杂志.1990,3(2):163.
    [16] Silvana Carnevale, Mónica I. Rodríguez, Graciela Santillán,et al.Immunodiagnosis of HumanFascioliasis by an Enzyme-Linked Immunosorbent Assay (ELISA) and aMicro-ELISA[J].Clin Diagn Lab Immunol.2001,8(1):174–177.
    [17]张述义,魏梅雄,赵惠芬.弓形虫病IgM免疫吸附凝集试验(ISAGA)的建立[J].中国寄生虫学与寄生虫病学杂志.1999,17(4):225-227.
    [18] HEDMAN K,LAPPALAINEN M,SEPPALA I,eI a1.Recent primary Toxoplama infectionindicated by a1ow avidity of specific IgG[J].J Infect Dis,1989,159(4):736-739.
    [19] LIESENFELD O,MONTOYA J G,KINNEY S,el a1.Efect oftesting for IgG avidity in thediagnosis Toxoplasma gordii infection in pregnant women, experience in a US referencelaboratory[J].J Infect Dis,2001,183(3):1248-1253.
    [20]胡昕,诸葛青云,李亚飞等,双抗夹心ELISA法检测弓形虫核苷三磷酸脱氢酶-Ⅱ型蛋白的研究[J].中国寄生虫学与寄生虫病学志.2010,28(5):343-347.
    [21]向梅,尹继刚,王海礁等,一种弓形虫循环抗原双抗夹心ELISA检测方法:中国,CN102010468A[P],2011-4-13.
    [22]万明明,李裕,陈艳等.用抗弓形虫单克隆抗体检测孕妇血清中弓形虫循环抗原[J].贵阳医学院学报,1998,23(4):314-316.
    [23]郭志刚,杜重波,金兆庆等.弓形虫单克隆抗体试剂的研究-单克隆抗体微量反向间接血凝试验[J].中国兽医科技,1991,21(4):12-14.
    [24] Burg JL, Grover CM, Pouletty P, et al. Direct and sensitive detection of pathogenicprotozoan, Toxoplasma gondii by polymerase chain reaction [J]. J Clin Microbiol,1989,27(8):1787-1792.
    [25] Cont in i C, Cultrera R, S eraceni S, et al. The role of stage specific oligo nucleotide primersin providing effective laboratory supp ort f or the molecular diagnosis of reactivatedToxoplasma gondii encephalit is in pat ient s wi th AIDS [J].J Med Microbiol,2002,51(10):879-890.
    [26] Ostergaard L, Nielsen AK, Black FT.. Black. DNA Amplification on Cerebrospinal Fluid forDiagnosis of Cerebral Toxoplasmosis among HIV-positive Patients with Signs or Symptomsof Neurological Disease[J]. Scand J Infect Dis.1993,25(2),227-237.
    [27] Ivanova NV, Morozov EH, Kukina IV, et al.ITS1,5.8S and A-type ITS2rDNA sequencesfrom Plasmoidum vivax and development of a method for retrospective PCR diagnosis ofmalaria by stained thick blood smears [J]. Mol Biol (Mosk).2001,35(3):515-25.
    [28] Alfonso Y,Fraga J,Cox R,Bandera F, et al. Comparison of four DNA extraction methods fromcerebrospinal fluid for the detection of Toxoplasma gondii by polymerase chain reaction inAIDS patients[J]. Med Sci Monit.2008,14(3):1-6.
    [29]陈俏梅,张俐,何国声.检测实验动物弓形虫感染的两种PCR方法的建立和比较[J].中国兽医寄生虫病,2003,11(2)5-8.
    [30] Errera MH, Goldschmidt P, Batellier L, et al. Real-time polymerase chain reaction andintraocular antibody production for the diagnosis of viral versus toxoplasmic infectiousposterior uveitis[J]. Graefes Arch Clin Exp Ophthalmol.2011,249(12):1837-46.
    [31]罗文,余世荣瑢,胡千里等.应用荧光定量PCR及ELISA法检测弓形虫感染分析[J].中国优生与遗传杂志,2002,10(1):31-33.
    [32]郑兰艳,王海鹏.利用免疫-PCR检测弓形虫循环抗原的实验研究[J].中国人兽共患病杂志.2000,16(4):78-81.
    [33] Ram say R. DNA chips: State of the art [J]. Nature Biotechnology,1998,16:40-44.
    [34] Marshall A, Hodgson J. DNA chips: An array of possibilities [J]. Nature Biotechnology,1998,16:2731.
    [35]杨朋欣,张子群,路义鑫等,视频中弓形虫和选魔宠液相基因芯片检测方法的研究[J].中国预防兽医学报.2010,32(10):777-780.
    [36]赵锦,吴少廷,何建凡等,弓形虫乙肝检测基因芯片技术的研究[J].中国人兽共患病杂志.2004,20(9):93
    [37]张媛,童睿,郑秋月,等.运用基因芯片技术检测三种寄生虫方法的研究[J].中国卫生检验杂志,2007,17(12):2168-2170.
    [38] Guay J M, Dubois D, Morency MJ, et al. Detection of the pathogenic parasite Toxoplasmagondii by specific amplification of ribosomal sequences using comultiplex polymerase chainreaction [J]. J Clin. Microbiol,1993,31(2):203-207.
    [39] Xia AD, Gu YZ, Xu SJ, et al. Conslxuction of flgenomic DNA library of the Toxoplasmagondii ZS2strain, screening of specificclones and DNA diagnosis of toxoplasmosis [J]. Am JTrop Med Hgy,1992,46(1):50.
    [40] Okomo-Adhiambo M, Beattie C, Rink A, et a l. cDNA microarray analysis of host-pathogen interactions in a porcine invitro model for Toxoplasma gondii infection [J]. InfectImmun,2006,74(7):4254-4265.
    [41]程彦斌,张永浩,余新炳,等. DIG-DNA探针检测弓形虫核酸[J].寄生虫与医学昆虫学报,1998,5(1):73-76.
    [42] Barragan A, Sibley LD. Transepithelial migration of Toxoplasma gondii is linked toparasite motility and virulence.[J] Exp Med.2002;195:1625–1633.
    [43] Da Gama LM, Ribeiro-Gomes FL, Guimaraes U Jr, Arnholdt AC. Reduction inadhesiveness to extracellular matrix components, modulation of adhesion molecules and invivo migration of murine macrophages infected with Toxoplasma gondii[J]. MicrobesInfect.2004;6:1287–1296.
    [44] Courret N, Darche S, Sonigo P, Milon G, Buzoni-Gatel D, Tardieux I. CD11c-andCD11b-expressing mouse leukocytes transport single Toxoplasma gondii tachyzoites to thebrain[J].Blood.2006;107:309–316.
    [45] Lambert H, Hitziger N, Dellacasa I, Svensson M, Barragan A. Induction of dendritic cellmigration upon Toxoplasma gondii infection potentiates parasite dissemination[J]. CellMicrobiol.2006;8:1611–1623.
    [46] Chao CC, Anderson WR, Hu S, Gekker G, Martella A, Peterson PK. Activated microgliainhibit multiplication of Toxoplasma gondii via a nitric oxide mechanism[J]. Clin ImmunolImmunopathol.1993;67:178–183.
    [47] Fischer HG, Nitzgen B, Reichmann G, Gross U, Hadding U. Host cells of Toxoplasmagondii encystation in infected primary culture from mouse brain[J]. Parasitol Res.1997;83:637–641.
    [48] Halonen SK, Chiu F, Weiss LM. Effect of cytokines on growth of Toxoplasma gondii inmurine astrocytes[J]. InfectImmun.1998;66:4989–4993.
    [49] Jones TC, Bienz KA, Erb P. In vitro cultivation of Toxoplasma gondii cysts in astrocytes inthe presence of gamma interferon[J]. Infect Immun.1986;51:147–156.
    [50] Schwartzman JD. Quantitative comparison of infection of neural cell and fibroblastmonolayers by two strains of Toxoplasma gondii[J]. Proc Soc Exp Biol Med.1987;186:75–78.
    [51] Halonen SK, Lyman WD, Chiu FC. Growth and development of Toxoplasma gondii inhuman neurons and astrocytes[J]. J Neuropathol Exp Neurol.1996;55:1150–1156.
    [52] Radke JR, Donald RG, Eibs A, et al. Changes in the expression of human cell divisionautoantigen-1influence Toxoplasma gondii growth and development. PLoS Pathog.2006;2:e105.
    [53] Ferguson DJ, Hutchison WM. An ultrastructural study of the early development and tissuecyst formation of Toxoplasma gondii in the brains of mice[J]. Parasitol Res.1987;73:483–491.
    [54] Ferguson DJ, Hutchison WM. The host-parasite relationship of Toxoplasma gondii in thebrains of chronically infected mice[J]. Virchows Arch A Pathol Anat Histopathol.1987;411:39–43.
    [55] Sims TA, Hay J, Talbot IC. An electron microscope and immunohistochemical study of theintracellular location of Toxoplasma tissue cysts within the brains of mice with congenitaltoxoplasmosis[J]. Br J Exp Pathol.1989;70:317–325.
    [56] Powell HC, Gibbs CJ Jr, Lorenzo AM, et al. Toxoplasmosis of the central nervous system inthe adult[J]. Electron microscopic observations. Acta Neuropathol (Berl).1978;41:211–216.
    [57] Bertoli F, Espino M, Arosemena JR5th, et al. A spectrum in the pathology of toxoplasmosisin patients with acquired immunodeficiency syndrome[J]. Arch Pathol Lab Med.1995;119:214–224.
    [58] Ghatak NR, Zimmerman HM. Fine structure of Toxoplasma in the human brain[J]. ArchPathol.1973;95:276–283.
    [59] Blader IJ, Manger ID, Boothroyd JC. Microarray analysis reveals previously unknownchanges in Toxoplasma gondiiinfected human cells[J]. J Biol Chem.2001;276:24223–24231.
    [60] Kim L, Denkers EY. Toxoplasma gondii triggers Gi-dependent PI3-kinase signaling requiredfor inhibition of host cell apoptosis[J]. J Cell Sci.2006;119:2119–2126.
    [61] Carmen JC, Hardi L, Sinai AP. Toxoplasma gondii inhibits ultraviolet light-induced apoptosisthrough multiple interactions with the mitochondrion-dependent programmed cell deathpathway[J]. Cell Microbiol.2006;8:301–315.
    [62] Molestina RE, Sinai AP. Host and parasite-derived IKK activities direct distinct temporalphases of NF-jB activation and target gene expression following Toxoplasma gondiiinfection[J]. J Cell Sci.2005;118:5785–5796.
    [63] Zimmermann S, Murray PJ, Heeg K, et al. Induction of suppressor of cytokine signaling-1byToxoplasma gondii contributes to immune evasion in macrophages by blocking IFN-gammasignaling[J]. J Immunol.2006;176:1840–1847.
    [64] Kim L, Butcher BA, Lee CW, et al. Toxoplasma gondii genotype determines MyD88-dependent signaling in infected macrophages[J]. J Immunol.2006;177:2584–2591.
    [65] Mason NJ, Fiore J, Kobayashi T, et al. TRAF6-dependent mitogen-activated protein kinaseactivation differentially regulates the production of interleukin-12by macrophages inresponse to Toxoplasma gondii[J]. Infect Immun.2004;72:5662–5667.
    [66] Lieberman LA, Banica M, Reiner SL, et al. STAT1plays a critical role in the regulation ofantimicrobial effector mechanisms, but not in the development of Th1-type responses duringtoxoplasmosis[J]. J Immunol.2004;172:457–463.
    [67] McKee AS, Dzierszinski F, Boes M, Roos DS, Pearce EJ. Functional inactivation ofimmature dendritic cells by the intracellular parasite Toxoplasma gondii[J]. J Immunol.2004;173:2632–2640.
    [68] Gilbert LA, Ravindran S, Turetzky JM, et al. Toxoplasma gondii targets a proteinphosphatase2C to the nucleus of infected host cells[J]. Eukaryot Cell.2007;6:73–83.
    [69] Fouts AE, Boothroyd JC. Infection with Toxoplasma bradyzoites has a diminished impact onhost transcript levels relative to tachyzoite-infection[J]. Infect Immun.2006;75:634–642.
    [70] Wang HL, Wang GH, Li QY, et al. Prevalence of Toxoplasma infection in first-episodeschizophrenia and comparison between Toxoplasma-seropositive and Toxoplasma-seronegative schizophrenia[J]. Acta Psychiatr Scand.2006;114:40–48.
    [71] Torrey EF, Bartko JJ, Lun ZR, Yolken RH. Antibodies to Toxoplasma gondii in patients withschizophrenia: a metaanalysis[J]. Schizophr Bull.2007;33:729-736
    [72] Katila H, Appelberg B, Hurme M, Rimon R. Plasma levels of interleukin-1beta andinterleukin-6in schizophrenia, other psychoses, and affective disorders[J]. Schizophr Res.1994,12:29–34.
    [73] Katila H, Hurme M, Wahlbeck K, et al. Plasma and cerebrospinal fluid interleukin-1beta andinterleukin-6in hospitalized schizophrenic patients[J]. Neuropsychobiology.1994,30:20–23.
    [74] Jones-Brando L, Torrey EF, Yolken R. Drugs used in the treatment of schizophrenia andbipolar disorder inhibit the replication of Toxoplasma gondii[J]. Schizophr Res.2003,62:237–244.
    [75] Webster JP, Lamberton PH, Donnelly CA, et al. Parasites as causative agents of humanaffective disorders? The impact of anti-psychotic, mood-stabilizer and anti-parasitemedication on Toxoplasma gondii’s ability to alter host behaviour[J]. Proc Biol Sci.2006,273:1023–1030.
    [76] Brown CR, Hunter CA, Estes RG, et al. Definitive identification of a gene that confersresistance against Toxoplasma cyst burden and encephalitis[J]. Immunology.1995,85:419–428.
    [77] Remington JS, McLeod R, Thulliez P, et al. Infectious Diseasesof the Fetus and NewbornInfants [M]. Philadelphia, Pa:W.B. Saunders;2001:205–346.
    [78] Hafner H, Riecher-Rossler A, An Der Heiden W, et al. Generating and testing a causalexplanation of the gender difference in age at first onset of schizophrenia[J]. PsycholMed.1993,23:925–940.
    [79] Dubey, J.P., Toxoplasma gondii oocyst survival under defined temperatures[J]. J. Parasitol.1998,84:862–865.
    [80] Tenter, A.M., Heckeroth, A.R., Weiss, L.M. Toxoplasma gondii: from animals to humans[J].Int. J. Parasitol.2000,30,1217–1258.
    [81] Bowie, W.R., King, A.S., Werker, D.H., et al, Outbreak of toxoplasmosis associated withmunicipal drinking water[J]. Lancet1997,350:173–177.
    [82] Dubey, J.P., Zarnke, R., Thomas, N.J., et al. Toxoplasma gondii, Neospora caninum,Sarcocystis neurona, and Sarcocystis canis-like infections in marine mammals[J]. Vet.Parasitol.2003,116:275–296.
    [83] Jewell, M.L., Frenkel, J.K., Johnson, K.M.,et al. Development of Toxoplasma oocysts inneotropical felidae[J]. Am. J. Trop. Med. Hyg.1972,21:512–517.
    [84] Dubey, J.P., Beattie, C.P. Toxoplasmosis of Animals and Man. CRC Press[J]. Boca Raton,1988,220pp.
    [85] Lukesˇova′, D., Litera′k, I. Shedding of Toxoplasma gondii oocysts by Felidae in zoos in theCzech Republic[J].Vet. Parasitol.,1998,74:1–7.
    [86] Ocholi, R.A., Kalejaiye, J.O., Okewole, P.A. Acute disseminated toxoplasmosis in twocaptive lions (Panthera leo) in Nigeria[J]. Vet. Rec.1989,124:515–516.
    [87] Dubey, J.P., Odening, K.,2001. Toxoplasmosis and related infections. In: Samuel, B., Pybur,M., Kocan, A.M.(Eds.), Parasitic Diseases of Wild Animals. Iowa State University Press,Ames, pp.78–519.
    [88] Dubey, J.P., Frenkel, J.K. Cyst-induced toxoplasmosis in cats[J]. J. Protozool.1972,19:155–177.
    [89] Dubey, J.P. Oocyst shedding by cats fed isolated bradyzoites and comparison of infectivity ofbradyzoites of the VEG strain Toxoplasma gondii to cats and mice[J]. J. Parasitol.2001,87:215–219.
    [90] Dubey, J.P., Beattie, C.P.,1988. Toxoplasmosis of Animals and Man. CRC Press, Boca Raton,220pp.
    [91] Kniel, K.E., Lindsay, D.S., Sumner, S.S., et al. Examination of attachment and survival ofToxoplasma gondii oocysts on raspberries and blueberries. J. Parasitol.2002,88:790–793.
    [92] Frenkel, J.K., Hassanein, K.M., Hassanein, R.S., et al. Transmission of Toxoplasma gondiiin Panama City, Panama: a five-year prospective cohort study of children, cats, rodents,birds, and soil[J]. Am. J. Trop. Med. Hyg.1995,53:458–468.
    [93] Lindsay, D.S., Dubey, J.P., Butler, J.M., et al. Mechanical transmission of Toxoplasmagondii oocysts by dogs. Vet. Parasitol.1997,73:27–33.
    [94] Dubey, J.P.. Re-shedding of Toxoplasma oocysts by chronically infected cats[J].Nature.1976,262:213–214.
    [95] Dubey, J.P. Duration of immunity to shedding of Toxoplasma gondii oocysts by cats[J]. J.Parasitol.1995,81:410–415.
    [96] Ruiz, A., Frenkel, J.K. Toxoplasma gondii in Costa Rican cats[J]. Am. J. Trop. Med. Hyg.1980,29:1150–1160.
    [97] Dubey, J.P., Johnstone, I. Fatal neonatal toxoplasmosis in cats[J]. J. Am. Anim. Hosp. Assoc.1982,18:461–467.
    [98] Dubey, J.P., Carpenter, J.L.. Neonatal toxoplasmosis in littermate cats[J]. J. Am. Vet. Med.Assoc.1993,203:1546–1549.
    [99] Ruiz, A., Frenkel, J.K. Intermediate and transport hosts of Toxoplasma gondii in CostaRica[J]. Am. J. Trop. Med. Hyg.1980,29:1161–1166.
    [100] Dubey, J.P., Frenkel, J.K. Cyst-induced toxoplasmosis in cats[J]. J. Protozool.1972,19:155–177.
    [101] Sibley LD, Boothroyd JC. Virulent strains of Toxoplasma gondii comprise a single clonallineage[J]. Nature.1992,359:82–85.
    [102] Suzuki Y, Joh K. Effect of the strain of Toxoplasma gondii on the development oftoxoplasmic encephalitis in mice treated with antibody to interferon-gamma[J]. Parasitol Res.1994,80:125–130.
    [103] Ajzenberg D, Cogne N, Paris L, et al. Genotype of86Toxoplasma gondii isolates associatedwith human congenital toxoplasmosis, and correlation with clinical findings[J]. J InfectDis.2002,186:684–689.
    [104] Honore S, Couvelard A, Garin YJ, et al. Genotyping of Toxoplasma gondii strains fromimmunocompromised patients [in French][J]. Pathol Biol.(Paris)2000,48:541–547.
    [105] Howe DK, Honore S, Derouin F, et al. Determination of genotypes of Toxoplasma gondiistrains isolated from patients with toxoplasmosis[J]. J Clin Microbiol.1997,35:1411–1414.
    [106] Vallochi AL, Muccioli C, Martins MC, et al. The genotype of Toxoplasma gondii strainscausing ocular toxoplasmosis in humans in Brazil[J]. Am J Ophthalmol.2005,139:350–351.
    [107] Robben PM, Mordue DG, Truscott SM,et al. Production of IL-12by macrophages infectedwith Toxoplasma gondii depends on the parasite genotype[J]. J Immunol.2004,172:3686–3694.
    [108] Johnson JJ, Roberts CW, Pope C, et al. In vitro correlates of Ld-restricted resistance totoxoplasmic encephalitis and their critical dependence on parasite strain[J]. J Immunol.2002,169:966–973.
    [109] Araujo FG, Slifer T. Different strains of Toxoplasma gondii induce different cytokineresponses in CBA/Ca mice[J]. Infect Immun.2003,71:4171–4174.
    [110] Rodgers L, Wang X, Wen X, et al. Strains of Toxoplasma gondii used for tachyzoite antigensto stimulate spleen cells of infected mice in vitro affect cytokine responses of the cells in theculture[J]. Parasitol Res.2005,97:332–335.
    [111] Suzuki Y, Orellana MA, Schreiber RD, et al. Interferon-c: the major mediator of resistanceagainst Toxoplasma gondii[J]. Science.1988,240:516–518.
    [112] Suzuki Y, Remington JS. The effect of anti-IFN-gamma antibody on the protective effect ofLyt-2t immune T cellsagainst toxoplasmosis in mice[J]. J Immunol.1990,144:1954–1956.
    [113] Gazzinelli RT, Hakim FT, Hieny S, et al. Synergistic role of CD4t and CD8t T lymphocytesin IFNgamma production and protective immunity induced by an attenuated Toxoplasmagondii vaccine[J]. J Immunol.1991,146:286–292.
    [114] Kang H, Remington JS, Suzuki Y. Decreased resistance of B cell-deficient mice to infectionwith Toxoplasma gondii despite unimpaired expression of IFN-c, TNF-a, and inducible nitricoxide synthase[J]. J Immunol.2000,164:2629–2634.
    [115] Frenkel JK, Taylor DW. Toxoplasmosis in immunoglobulin M-suppressed mice[J]. InfectImmun.1982,38:360–367.
    [116] Johnson LL, Sayles PC. Deficient humoral responses underlie susceptibility to Toxoplasmagondii in CD4-deficient mice[J]. Infect Immun.2002,70:185–191.
    [117] Israelski DM, Remington JS. Toxoplasmosis in the non-AIDS immunocompromised host.[J]Curr Clin Top Infect Dis.1993,13:322–356.
    [118] Wong SY, Remington JS. Toxoplasmosis in the setting of AIDS. In: Broder S, Merigan TC Jr,Bolognesi D, eds. Text Book of AIDS Medicine. Baltimore, Md: Williams and Wilkins;1994:223–257.
    [119] Suzuki Y, Conley FK, Remington JS. Importance of endogenous IFN-gamma for preventionof toxoplasmic encephalitis in mice [J]. Immunol.1989,143:2045–2050.
    [120] Suzuki Y, Kang H, Parmley S, et al. Induction of tumor necrosis factor-a and inducible nitricoxide synthase fails to prevent toxoplasmic encephalitis in the absence of interferon-c ingenetically resistant BALB/c mice[J]. Microbes Infect.2000,2:455–462.
    [121] Gazzinelli R, Xu Y, Hieny S, et al. Simultaneous depletion of CD4t and CD8t T lymphocytesis required to reactivate chronic infection with Toxoplasma gondii[J]. J Immunol.1992,149:175–180.
    [122] Ferguson DJ, Hutchison WM, Pettersen E. Tissue cyst rupture in mice chronically infectedwith Toxoplasma gondii[J]. An immunocytochemical and ultrastructural study. Parasitol Res.1989,75:599–603.
    [123] Hay J, Graham DI, Dutton GN, et al. The immunocytochemical demonstration ofToxoplasma antigen in the brains of congenitally infected mice[J]. Z Parasitenkd.1986,72:609–615.
    [124] Suzuki Y, Rani S, Liesenfeld O, et al. Impaired resistance to the development of toxoplasmicencephalitis in interleukin-6-deficient mice[J]. Infect Immun.1997,65:2339–2345.
    [125] Hunter CA, Litton MJ, Remington JS, et al. Immunocytochemical detection of cytokines inthe lymph nodes and brains of mice resistant or susceptible to toxoplasmic encephalitis[J].JInfect Dis.1994,170:939–945.
    [126] Schluter D, Hein A, Dorries R, et al. Different subsets of T cells in conjunction with naturalkiller cells,macrophages, and activated microglia participate in the intracerebral immuneresponse to Toxoplasma gondii in athymic nude and immunocompetent rats[J]. Am J Pathol.1995,146:999–1007.
    [127] Wang X, Kang H, Kikuchi T, et al. Gamma interferon production, but not perforin-mediatedcytolytic activity, of T cells is required for prevention of toxoplasmic encephalitis in BALB/cmice genetically resistant to the disease[J]. Infect Immun.2004,72:4432–4438.
    [128] Denkers EY, Yap G, Scharton-Kersten T, et al. Perforinmediated cytolysis plays a limitedrole in host resistance to Toxoplasma gondii[J]. J Immunol.1997,159:1903–1908.
    [129] Wang X, Claflin J, Kang H, et al. Importance of CD8tVb8t T Cells in IFN-gamma-mediatedprevention of toxoplasmic encephalitis in genetically resistant BALB/c mice[J]. J InterferonCytokine Res.2005,25:338–344.
    [130] Kang H, Liesenfeld O, Remington JS, et al. TCR Vb8t T cells prevent development oftoxoplasmic encephalitis in BALB/c mice genetically resistant to the disease[J]. J Immunol.2003,170:4254–4259.
    [131] Kang H, Suzuki Y. Requirement of non-T cells that produce gamma interferon forprevention of reactivation of Toxoplasma gondii infection in the brain[J]. Infect Immun.2001,69:2920–2927.
    [132] Suzuki Y, Claflin J, Wang X, et al. Microglia and macrophages as innate producers ofinterferon-gamma in the brain following infection with Toxoplasma gondii[J]. Int J Parasitol.2005,35:83–90.
    [133] Chao CC, Gekker G, Hu S, et al. Human microglial cell defense against Toxoplasmagondii[J]. The role of cytokines.1994,152:1246–1252.
    [134] Peterson PK, Gekker G, Hu S, et al. Human astrocytes inhibit intracellular multiplication ofToxoplasma gondii by a nitric oxide-mediated mechanism[J]. J Infect Dis.1995,171:516–518.
    [135] Daubener W, Remscheid C, Nockemann S, et al. Antiparasitic effector mechanisms inhuman brain tumor cells: role of interferon-gamma and tumor necrosis factor-a[J]. Eur JImmunol.1996,26:487–492.
    [136] Halonen SK, Taylor GA, Weiss LM. Gamma interferoninduced inhibition of Toxoplasmagondii in astrocytes is mediated by IGTP[J]. Infect Immun.2001,69:5573–5576.
    [137] Martens S, Parvanova I, Zerrahn J, et al. Disruption of Toxoplasma gondii parasitophorousvacuoles by the mouse p47-resistance GTPases[J]. PLoS Pathog.2005;1:e24.
    [138] Schluter D, Kaefer N, Hof H, et al. Expression pattern and cellular origin of cytokines in thenormal and Toxoplasma gondii-infected murine brain[J]. Am J Pathol.1997,150:1021–1035.
    [139] Deckert-Schluter M, Bluethmann H, Kaefer N, et al. Interferon-gamma receptor-mediatedbut not tumor necrosis factor receptor type1-or type2-mediated signaling is crucial for theactivation of cerebral blood vessel endothelial cells and microglia in murine Toxoplasmaencephalitis[J]. Am JPathol.1999,154:1549–1561.
    [140] Fischer HG, Nitzgen B, Reichmann G, et al. Cytokine responses induced by Toxoplasmagondii in astrocytes and microglial cells[J]. Eur J Immunol.1997,27:1539–1548.
    [141] Rozenfeld C, Martinez R, Seabra S, et al. Toxoplasma gondii prevents neuron degenerationby interferon-gamma-activated microglia in a mechanism involving inhibition of induciblenitric oxide synthase and transforming growth factor-b1production by infected microglia[J].Am J Pathol.2005,167:1021–1031.
    [142] Schluter D, Deckert M, Hof H, et al. K. Toxoplasma gondii infection of neurons inducesneuronal cytokine and chemokine production, but gamma interferon-and tumor necrosisfactor-stimulated neurons fail to inhibit the invasion and growth of T. gondii[J]. InfectImmun.2001,69:7889–7893.
    [143] Schluter D, Bertsch D, Frei K, et al. Interferon-gamma antagonizes transforming growthfactor-b2-mediated immunosuppression in murine Toxoplasma encephalitis[J]. JNeuroimmunol.1998,81:38–48.
    [144] Wilson EH, Wille-Reece U, Dzierszinski F, et al. A critical role for IL-10in limitinginflammation during toxoplasmic encephalitis[J]. J Neuroimmunol.2005,165:63–74.
    [145] Machado FS, Johndrow JE, Esper L, et al. Anti-inflammatory actions of lipoxin A4andaspirin-triggered lipoxin are SOCS-2dependent[J]. Nat Med.2006,12:330–334.
    [146] Fischer HG, Bonifas U, Reichmann G. Phenotype and functions of brain dendritic cellsemerging during chronic infection of mice withToxoplasma gondii [J]. J Immunol.2000,164:4826–4834.
    [147] Suzuki Y, Joh K, Kwon OC, et al. MHC class I gene(s) in the D/L region but not the TNF-agene determines development of toxoplasmic encephalitis in mice[J]. J Immunol.1994,153:4649–4654.
    [148] Brown CR, Hunter CA, Estes RG, et al. Definitive identification of a gene that confersresistance againstToxoplasma cyst burden and encephalitis[J]. Immunology.1995,85:419–428.
    [149] Suzuki Y, Joh K, Orellana MA, et al. A gene(s) within the H-2D region determines thedevelopment of toxoplasmic encephalitis in mice[J]. Immunology.1991,74:732–739.
    [150] Suzuki Y, Wong SY, Grumet FC, et al. Evidence for genetic regulation of susceptibility totoxoplasmic encephalitis in AIDS patients[J]. J Infect Dis.1996,173:265–268.
    [151] Mack DG, Johnson JJ, Roberts F, et al. HLA-class II genes modify outcome of Toxoplasmagondii infection[J]. Int J Parasitol.1999,29:1351–1358
    [152] Couvreur G, Sadak A, Fortier B, et a1. Surface antigens of Toxoplasma gondii[J].Parasitology,1998,97:1-10
    [153] Burg JL, Perelman D, Kasper LH, et al.Molecular analysis of the gene encoding the majorsurf ace antigen of Toxoplasma gondii [J]. Immunol,1988,141(10):3584-3591.
    [154] Harning D, Spenter J, Metsis A, et al. Recombinant Toxoplasma gondii surface antigen1(P30) expressed in E.coli is recognized by human Toxoplasma specific immunoglobulin M(IgM) and IgG antibodies [J]. Clin Diagn Lab Immunol,1996,3(3):355-357.
    [155] Kim K, Bulow R, Kampmeier J, et al. Conformationally appropriate expression of theToxoplasma antigen SAG1(p30) in CHO cells[J]. Infect Immun,1994,62(1):203-209.
    [156]杨秋林,陆惠民,黄伟达,等.弓形虫昆山分离株P30抗原基因的克隆与表达[J].中国人兽共患病杂志,2001,17(4):27-29.
    [157]龚娅,陈晓光,杨培梁,等.截短的弓形虫P30基因在E. coli中的高效表达及纯化条件的探索[J].中国人兽共患病杂志,2001,17(2):14-18.
    [158] Letou rneur O, Gervasi G, Gaia S, et al. Characterization of Toxoplasma gondii surfaceantigen1(SAG1) secreted from Pichiapastoris: evidence of hyper Oglycosylation [J].Biotechnol Appl Biochem,2001,33(Pt1):35-45.
    [159]蔡亮,杨秋林,伍和平,等.弓形虫RH株膜蛋白P30的原核表达与鉴定[J].中国血吸虫病防治杂志,2006,18(5):378-380.
    [160] Parmley SF, Sgarlat o GD, Mark J, et al. Expression, characterization, and serologicreactivity of recombinant surface antigen P22of Toxoplasma gondii [J]. J Clin Microbiol,1992,30(5):1127-1133.
    [161] Wee JL, Ho LC, Yap EH, et al. A monoclonal-based IgM capture ELISA for detection ofantibodies to22and41kDa membrane antigens of Toxoplasma gondii[J]. Parasitology.1992,104(1):25-31.
    [162] Li S, Galvan G, Araujo FG, et al. Sero diagnosis of recently acquired Toxoplasma gondiiinfection using an enzymel inked immunosorbent assay with a combination of recombinantantigens [J]. Clin Diagn Lab Immunol,2000,7(5):781-787.
    [163] Dzierszinski F, Mortuaire M, Cesbron-Delauw MF, et al. Targeted disruption of theglycosylphosphatidylinositol-anchored surface antigen SAG3gene in Toxoplasma gondiidecreases host cell adhesion and drastically reduces virulence in mice[J]. Mol Microbiol.2000,37(3):574-82.
    [164] Marcolino PT, Silva DA, Leser PG, et al. Molecular markers in acute and chronic phases ofhuman toxoplasmosis: determination of immunoglobulin G avidity by Westernblotting[J].Clin Diagn Lab Immunol.2000,7(3):384-9.
    [165]周永安,余新炳,吴忠道等. SAG3基因在造血干细胞移植患者弓形虫感染诊断中的应用[J].中华器官移植杂志,2004,25(3):171-173.
    [166]周永安,马艳萍,李荣山等.SAG3基因在肾移植患者弓形虫感染诊断中的应用[J].中国中西医结合肾病杂志,2006,7(2):88-90.
    [167] Carmen dberg-Ferragut, Martine Soêtea, Anne Engelsa, et al. Molecular cloning of theToxoplasma gondii sag4gene encoding an18kDa bradyzoite specific surface protein[J].Molecular and Biochemical Parasitology.1996,25(2):237–244.
    [168] Parmley, S.F., Yang, SM., Harth, G., et al. Molecular characterization of a65kilodaltonToxoplasma gondii antigen expressed abundantly in the matrix of tissue cysts[J]. Mol.Biochem. Parasitol.1994,66:283-296.
    [169] Bohne, W., Gross. U., Ferguson, D.J.P., et al. Cloning and characterization of a bradyzoitespecifically expressed gene (hsp/bag1) of Toxoplasma gondii, related to genes encodingsmall heat-shock proteins of plants[J]. Mol. Microbial.1995,16,1221-1230.
    [170] Parmley, S.F.. Weiss, L.M. and Yang, S. Cloning of a bradyzoite-specific gene ofToxoplasma gondii encoding a cytoplasmic antigen[J]. Mol. Biochem. Parasitol.1995,73,253-257.
    [171] Yang, S. and Parmley, S.F. A bradyzoite stagespecifically expressed gene of Toxoplasmagondii encodes a polypeptide homologous to lactate dehydrogenase[J]. Mol. Biochem.Parasitol.1995,73,291-294.
    [172] Elsheikha H, Hafez AO, Zaalouk TK, et al. Phylogenetic evidence for recombination inSAG5locus in Toxoplasma gondii[J]. Egypt Soc Parasitol.2008,38(2):371-384.
    [173] Hany M. Elsheikha, Xiangrong Zhao. Patterns and role of diversifying selection in theevolution of Toxoplasma gondii SAG5locus[J]. Parasitol Res.2008,103:201–207
    [174] Tomavo T,Fortier F,Soete M,et a1.Characterization of Bradyzoite-Specific Antigens ofToxoplasma gondii[J]. IAI,1991,59(10):3750-3753.
    [175] Shuli Li, Gina Galvan, Fausto G. Araujo, et al. Serodiagnosis of Recently AcquiredToxoplasma gondii Infection Using an Enzyme-Linked Immunosorbent Assay with aCombination of Recombinant Antigens[J]. Clin Vaccine Immunol.2000,7(5):781-787
    [176] Yasuhiro Suzuki,Raymund Ramirez,Cindy Press, et al. Detection of Immunoglobulin MAntibodies to P35Antigen of Toxoplasma gondii for Serodiagnosis of Recently AcquiredInfection in Pregnant Women[J]. J. Clin. Microbiol.2000,38(11):3967-3970.
    [177] Saffer, L. D., Mercereau, O., Dubremetz, J.-F, et al. Localization of a Toxoplasma gondiiRhoptry Protein by Immunoelectron Microscopy During and After Host Cell Penetration[J].Journal of Eukaryotic Microbiology,1992,39:526–530.
    [178] Saavedra R, Becerril MA, Dubeaux C, et al. Epitopes recognized by human T lymphocytesin the ROP2protein antigen of Toxoplasma gondii [J]. Infect Immun,1996,64(9):3858-62.
    [179] Hiszczyńska-Sawicka E, Brillowska-Dabrowska A, Dabrowski S, et al. High yieldexpression and single-step purification of Toxoplasma gondii SAG1, GRA1, and GRA7antigens in Escherichia coli[J].2003,27(1):150–157.
    [180] Keith A, Jean D. Toxoplasma gondii: a protozoan for the nineties[J]. Infect Immun,1993,61:1169-1172.
    [181]王世海.弓形虫病的免疫学诊断和疫苗研究的进展[J].贵州医学,2005,29(4):380-382.
    [182]逄伟.弓刚地弓形虫速殖子抗原研究进展[J].中国畜牧兽医,2011,38(5):229-231.
    [183] Cesbron-Delauw M F,Tomavo S,Beauchamps P,et al. Similarities between the primarystructures of two distinct major surface proteins of Toxoplasma gondii [J].J Biol Chem.1994,269(23):16217-16222.
    [184] Tomavo S, Martinage A, Dubremetz JF. Phosphorylation of Toxoplasma gondii majorsurface antigens.[J] Parasitol Res,1992,78(7):541-544.
    [185] Seon-Kyeong Kim, John C, Boothroyd. Stage-sepcific expression of surface antigens byToxoplasma gondii as a mechanism to facilitate parasite Persistece.[J] J Immunol,2005,174:8038-8048.
    [186] Boothroyd J C, Hehl A, Knolll L J, et al. The surface of Toxplasma:more and less.[J] Int JParasitol,1998(28):3-9.
    [187] Handman E, Goding JW, Remington JS. Detection and characterization of membraneantigens of Toxoplasma gondii [J]. Immunol,1980,124(6):2578-2583.
    [188] Dzierszinski F, Mortuaire M, Cesbron-Delauw M F, et al. Targeted disruption of theglycosylphos phatidylinositol-anchored surface antigen SAG3gene in Toxoplasma gondiidecreases host cell adhesion and drastically reduces virulence in mice.[J].Mol Microbiol,2000,37(3):574-582.
    [189]周永安,余新炳,吴忠道,等. SAG3基因在造血干细胞移植患者弓形虫感染诊断中的应用[J].中华器官移植杂志,2004,25(3):171-173
    [190]杨丽萍,周永安.P43基因在白血病患者弓形虫感染诊断中的应用[J].临床医药实践杂志,2005,14(12):889-891.
    [191]王陇德,主编.全国人体重要寄生虫病现状调查[M].北京:人民卫生出版社。2008:90-94.
    [192]王春莉,刘建虎,要姚民一.弓形虫感染免疫学研究近况[J].中国寄生虫学与寄生虫病学杂志,2001,4(2):121-123.
    [193]李祥瑞;弓形虫病的流行的新趋势[J];动物医学进展;2010年S1期.
    [194]王静,酶联免疫吸附试验法检测乙型肝炎病毒表面抗原的影响因素分析[J].检验医学与临床,2010,7:671-672.
    [195] Tomavo S, Martinage A, Dubremetz JF. Phosphorylation of Toxoplasma gondii majorsurface antigens.[J] Parasitol Res.1992,78(7):541-544.
    [196] Cesbron-Delauw MF,Tomavo S,Beauchamps P,et al. Similarities between the primarystructures of two distinct major surface proteins of Toxoplasma gondii [J].J BiolChem,1994,269(23):16217–16222.
    [197] Seon-Kyeong Kim, John C, Boothroyd. Stage-sepcific expression of surface antigens byToxoplasma gondii as a mechanism to facilitate parasite Persistece.[J] Immunol.2005,174:8038-8048.
    [198]周永安,余新炳,吴忠道,郑焕钦,徐劲.弓形虫表面抗原SAG3基因片段克隆及序列测定[J].中国人兽共患病杂志,2003.
    [199]刁玉梅,宫鹏涛,李巍等.微小隐孢子虫病毒衣壳蛋白抗体检测ELISA方法的建立[J].中国预防兽医学报,2011,7:537-540.
    [200]蒋正军,马世东,蔡丽娟,等.非洲猪瘟间接ELISA诊断试剂盒的研究[J].中国预防兽医学报,2000,22:107-113.
    [201]王艳华,张德林,李学瑞,等.弓形虫病免疫学诊断方法研究进展[J].动物医学进展,2007,7:53-57.
    [202]马亮,刁玉梅,任保彦等.弓形虫RH株表面抗原SAG3去信号肽基因的蛋白原核表达及鉴定[J].吉林农业大学学报,2012,34(1):104-108.
    [203] Jung C,Lee CY,Grigg ME.The SRS superfamily of Toxoplasma surface proteins[J]. Int JParasitol,2004,34(3):285-296.
    [204]周永安,余新炳,陈海峰,等.弓形虫表面抗原SAG3基因和IL-12基因佐剂混合诱导小鼠免疫应答研究[J].中国人兽共患病杂志,2005,21(11):945-947.
    [205] K hler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefinedspecificity[J]. Nature.1975,256(5517):495-497.
    [206]林克勤,易文,褚嘉祐.杂交瘤研究中染色体分析的方法及其意义[J].中国医药生物技术.2010,5(5):367-370.
    [207]李海红,马丽菊,王秦秦.杂交瘤细胞P35染色体丢失与其分泌单克隆抗体的特性[J].细胞与分子免疫学杂志.2004,20(2):181-183.
    [208] Wang X, Fox M, Povey S, et al. Mouse-human somatic cell ybrids: loss of mouse andhuman chromosomes. Somat Cell Mol Genet,1998,24(3):165-171.
    [209] Uchiyama K, Saito H, Tokuhisa T, et al. High frequency of loss of human kappa light chainexpression in mouse human heterohybridomas [J]. Hybridoma,1987,6(6):645-654.
    [210]邓韵竹.先天性弓形虫脑病11例报告[J].临床儿科杂志,1995,13(2):110-111.
    [211] M Odenthal-Schnittler, S Tomavo, D Becker, et al. Evidence for N-linked glycosylation inToxoplasma gondii[J]. Biochem J.1993,291(3):713–721.
    [212]张宏伟.动物疫病[M].北京:中国农业出版社.2001:305-307.
    [213]董永森,罗自清,张国仓等.青海省牛羊弓形虫病流行病学调查[J].中国人兽共患病学报.2011,27(4):359-363.
    [214]黄利权,李慧,何士根等.浙江地区犬猫猪弓形虫病的流行病学调查[J].中国兽医杂志,2011,47(6):39-41.
    [215]廖启顺,李志祥,丁联成等.2009-2010年部分猪场主要传染病流行病学调查[J].中国畜牧兽医.2012:39(2):194-199.
    [216]王海霞,湟中县猪弓形虫病血清学调查[J].中国动物检疫,2012,29(2):44-45.
    [217]丁关娥,徐明宝,周永华等.无锡地区鸡弓形虫感染的血清流行病学调查[J].中国血吸虫病防治杂志.2012,4(2):243-244.
    [218]赵慰先主编.人体寄生虫学[M].第1版.北京:人民卫生出版社,1983:235.
    [219]付翠娥,陈彩华,蒋柏鸣等.ELISA双单克隆抗体夹心法检测弓形虫循环抗原的实验研究[J].中国寄生虫学与寄生虫病杂志,1989,7(3):191-193.
    [220]于恩庶.崔君兆主编.弓形体病.第1版[M].北京:人民卫生出版社,1982:279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700