猪细小病毒感染对猪外周血淋巴细胞细胞因子转录时相影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪细小病毒(Porcine Parvovirus, PPV)是引起猪繁殖障碍综合症的主要病原,可引起死产、木乃伊胎、胚胎的早期死亡及不孕不育等。除了临床上导致繁殖障碍,猪细小病毒还能引起皮炎、肠道等疾病。作为一个能显著导致经济损失的疾病,近年来猪细小病毒在世界范围内普遍流行,感染和造成的危害呈上升趋势,给养猪业造成了巨大的经济损失。细胞因子能介导抗病毒状态的建立及募集炎性细胞向感染部位聚集,不仅在抵抗疾病的过程中发挥重要作用,而且是清除感染所必需的。对于猪细小病毒致病机制的研究多集中在病毒的复制及感染过程,而对病毒与细胞间的作用关系、猪细小病毒感染引起宿主细胞因子的变化规律的研究尚未见报道。为了了解猪细胞因子对PPV感染的免疫反应机制,阐明PPV的致病机理,我们进行了以下研究:
     1.利用实时定量PCR分别对PPV感染猪PBMC后1 h、3 h、6 h、12 h、24 h、48 h、72 h细胞中的PPV DNA水平及IFN-β、IFN-γ、IFNAR-1、IFNAR-2、MHC-Ⅰ、MHC-Ⅱ、MX1、iNOS、2-5OAS、RNaseL和IRF-3等干扰素及相关细胞因子mRNA分泌水平进行检测。结果发现,PPV感染猪外周血淋巴细胞后1 h即能检测到PPV DNA,24 h后PPV开始迅速增殖,在感染后72 h达到峰值,为10倍多。IFNAR-1 mRNA的表达量在1 h、24 h显著增加,其中1 h为89.9倍;IFNAR-2 mRNA的表达量在24 h达到高峰,其他时间无明显差异;IFN-βmRNA的表达量在1 h达到高峰,24 h显著下调;IFN-γmRNA的表达量在48 h显著增加,24 h显著下调;MHC-ⅠmRNA的表达量在1 h、12 h、48 h显著增加,48 h达到高峰;IRF-3、RNaseL mRNA的表达量在48 h显著增加,其它时间表达差异不显著;MX1、2-5OAS mRNA的表达量在24 h、48 h显著增加,24 h达到高峰;MHC-ⅡmRNA的表达量在1 h、3 h、6 h、12 h显著增加,3 h达到高峰;iNOS mRNA在1 h不表达,3 h表达量显著增加,24 h显著下调。PPV感染可引起猪PBMC分泌抗病毒相关因子显著增加。
     2.利用实时定量PCR分别对PPV感染猪PBMC后1 h、3 h、6 h、12 h、24 h、48 h、72 h细胞中的IL-1β、6、8、12p35、12p40、13、17和18等炎性细胞因子mRNA分泌水平进行检测。结果发现PPV感染猪PBMC后IL-1βmRNA的表达量在1h、3 h、6 h、12 h、24 h显著增加,24 h达到高峰为58倍;IL-6 mRNA的表达量在1h、3 h、6 h、12 h、24 h、72 h显著增加,6 h达到高峰为40.5倍;IL-12p35 72 h显著增加,24 h显著减少;IL-12p40 1 h显著增加,24 h显著减少;IL-8在1 h、3 h、6 h、12 h、24 h、48 h显著增加,24 h达到高峰为59.7倍;IL-13在3 h显著增加,12h、24 h显著减少;IL-17在1 h、48 h显著增加,6 h、12 h、24 h显著减少;IL-18在6 h显著增加。PPV感染可引起猪PBMC分泌炎性相关因子显著增加。
     3.利用实时定量PCR分别对PPV感染猪PBMC后1 h、3 h、6 h、12 h、24 h、48 h、72 h细胞中的TNF-α、TNFR-2、P53、PBR、Bcl-2、Bcl-xl、Caspase-8和FasL等凋亡细胞因子mRNA分泌水平进行检测。结果发现PPV感染猪PBMC后TNF-αmRNA的表达量在1 h显著增加,随后逐渐降低,24 h显著减少;TNFR-2 24 h显著减少为0.25倍,48 h显著增加为11.5倍;P53在1 h和72 h有轻微增加,6 h、12 h、24 h减少;PBR在1 h、24 h、48 h显著增加,24 h达到高峰为12.9倍;Bcl-2在1 h有轻微增加,其他时间减少,24 h显著减少;Bcl-xl在24 h显著减少,72 h显著增加;Caspase-8在1 h、24 h显著增加,1 h达到高峰为19.3倍;FasL在1 h显著增加,24 h显著减少为0.02倍。PPV感染可引起猪PBMC分泌凋亡相关因子显著变化。
     综上所述,本试验分别对PPV在猪PBMC中的增殖规律及PPV感染后猪PBMC干扰素及相关细胞因子、炎性细胞因子、凋亡相关细胞因子的转录时相进行了研究,为进一步了解细胞因子的免疫学作用机制及PPV的分子致病机制提供试验依据,为预防和治疗PPV及相关药物的筛选和研制奠定了理论基础。
Porcine parvovirus (PPV) is the major causative virus in a syndrome of reproductive failure in swine, which includes stillbirths,mummified fetuses, early embryonic death, and infertility. Moreover, other clinical manifestation besides reproductive failure, such as dermatitis and enteric diseases. Recently, PPV is widespread among swine throughout the world as a signicant economical disease, PPV infection and the harm caused by the upward trend to the pig farming industry and caused great economic losses. as mediate the establishment of an antivirus state and recruit inflammatory cells to the site of infection, Cytokines were clearly not the only factor contributing to disease, And they seemed to be essential for resolution of the infection. The study of pathogenesis of porcine parvovirus were focused on the process of viral replication and infection, while the relationship between cells and virus, variation of cytokines of host cell infected with porcine parvovirus have not been reported. To understand the mechanism of porcine cytokines, clarify the mechanism of PPV, we carried out the following studies:
     1. The PPV DNA levels and transcript level of cytokines(IFN-β、IFN-γ、IFNAR-1、IFNAR-2、MHC-Ⅰ、MHC-Ⅱ、MX1、iNOS、2-5OAS、RNaseL and IRF-3)of PBMC cultures infected with porcine parvovirus after 1 h, 3 h,6 h, 12 h, 24 h, 48 h, 72 h were detected by quantitative real-time PCR SYBR greenⅠmethod. The virus DNA can be detected an hour after PPV infection, 72 h after infection, the peak value was more then 10 times.The transcript levels of IFNAR-1 were increased significantly on 1 h and 24 h postinoculation(p.i.),especially 1 h p.i the expression levels of IFNAR-1 increased about 89.9 times; IFNAR-2 reached a peak on 24 h p.i, but was not significant at other times;IFN-βreached a peak in 1 h p.i,but decreased on 24 h p.i; The transcript levels of IFN-γwere decreased on 24 h p.i,but significantly increased 48 h p.i; MHC-Ⅰwas increased significantly on 1 h,12 h,48 h,and reached a peak in 48 h; IRF-3、RNaseL were increased significantly on 48 h, but was not significant at other times; MX1、2-5OAS were increased significantly on 24 h, 48 h,and reached a peak in 24 h; MHC-Ⅱwas increased significantly on 1h,3 h,6 h,12 h,and reached a peak in 3 h; PBMC do not secrete iNOS on 1 h p.i,but the transcript levels of iNOS was increased significantly on 3 h p.i, decreased on 24 h p.i. The PPV infection induced PBMC the secretion of anti-virus related cytokines increased significantly.
     2. The transcript level of cytokines(IL-1β、6、8、12p35、12p40、13、17 and 18)of PBMC cultures infected with porcine parvovirus after 1 h, 3 h, 6 h, 12 h, 24 h, 48 h, 72 h were detected by quantitative real-time PCR SYBR greenⅠmethod. Of the genes levels tested, The transcript levels of IL-1βwere increased significantly on 1h,3 h,6 h,12 h,24 h, the peak value was 58 times on 24 h;IL-6 was increased significantly on 1h,3 h,6 h,12 h,24 h,72 h,and reached a peak on 6 h,which was 40.5 times;IL-12p35 and p40 were decreased significantly on 24 h,but increased significantly on 72 h and 1 h respectively;IL-8 was increased significantly on 1h,3 h,6 h,12 h,24 h,48 h,and reached a peak on 24 h which was 59.7 times;IL-13 was increased significantly on 3 h,but decreased significantly on 12 h,24 h;IL-17 was increased significantly on 1 h,48 h,but decreased significantly on 6 h,12 h,24 h;IL-18 was increased significantly on 6 h. The PPV infection induced PBMC the secretion of inflammatory cytokines increased significantly.
     3. The transcript level of cytokines(TNF-α、TNFR-2、P53、PBR、Bcl-2、Bcl-xl、Caspase-8 and Fasl) of PBMC cultures infected with porcine parvovirus after 1 h, 3 h, 6 h, 12 h, 24 h, 48 h, 72 h were detected by quantitative real-time PCR SYBR greenⅠmethod. Of the genes levels tested, The transcript levels of TNF-αwere increased significantly on 1 h, then started to decline, decreased significantly on 24 h; TNFR-2 was decreased significantly on 24 h,which was 0.25 times,but increased significantly on 48 h which was 11.5 times;P53 was increased slightly on 1 h and 72 h,but decreased on 6 h,12 h and 24 h;PBR was increased slightly on 1 h,24 h and 48 h, the peak value was 12.9 times on 24 h;Bcl-2 was increased slightly on 1 h,but decreased other times, decreased significantly on 24 h; Bcl-xl was decreased significantly on 24 h,but increased significantly on 72 h; Caspase-8 was increased significantly on 1h and 24 h, the peak value was 19.3 times on 1 h; Fasl was increased significantly on 1h, but decreased significantly on 24 h, which was about 0.02 times. The PPV infection induced PBMC the secretion of apoptosis-related cytokines changed significantly.
     In summary, the expression of PPV DNA, interferon and related cytokines, inflammatory cytokines,apoptosis-related cytokines of porcine PBMC after infected with PPV were studied. Provide an experiment support for further understand the role of cytokines in the immune mechanism and the molecular mechanisms of PPV, and establish theoretical foundation for screening and development of prevention and treatment of PPV-related drugs.
引文
[1] Cartwright S F, Huck R A. Virus isolation is associated with herd infertility, abortion and stillbirth in pigs [J]. Vet Rec, 1967, 81:196-197.
    [2] Mengeling W L, Porcine parvovirus[M]. Diseases of Swine,9th ed. Ames, Iowa:Blackwell Publishing, 2006:373-385.
    [3] Nielsen J, Ronsholt L, Sorensen K J. Experimental in utero infection of pig foetuses with porcine parvovirus (PPV)[J]. Vet Microbiol, 1992, 28(1):1-11.
    [4] Whitaker H K, Neu S M, Pace L W. Parvovirus infection in pigs with exudative skin disease[J]. J Vet Diagn Invest, 1990, 2(3):244-246.
    [5] Drolet R, D’Allaire S, Larochelle R, et al. Infectious agents identied in pigs with multifocal interstitial nephritis at slaughter[J]. Vet Rec, 2002, 150(5),139-143.
    [6] Bolt D M, Hani H, Muller E, et al. Non-suppurative myocarditi in piglets associated with porcine parvovirus infection[J]. J Comp Pathol, 1997, 117(2):107-118.
    [7] Allan G M, Kennedy S, McNeilly F, et al. Experimental reproduction of severe wasting disease by co-infection of pigs with porcine circovirus and porcine parvovirus[J]. J Comp Pathol, 1999, 121(1):1-11.
    [8] Ruiz-Fons F, Vicente J, Vidal D, et al. Seroprevalence of six reproductive pathogens in European wild boar(Susscrofa)from Spain:the effect on wild boar female reproductive performance[J]. Theriogenology, 2006, 65(4):731-743.
    [9] Molitor T W, Joo H S, Collett M S. Porcine parvovirus: virus purification and structural and antigenic properties of virion polypeptides[J]. J Virol, 1983, 45(2):842-854.
    [10] Molitor T W, Joo H S, Collett M S. Porcine parvovirus DNA: characterization of genomic and replicative form DNA of two virus isolates[J]. Virology, 1984, 137(2):241-254.
    [11] Molitor T W, Joo H S, Collett M S. Identification and characterization of a porcine parvovirus nonstructural polypeptide[J]. J Virol, 1985, 55(3):554-559.
    [12]赵俊龙,陈焕春.猪细小病毒和猪伪狂犬病毒复合PCR检测方法的建立[J].华中农业大学学报, 2002, 21(2):123-125.
    [13] Choi C S, Joo H S, Molitor T W. Inhibition of porcine parvovirus replication by empty virus particles[J]. Arch Virol, 1987, 96(1-2):75-87.
    [14] Astell C R, Thomson M, Chow M B, et al. Structure and replication of minute virus of mouse DNA[J]. Cold Spring Harb Symp Quant Biol, 1983, 47(2):751-762.
    [15] Cotmore S F, Tattersall P. The autonomously replicatingparvoviruses of vertebrates[J]. Adv Virus Res, 1987, 33:91-174.
    [16] Siegl G. Biology and pathology of autonomous parvoviruses[M]. In K 1 Bern (ed), The parvovirus, Plenum Press, New York, 1984, 297-349.
    [17] Ranz A I, Manclus J J, Diaz-Aroca E, et al. Porcine parvovirus:DNA sequence and genome organization[J]. J Gen Virol, 1989, 70(10):2541-2553.
    [18] Bergeron J, Menezes J, Tijssen P. Genome organization and mapping of transcription and translation products of the NADL-2 strain of porcine parvovirus[J]. Virology, 1993, 197(1):86-98.
    [19] Bergeron J, Hebert B, Tijssen P. Genome organization of the Kresse strain of porcine parvovirus:identification of the allotropic determinant and comparison witht those of NADL-2 and field isolates[J]. J Virol, 1996, 70(4):2508-2515.
    [20] Faisst S, Rommelaere. Parvoriruses: from molecular biology to pathology and therapeutic uses[M]. Contributions to microbiology, S Karger Publishers, Basel Switzerland, 2000, vol 4.
    [21] Nuesch J P, Cotmore S F, Tattersall P. Sequence motifs in the replicator protein of parvovirus MVM essential for nicking and covalent attachment to the viral origin: identification of the linking tyrosine[J]. Virology, 1995, 209(1):122-135.
    [22] Daeffler L, Horlein R, Rommelaere J,et al. Modulation of minute virus of mice cytotoxic activities through site-directed mutagenesis within the NS coding region[J]. J Virol, 2003, 77(23):12466-12478.
    [23] Rayet B, Lopez-Guerrero J A, Rommelaere J, et al. Induction of programmed cell death by parvovirus H-1 in U937 cells: connection with the tumor necrosis factor alpha signalling pathway[J]. J Virol, 1998, 72(11):8893-8903.
    [24] Fichelson, Morinet F. Possible interactions between the NS-1 protein and tumor necrosis factor alpha pathways in erythroid cell apoptosis induced by human parvovirus B19[J]. J Virol, 1999, 73(10):8762-8770.
    [25] Martinez C, Dalsgaard K, Lo pez de Turiso J A, et al. Production of porcine parvovirus empty capsids with high immunogenic activity[J]. Vaccine , 1992, 10(10):684-690.
    [26]魏战勇,崔保安,黄克和,等.硒蛋氨酸对猪细小病毒体外增殖的抑制作用[J].南京农业大学学报, 2005, 28(2):147-149.
    [27]魏战勇,崔保安,黄克和,等.一氧化氮对猪细小病毒体外增殖的影响研究[J].中国病毒学, 2005, 20(1):33-36.
    [28]王学斌,魏战勇,崔保安,等.黄芪、板蓝根对猪细小病毒体外抑制作用的研究[J].中国预防兽医学报, 2006, 28(6):715-719.
    [29] Tattersall P, Bratton J. Reciprocal productive and restrictive virus-cell interactions of immunosuppressive and prototype strains of minute virus of mice[J]. J Virol, 1983,46(3):944-955.
    [30] Tennant R W, Layman K R, Hand R E. Effects of physiological state on infection by rat virus[J]. J Virol, 1969, 4(6):872-878.
    [31] Ridpath J F, Mengeling W L. Uptake of porcine parvovirus into host and nonhost cells suggests host specificity is determined by intracellular factors[J]. Virus Res, 1988, 10(1):17-28.
    [32]魏战勇,王学兵,陈红英,等.利用Real-time PCR技术检测猪细小病毒在PK-15细胞增殖动态研究[J].河南农业大学学报, 2009, 43(4):398-401.
    [33]李厚伟,魏战勇,郭显坡,等.实时定量PCR探讨猪细小病毒自然感染猪体内病毒的分布情况[J].西北农林科技大学学报(自然科学版), 2010, 38(11):1-6.
    [34] Jensen P V, Castelruiz Y, Aasted B. Cytokine Profiles in Adult Mink Infected with Aleutian Mink Disease Parvovirus[J]. J Virol, 2003, 77(13):7444-7451.
    [35] Fu Y, Ishii K K, MunakataY, et al. Regulation of Tumor Necrosis Factor Alpha Promoter by Human Parvovirus B19 NS1 through Activation of AP-1 and AP-2[J]. J Virol, 2002, 76(11):5395-5403.
    [36] Hsu T C, Tzang B S, Huang C N, et al. Increased expression and secretion of interleukin-6 in human parvovirus B19 non-structural protein (NS1) transfected COS-7 epithelial cells[J]. Clin Exp Immunol, 2006, 144(1):152-157.
    [37] Van Reeth K. Cytokines in the pathogenesis of influenza[J]. Vet Microbio, 2000, 74(1-2):109-116.
    [38]陈鸿珊,张兴权.抗病毒药物及其研究方法[M].第一版.北京:化学工业出版社, 2006:83-103.
    [39]魏伟,李晓辉,张洪泉,等.抗炎免疫药理学[M].第一版.北京:人民卫生出版社, 2005:203-232.
    [40]詹正嵩.细胞因子临床安全合理应用[M].第一版.北京:化学工业出版社, 2005.
    [41]方福德.现代医学实验技巧全书:下册[M].北京:北京医科大学中国协和医科大学联合出版社, 1995:298-299.
    [42]刘焱.细胞因子的检测及其在肿瘤临床的应用[J].中国临床保健杂志, 2005, 8(4):373-376.
    [43] Sander B, Andersson J, Andersson U. Assessment of cytokines by immunofluorescence and the paraformaldehyde-saponin procedure[J]. Immunol Rev. 1991, 119(1):65-93.
    [44]孙卫民,王惠琴.细胞因子研究方法学[M].第一版.北京:人民卫生出版社, 1999:20-52.
    [45] Melby P C. Quantitative measurement of hum an cytokine gene expression by polymerase chain reaction[J]. J Inmlunol Methods, 1993, 159(1-2):235-244.
    [46] Rajeevan M S, Ranamukhaarachchi D G, Vernon S D, et al. Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies[J]. Methods (San Diego, Calif) 2001, 25(4):443-451.
    [47] Ginzinger D G. Gene quantification using real-time quantitative PCR:an emerging technology hits the mainstream[J]. Exp Hematol 2002, 30(6):503-512.
    [48] Blaschke V, Reich K, Blaschke S, et al. Rapid detection of proinflammatory and chemoattractant cytokine expression in small tissue samples and monocyte-derived dendritic cells: validation of a new real-time RT-PCR technology[J]. J Immunol Methods, 2000, 246(1-2):79-90.
    [49] Giulietti A, Overbergh L,Valckx D, et al. An overview of real-time quantitative PCR: applications to quantify cytokine gene expression[J]. Methods 2001, 25(4):386-401.
    [50] Stordeur P, Zhou L, Byl B, et al.Immune monitoring in whole blood using real-time PCR[J]. J Immunol Methods, 2003, 276(1-2):69-77.
    [51] Randall R E, Goodbourn S. Interferons and viruses:an interplay between induction, signaling, antiviral responses and virus countermeasures[J]. J Gen Virol, 2008, 89(1):1-47.
    [52] de Los Santos T, de Avila Botton S, Weiblen R, et a1. The leader proteinase of foot-and-mouth disease virus inhibits the induction of beta interferon mRNA and blocks the host innate immune response[J]. J Viml, 2006, 80(4):l906-1914.
    [53] La Rocca S A, Herbert R J, Crooke H, et a1. Loss of interferon regulatory factor 3 in cells infected with classieal swine fever virus involves the N-terminal protease, Npro[J]. J Virol, 2005, 79(11):7239-7247.
    [54] Luo R, Xiao S, Jiang Y, et a1. Porcine reproductive and respiratory syndrome virus (PRRSV ) suppresses interferon-beta production by interfering with the RIG-I signaling pathway[J]. Mol Immunol, 2008, 45(10):2839-2846.
    [55]韦天超,田志军,周艳君,等.猪IFN-γmRNA TaqMan荧光定量RT-PCR检测方法的建立[J].中国兽医科学, 2009, 39(02):168-172.
    [56] Rodriguez-Carreno M P, Lopez-Fuertes L, Revilla C, et a1. Phenotypic characterization of porcine IFN-gamma-producing lymphocytes by flow cytometry [J]. Journal of Immunology Method, 2002, 259(1-2):171-179.
    [57] Rowland RRR, Robinson B, Stefanick J, et al. Inhibition of porcine reproductive and respiratory syndrome virus by interferon-gamma and recovery of virus replication with 2-aminopurine[J]. Arch Virol, 2001, 146(3):539-555.
    [58] Lopez Fuertes L, Domenech N, Alvarez B, et a1. Analysis of cellular immune response in pigs recovered from porcine respiratory and reproductive syndrome infection[J]. Virus Res,1999, 64(1):33-42.
    [59]窦永喜,翟军军,李健,等.猪IFN-γ基因的融合表达及其表达产物的生物学特性[J].中国兽医科学, 2008, 38(06):525-530.
    [60] Rowland, Robinson, Stefanick, el a1. Inhibition of porcine reproductive and respiratory syndrom e virus by interferon-gamma and recovery of virus replication with 2-aminopurine[J]. Arch Virol, 2001, 146(3):539-555.
    [61] Volpes R, van dan Oord J J, De Vos R, et al. Expression of interferon-γreceptor in normal and pathological human liver tissue[J]. J Hepatol, 1991, 12(2):195-202.
    [62] Samuel C E. Antivirus actions of interferon[J]. Chinical Microbiology Reviews, 2001, 14(4):778.
    [63]卢银平,董继华,刘朝,等.慢性HCV感染者外周血单个核细胞IL-18和IFNAR1检测的临床意义[J].中国实验诊断学, 2006, 10(8):886-888.
    [64]刘宁,李颖,刘沛.慢性丙型肝炎患者外周血单个核细胞I FNAR2 mRNA的表达[J].世界华人消化杂志, 2005, 13(8):1023-1026.
    [65] Glenn T, Elke J, Markus J M. Detection of antigen-specific T cells with MHC/peptide-tetramer-complexes[J]. Clin Appl Imrnunol Rev, 2002(2):345-356.
    [66] Lehner M, Stockl J , Majdic O , et al. MHC class II antigen signalling induces homotypic and heterotypic clust er formation of human mature mo nocyte derived dendrit ic cell s in the absence of cell death[J]. Hum Immunol, 2003, 64 (8):762-770.
    [67] Staeheli P, Pravtcheva D, Lundin L G, et al. Interferon-regulated influenza virus resistance gene Mx is localized on mouse chromosome 16[J]. J Virol, 1986, 58(3):967-969.
    [68] Thomas AV, Palm M, Broers A D, et al. Genomic structure, promoter analysis, and expression of the porcine (Sus scrofa) Mx1 gene[J]. Immunogenetics, 2006, 58(5-6):383-389.
    [69] Van der Bliek A M. Functional diversity in the dynamin family[J]. Trends Cell Biol, 1999, 9(3):96-102.
    [70] Morozumi T, Naito T, Lan P D, et al. Molecular cloning and characterization of porcine Mx2 gene[J]. Molecular Immunology, 2009, 46(5):858-865.
    [71] Horisberger M A. Virus-specific effects of recombinant porcine interferon-γand the induction of Mx proteins in pig cells[J]. J Interferon Res, 1992, 12(6):439-444.
    [72] Zhang X, Shin J, Molitor T W, et a1. Molecular responses of macrophages to porcine reproductive and respiratory syndrome virus infection[J]. Virology, 1999, 262(1):152-162.
    [73]李荣,宋政军,王粉荣. iNOS、TGFβl、VEGF在胃癌中的表达及意义[J].现代肿瘤医学, 2005, 13(5):609-611.
    [74] Billar T R. Nitric oxide:novol biology with clinical relevance[J]. Ann Surg, 1995,2ll(4):339-349.
    [75]陈福琴,邵倩,李瑞峰,等. 2型糖尿病患者外周血白细胞iNOS mRNA表达的变化及意义[J].山东大学学报(医学版), 2004, 42(1):77-80.
    [76]姜洋,金晓明,贺岩,等. IL-8与iNOS在进展期胃癌组织中表达的意义[J].哈尔滨医科大学学报, 2004, 38(1):36-38.
    [77] Peters K, Chattopadhyay S, Sen G C. IRF-3 Activation by Sendai Virus Infection Is Required for Cellular Apoptosis and Avoidance of Persistence[J]. J Virol, 2008, 82(7):3500-3508.
    [78] Fitzgerald K A, Mcwhirter S M, Faia K L, et al. IKK and TBK1 are essential components of the IRF-3 signaling pathway[J]. Nat Immunol, 2003, 4(5):491-496.
    [79] Takeuchi O, Akira S. Recognition of viruses by innate immunity[J]. Immunol Rev, 2007, 220(1):214-24.
    [80] Sneto C C, Wong T Y, Leung C B, et a1. Importance of dialysis adequacy in mortality and morbidity of Chinese CAPD patients[J]. Kidney Ini, 2000, 58(1):400-407.
    [81] Mykhailyk I V, Ostapchenko L I, Kucherenko Mie. Interferoninduced 2’,5’oligoedenylate system;key components and biological functions[J]. Ukr Biokhim Zh, 2003, 75(3):11-21.
    [82]章仕坚,唐永煌,颜亮. HBV感染患者2’,5’寡腺苷酸合成酶、IL-2和IL-12水平检测及意义[J].中国病理生理杂志, 2007, 23(1):106-108.
    [83] Liang S L, Quirk D, and Zhou A. RNase L: Its Biological Roles and Regulation[J]. IUBMB Life, 2006, 58(9):508-514.
    [84] Malathi K, Paranjape J M, Bulanova E, et al. A transcriptional signaling pathway in the IFN system mediated by 2′,5′-oligoadenylate activation of Rnase[J]. PNAS, 2005, 102(41):14533-14538.
    [85] Boraschi D, Bossu P, Macchia G, et al. Structure-function relationship in the IL-1 family[J]. Front Biosci, 1996, 1:270-308.
    [86]周延冲.多肽生长因子基础与临床[M].北京:中国科学技术出版社, 1992:333-354.
    [87] Zlotnik A, Yoshie O. Chemokines:a new classification system and their role in immunity[J]. Immunity, 2000, 12(2):121-127.
    [88] Zhang L, Tian x, Guo Y, et a1. Effect of transgenic expression of porcine interleukin-6 gene and CpG sequences on immune responses of newborn piglets inoculated with pseudorabies attenuated vaccine[J]. Res Vet Sci, 2006, 80(3):281-286.
    [89]范俊娟,陈建,余兴龙,等.猪白细胞介素-6基因在大肠杆菌中的表达及其产物的促淋巴细胞增殖活性[J].中国兽医科学, 2008, 38(06):531-534.
    [90] Maleft R W, Figdor C G, Huijbens R, et al. Effects of IL-13 on phenotype,cytokine production , and cytotoxic function of human monocytes[J]. J Immunol, 1993,151(6):6370-6378.
    [91]纪桂贤,王邦茂.细胞因子与炎症性肠病关系研究新进展[J].天津医科大学报, 2004, 10(s1):55-58.
    [92]张鑫宇,秦爱建,金文杰,等.马立克氏病病毒类白细胞介素8(vlL-8)基因的克隆和表达[J].中国兽医学报, 2003, 23(6):521-524.
    [93] Li A, Dubey S, Varney ML, et a1. IL-4 Directly enhanced endothelial cell survival, proliferation, and matrix metallopmteinases production and regulated angiogenesis[J]. J Immunol, 2003, 170(6):3369-3376.
    [94] Danese S, Sans M, Dela Motte C, et a1. Angiogenesis as a novel component of inflammatory bowel disease pathogenesis[J]. Gastroenterology, 2006, 130(7):2060-2073.
    [95] Daig R, Andust T, Aschenbrenner E, et a1. Increased interleukin 8 expression in the colon mucosa of patients with inflammatory bowel disease[J]. Gut, 1996, 38(2):216-222.
    [96] Podlaski F J, Nanduri V B, Hulmes J D, et a1. Molecular characterization of interleukin 12[J]. Arch Biochem biophys, 1992, 294(1):230-237.
    [97]陈鸿珊,张兴权.抗病毒药物及其研究方法[M].第一版.北京:化学工业出版社, 2006:253-268.
    [98] Dennis L Foss,Michael P,Murtaugh. Molecular cloning and mRNA expression of porcine interleukin-12[J]. Veterinary Immunology and Immunopathology, 1997, 57(1-2):121-123.
    [99] Schmid-Grendelmeier P, Altznauer F, Fischer B, et a1. Eosinophils express functional IL-13 in eosinophilic inflammatory diseases[J]. J Immunol, 2002, 169(12):1021-1027.
    [100]许勇臣,姜晓峰.白介素13与其受体间作用机制的探讨[J].国外医学临床生物化学与检验学分册, 2005, 26(5):288-289.
    [101] Maleft R W, Figdor C G, Huijbens R, et al. Effects of IL-13 on phenotype, cytokine production, and cytotoxic function of human monocytes[J]. J Immunol, 1993, 151(6):6370-6378.
    [102] de Waal Malefyt R, Figdor C G, huijkens R, et al. Effects of IL-13 on phenotype,cytokine production and cytotoxic function of human monocyte.Comparison with IL-4 and modulation by IFN-γof IL-10[J]. J Immunol, 1993, 151(11):6370-6381.
    [103] Montaner L J, Bailer R T, Gotrdon S, et al. IL-13 acts on macrophjages to block the completion of reverse transcription ,inhibit virus prodution, and reduce virus infectivity[J]. J Leukoc Biol, 1997, 62(1):126-132.
    [104] Onishi R M, Gaffen S L. Interleukin-17 and its target genes:mechanisms of interleukin-17 function in disease[J]. Immunology, 2010, 129(3):311-321.
    [105] Laan M, Cui ZH, Hoshino H, et a1. Neutrophil recruitment by human IL-17 via C-X-Cchemokine release in the airways[J]. J Immunol, 1999, 162(4):2347-2352.
    [106] Forlow S B, Schurr J R, Kolls J K, et a1. Increased granulopoiesis through interleukin-17 and granulocyte colony-stimulating factor in leukocyte adhesion molecule-deficient mice[J]. Blood, 2001, 98(12):3309-3314.
    [107] Fossiez F, Djossou O, Chomarat P, et a1. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines[J]. Exp Med, 1996, 183:2593-2603.
    [108] Komiyama Y, Nakae S, Matsuki T, et a1. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis[J]. J Immunol, 2006, 177(1):566-573.
    [109] Fujino S, Andoh A, Bamba S, et a1. Increased expression of interleukin 17 in inflammatory bowel disease[J]. Gut, 2003, 52(11):65-70.
    [110]郑敏,金宁一,张洪勇,等.猪白细胞介素18成熟蛋白基因的克隆及在大肠杆菌中的表达[J].中国兽医学报, 2003, 23(5):430-432.
    [111] Matsui K, Tsutsui H, Nakanishi K. Pathophysiological roles for IL-18 in inflammatory arthritis[J]. Expert Opin Ther Targets, 2003, 7(6):701-724.
    [112] Kimura K, Kakimi K, Wieland S, et a1. Interleukin-18 inhibits hepatitis B virus replication in the livers of transgenic mice[J]. J Virol, 2002, 76(21):10702-10707.
    [113] Luo Y, Yamada H, Chen X, et a1. Recombinant Mycobacterium bovis bacillus Calmette-Guerin(BCG)expressing mouse IL-18 augments Thl immunity and macrophage cytotoxicity[J]. Clin Exp Immunol, 2004, 137(1):24-34.
    [114]彭黎明,王曾礼.细胞凋亡的基础与临床[M].北京:人民卫生出版社, 2007:245-287, 298-341.
    [115] Blankenberg F G, Robbins R C, Stoct J H. et al. Radionuclide imaging of acute lung transplant rejection with Annexin V[J]. Chest, 2000, 117(3):834-840.
    [116] Green D R, Reed J C. Mitochondria and apoptosis[J]. Science, 1998, 281(5381):1309-1312.
    [117]喻玲,彭梅,丁依玲. Fas、Bcl-2蛋白在胎盘组织中的表达及其与子痫前期、子痫的相关性研究[J].华中医学杂志, 2007, 31(6):429-430,438.
    [118]谭兴琴,陈玉培.凋亡因子bcl-2/bax与心肌缺血再灌注损伤[J].重庆医学, 2007, 36(l8):1885-1887.
    [119] Chami M, Prandini A, Campanella M, etal. Bcl-2 and Bax exert opposing effects on Ca2+signaling, which do not depend on their putative pore-forming region[J]. J Biol Chem, 2004, 279(52):54581-54589.
    [120] Olopade O I, Adeyanju M O, Safa A R, et al. Overexpression of BCL-xprotein in primary breast cancer is associated with high tumor grade and nodal metastases[J]. Cancer J Sci Am, 1997, 3(11):230-237.
    [121] Holmqvist P, Lundstrom M, Stal O. Apoptosis and bcl-2 expression in relation to age,tumor characteristics and prognosis in breast cancer. South East Sweden Breast Cancer Group[J]. Int J Biol Markers, 1999, 14(2):84-91.
    [122]马超,谢加伟,匡安仁,等. bcl-2/bcl-xl和bcl-2反义寡核苷酸对乳腺癌细胞增殖和凋亡的影响[J].四川大学学报(医学版), 2009, 40(5):780-783.
    [123] Moreno A, Figueras A, Lloveras B, et a1. Apoptosis in ductal carcinoma in situ of the breast[J]. Breast J, 2001, 7(4):245-248.
    [124] Lee D H, Szczepanski M, Lee Y J. Role of Bax in quercetin-induced apoptosis in human prostate cancer cells[J]. Biochem Pharmacol, 2008, 75(12):2345-2355. [l25] Karin M, Lin A. NF-kappaB at the crossroads of life and death[J]. Nat Immuno1, 2002, 3(3):221-227.
    [126] Tong X, Ljn S, Fujii M, et al. Molecularmechanisms of echinocystic acid-induced apoptosis in HepG2 cells[J]. Biochem Biophys Res Commun, 2004, 321(3):539-546.
    [127] Li H, Zhu H, Xu Q, et a1. Cleavage of BID by Caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis[J]. Cell, I998, 94(4):491-501.
    [128] Boldin M P, Goncharov T.M, Goltsev Y V, et al. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1-and TNF receptor-induced cell death[J]. Cell, 1996, 85(6):803-815.
    [129]刘传杰张杰. FasL基因表达调控研究进展[J].中国生物工程杂志, 2004, 24(4):7-11.
    [130] Lee H O, Ferguson T A. Biology of FasL[J]. Cytokine Growth Factor Rev, 2003, 14(3-4):325-335.
    [131] Zheng L X, Fisher G, Miller R E, et al. Induction of apoptosis in manure T cell by tumor necrosis factor[J]. Nature, 1995, 377(6547):348-351.
    [132] Comi C, Gaviani P, Leone M, et a1. Fas mediated T-cell apoptosis is impaired in patients with chronic inflammatory demyelinating poly-neuropathy[J]. J Peripher Nerv Syst, 2006, 11(1):53-60.
    [133]李奎,康相涛,刘英,等.固始鸡免疫器官内细胞凋亡基因Fas和FasL的动态表达[J].中国农业科学, 2008, 4l(5):1489-1496.
    [134]祈保民,姚金水,陈文列,等.马立克氏病病毒人工感染鸡细胞凋亡病变及凋亡机制研究[J].畜牧兽医学报, 2004, 35(1):97-101.
    [135] Lee S M, Kleiboeker S B. Porcine reproductive and respiratory syndrome virus induces apoptosis through a mitochondria-mediated pathway[J]. Virology, 2007, 365(2):4l9-434.
    [136] Chang H W, Jeng C R, Lin C M, et a1. The involvement of Fas/FasL interaction in porcine circovirus type 2 and porcine reproductive and respiratory syndrome virusco-inoculation-associated lymphocyte apoptosis in vitro[J]. Vet Microbiol, 2007, 122(1/2):72-82.
    [137] Stokke T, Thorstensen L, Lothe R A, Et al. Apoptosis and expression of bax bcl-x and bcl-2 apoptotic regulatory proteins in colorectal carcinomas, and associations with p53 genotype/phenotype[J]. Molecular Pathology, 1998, 51(5):254-261.
    [138] Clarke A R, Purdie C A, Harrison R G, et al. Thymocyte apoptosis induced by p53-dependent and independent pathways[J]. Letter to nuture, 1993, 362(6423):849-852.
    [139] Saile B, Knittel T, Matthes N, et al. CD95/CD95L-Mediated Apoptosis of the Hepatic Stellate Cell[J]. American Joumnal of Pathology, 1997, 151(5):1265-1272.
    [140] Fujiwara T, Grimm E A, Mukhopadhyay T, et a1. A retroviral wildtype p53 expression vector penetrates human lung cancer spheroids and inhibits growth by inducing apoptosis[J]. Cancer Res, 1993, 53(18):4129-4133.
    [141] Toschi E, Rota R, Antoninl A, et a1. WildType p53 gene transfer inhibits invasion and reduces matrix metalloproteinase-2 levels in p53-mutated human melanoma cells[J]. J lnvest Dermatol, 2000, 114(6):1188-1194.
    [142] Castedo M, Perfettini J L, Kroemer G. Mitochondrial apoptosis and the peripheral benzodiazepine receptor:a novel target for viral and pharmacological manipulation[J]. Exp Med, 2002, 196(9):1121-1125.
    [143] Sutter A P, Maaser K, Grabowski P, et a1. Peripheral benzodiazepine receptor ligands induce apoptosis and cell cycle arrest in human hepatocel1ular carcinoma cells and enhance chemosensitivity to paclitaxel, docetaxel, doxorubicin and the Bcl-2 inhibitor HA14-1[J]. J Hepatol, 2004, 41(5):799-807.
    [144] Sutter A P, Maaser K, Gerst B, et a1. Enhancement of peripheral benzodiazepine receptor ligand-induced apoptosis and cell cycle arrest of esophageal cancer cells by simultaneous inhibition of MAPK/ERK kinase[J]. Biochem Pharmacol, 2004, 67(9):1701-l7l0.
    [145] Akcali K C, Dalgic A, Ucar A, et a1. Expression of bcl-2 gene family during resection induced liver regeneration:Comparison between hepatectomized and sham groups[J]. World J Gastroenterol, 2004, 10(2):279-283.
    [146] Beurdeley-Thomas A, Miccoli L, Oudard S, et al. The peripheral benzodiazepine receptors: a review[J]. J.Neurooncol, 2000, 46(1):45-56.
    [147] Miettinen H, Kononen J, Haapasalo H, et al. Expression of peripheral-type benzodiazepine receptor and diazepam binding inhibitor in human astrocytomas: relationship to cell proliferation[J]. Cancer Res, 1995, 55(12):2691-2695.
    [148]蔡志杰,王艳华,李文卉.弓形虫代谢分泌抗原对仔猪IL-2、IL-4、IFN-γ和TNF-α表达水平的影响[J].甘肃农业大学学报, 2010, 45(4):10-15.
    [149]金伯泉.细胞和分子免疫学[M].北京:科学出版社, 2001:232-239.
    [150] Kaur K, Chowdhury S, Greenxpan N S, et a1. Decreased expression of tumor necrosis factor family receptors involved in humoral immune responses in preterm neonates[J]. Blood, 2007, 1(10):2948-2954.
    [151] Choi C, Chae C. Expression of tunlour necrosis factor-alpha is associated with apoptosis in lungs of pigs experimentally infected with porcine reproductive and respiratory syndrome virus[J]. Res Sci, 2002, 72(1):45-49.
    [152] Chang H W, Jeng C R, Liu J J, et a1. Reduction of porcine reproductive and respiratory syndrome virus(PRRSV)infection in swine alveolar macrophages by porcine circovirus 2(PCV2)-induced interferon alpha[J]. Vet Microbiol, 2005, 108(3/4):167-177.
    [153]柳晓义,胡建霞,王宇. TNFR-II基因-196M/R多态性与乳腺癌易感性的相关性[J].中华乳腺病杂志, 2008, 2(2):22-24.
    [154] Yin Z H, Ye Z Z, Zhuang J H, et al. Genetic variants in the tumor necrosis factor receptor 2 gene in patients with Systemic lupus erythematosus[J]. Progress In Modern Biomedicine, 2006, 6(10):34-36.
    [155] Canauh M, Peiretti F, Mueller C, et a1. Proinflammatory properties of murine aortic endothelial cells exclusively expressing a non cleavable form of TNFalpha. Effect on tumor necrosis factor alpha receptor type 2[J]. Thromb Haemost, 2004, 92(6):1428-1437.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700