川芎嗪对谷氨酸损伤海马神经元保护作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海马是大脑中非常重要的结构,尤其是对脑的学习记忆功能。海马的损伤会导致瞬时记忆出现功能障碍,主要影响的是新的记忆形成而对以往的记忆影响不大。大脑缺氧时,海马是最易受损的器官之一。癫痫主要的病灶也是位于海马,慢性癫痫发作可损伤海马。在阿尔茨海默病、脑炎等疾病中海马也极易受到损伤。谷氨酸是大脑神经元释放的一种兴奋性神经递质,谷氨酸的过多释放可以引起神经元的过度兴奋,造成神经元损伤或者死亡。脑缺血、阿尔茨海默病、亨廷顿病等疾病的一个共同特点是谷氨酸产生的过度兴奋,这可能损伤到海马神经元。中药是治疗中枢神经系统疾病行之有效的方法之一,川芎嗪可以治疗某些中枢神经疾病如脑缺血,其机制有可能是通过拮抗谷氨酸的兴奋性毒性来发挥作用的,尚需进一步去验证。因此,本实验以体外培养海马神经细胞为研究对象,来探讨中药治疗神经系统疾病可能的作用和机制。
     目的观察川芎嗪(Ligustrazine)对谷氨酸(Glu)损伤原代培养海马神经元生长的影响及促进神经元功能恢复的保护作用。
     方法原代培养新生大鼠海马神经元,通过加入1mmol/L谷氨酸制作神经元损伤模型组;培养基中加入10μmol/L的盐酸川芎嗪溶液共同孵育12h后,加入1mmol/L谷氨酸损伤海马神经元20min,作为川芎嗪保护组。分别观察各组神经元生长过程中形态变化;采用MTT法检测细胞活性;测定培养液中乳酸脱氢酶(LDH )活力的变化;细胞免疫组化检测各组表达乙酰胆碱酯酶(AchE)情况。
     结果川芎嗪能有效的提高原代培养的海马神经元的存活率,其存活率相对对照组提高了28.78%(P<0.01);川芎嗪的最适宜浓度是10μmol/L。以1mmol/L谷氨酸作用于培养的成熟海马神经元,细胞形态表现为突起减少,折光性下降;MMT显示细胞的存活率下降;应用10μmol/L川芎嗪后可改善因谷氨酸引起的神经元形态的改变,可显著提高谷氨酸损伤后海马神经元的活性(P<0.01),降低因谷氨酸损伤引起的细胞内LDH的过度释放(P<0.01);细胞AchE免疫组化结果:川芎嗪保护组的灰度值明显低于谷氨酸损伤组(P<0.01),与正常对照组无显著性差异(P>0.05)。
     结论(1)川芎嗪对正常培养的海马神经元生长有促进作用,发现在一定浓度范围内可明显提高体外培养神经元的存活率,其最佳浓度是10μmol/L。(2)川芎嗪可明显拮抗谷氨酸兴奋性神经毒性作用,可改善因谷氨酸引起的细胞死亡,提高细胞的存活率。其可能的机制与川芎嗪可以稳定细胞膜,促进细胞膜完整,阻断谷氨酸的进一步损伤有关。(3)川芎嗪可拮抗因谷氨酸毒性作用引起的神经元功能受损,可改善神经元合成和分泌乙酰胆碱酯酶,改善损伤引起的神经元功能下降,对抗谷氨酸毒性引起的胆碱能神经元的死亡。
The hippocampus is critical for the formation of new autobiographical and fact memories. It may be function as a memory "gateway" through which new memories must pass before entering permanent storage in the brain. Hippocampal damage can result in anterograde amnesia: loss of ability to form new memories, although older memories may be safe. The hippocampus is especially sensitive to global reductions in oxygen level in the body. The hippocampus is also a common focus site in epilepsy, and can be damaged through chronic seizures. It is also sometimes damaged in diseases such as herpes encephalitis, and is one of the first brain areas to show damage in Alzheimer's disease. Glutamate is a powerful excitatory neurotransmitter which it is released by nerve cells in the brain. In many cases, cells activated by glutamate become overexcited. This overexcitation can lead to effects that can cause cell damage and/or death. The damage of glutamic overexcitation is a common course of many diseases such as cerebral ischemia, AD, HD, et al. The traditional medicine, Chinese herb is one of the most effective methods to treat the central nerve system disease, and the herb of Ligustrazine may be beneficial to the injury of neurons induced by the exitotoxicity of glutamate which is one of the key role in many disease courses.
     Objective To observe the protective effect of ligustrazine on glutamate-induced injury in culture hippocampal neurons.
     Methods Primarily cultured hippocampal neurons from newly born rat were incubated with Ligustrazine (10μmol/L) for 12 hours, then glutamate (1mmol/L) was added for 20 minutes to induce injury. Cell viability was detected by MTT assay, and the vigor of LDH was determined by biochemistry method. In the end, the protein of AchE in the cultured neurons was performed according to the protocol of immuocytochemistry.
     Results After the pretreatment with the ligustrazine for 12 hours, the survival rate of cultured hippocampal neurons was increased 28.78% compared to the normal group(P<0.01), and the most suitable concentration of Ligustrazine is 10μmol/L. The neural processes were shorten and the refragibility of cultured cells desecened when neurons were injuryed by 1mmol/L glutamate. When the injury neurons induced by glutamate were treated by Ligustrazine the morphous of those cells were improved, survival rate of neurons was increased(P<0.01), and the ratio of LDH leakage from the injury kytoplasm was decreased(P<0.01). The expression of the AchE in the injury neurons was promoted by the pretreatment of the Ligustrazine.
     Conclusion (1) Ligustrazine could significantly increase the survival rate of primary cultured hippocampal neuron and improve its growth. The most effective concentration is 10μmol/L. (2)The exitotoxicity of glutamate could be diluted by Ligustrazine, and the possible mechanism of the protective effection might involve in improving the stability and integrity of cytomembrane and obstructing the injury by glutamte. (3) Ligustrazine could inhibit the neural functional damage, improve the expression of protein AchE and decrease the neural death when the neural cells induced the injury with the glutamate.
引文
1. Hynd M R, Scott H L, Dodd P R. Glutamate-mediated excitotoxicity and neurode- generation in Alzheimer's disease. Neurochem Int, 2004, 45(5):583~595.
    2. Olney J W, Fuller T, De Gubareff T. Acute dendrotoxic changes in the hippocampus of kainate treated rats. Brain Res, 1979, 176(1):91~100.
    3. Lipton S A, Rosenberg P A. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med, 1994, 330(9):613~622.
    4. Lipton S A, Kim W K, Choi Y B, et al. Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A, 1997, 94(11):5923~5928.
    5. Lipton S A. NMDA receptor activity regulates transcription of antioxidant pathways. Nat Neurosci, 2008, 11(4):381~382.
    6. Porter N A, Caldwell S E, Mills K A. Mechanisms of free radical oxidation of unsaturated lipids. Lipids, 1995, 30(4):277~290.
    7. Halliwell B. Oxidative stress and neurodegeneration: where are we now?. J Neurochem, 2006, 97(6):1634~1658.
    8. Bondy S C, Lee D K. Oxidative stress induced by glutamate receptor agonists. Brain Res, 1993, 610(2):229~233.
    9. Lafon-Cazal M, Pietri S, Culcasi M, et al. NMDA-dependent superoxide production and neurotoxicity. Nature, 1993, 364(6437):535~537.
    10. Gunasekar P G, Kanthasamy A G, Borowitz J L, et al. NMDA receptor activation produces concurrent generation of nitric oxide and reactive oxygen species: implication for cell death. J Neurochem, 1995, 65(5):2016~2021.
    11. Wieloch T. Neurochemical correlates to selective neuronal vulnerability. Prog Brain Res, 1985, 6(3):69~85.
    12. Matsumoto M, Hatakeyama T, Yamamoto K, et al. A combined method for measurement of cerebral blood flow and immunohistochemistry for investigation of cerebral ischemia. Brain Res, 1987, 424(2):231~238.
    13. Monaghan D T, Holets V R, Toy D W, et al. Anatomical distributions of four pharmacologically distinct 3H-L-glutamate binding sites. Nature, 1983, 306(5939): 176~179.
    14. Busto R, Dietrich W D, Globus M Y, et al. The importance of brain temperature in cerebral ischemic injury. Stroke, 1989, 20(8):1113~1114.
    15.刘青云,宋军,陈可冀.中药治疗缺血性中风的研究进展.中国中西医结合杂志, 2000, (04):309~312.
    16.陈立娜,都述虎.具有拮抗谷氨酸神经毒作用的中药集群筛选.现代中药研究与实践, 2007, (06):23~25.
    17.纳鑫,汪雪兰,皮荣标.川芎嗪对中枢神经系统的药理作用及其机制的研究进展.中药新药与临床药理, 2008, 19(1):77~80.
    1. Matsumoto M, Hatakeyama T, Yamamoto K, et al.A combined method for measurement of cerebral blood flow and immunohistochemistry for investigation of cerebral ischemia. Brain Res, 1987, 424(2): 231–238.
    2. Monaghan DT, Holets VR, Toy DW, et al. Anatomical distributions of four pharmacologically distinct 3H-L-glutamatebinding sites. Nature, 1983,306(5939): 176–179.
    3. Busto R, Dietrich WD, Globus MY, et al. The importance of brain temperature in cerebral ischemic injury. Stroke,1989,20(8):1113–1114.
    4. Busto R, Dietrich WD, Globus MY, et al. Small differences in intraischemic brain temperaturecritically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab,1987, 7 (6): 729–738.
    5. Mark P.M., Mark a.L. Neurotrophic factors attenuate glutamate-induced acdumuiation of peroxides, elevation of intracellular Ca concentration, and neurotoxicty and increase antioxidant enzyme activities in hippocampal neurons. J.Neurochem, 1995, 65 (4):1740-1751.
    6.王玉,万海同,严伟民,等.川芎嗪与葛根素合用对海马神经元损伤后的影响.中国中药杂志,2008,33(4):424-427.
    7. Nicholh D, Attwel D .The release and uptake of excitatory amino acids.Trends Pharmacol Sci, 1990,11(11):46-51.
    8. Chan PH, Fishman RA, Lee JL, et al .Efects of excitatory amino acids on swelling of rat brain cortical slices. Neurochem, 1979,33(6):1309-1317.
    9. Vornov JJ, Coyle JT. Glutamate neurotoxicity and the inhibition of protein synthesis in the hippocampal slice. JNeurochem, 1991,56(3):996-1006.
    10.Newell DW, Barth A, Papermaster V, et al.Glutamate and non-glutamate receptor mediated toxicity caused by oxygen and glucose deprivation in organotypic hippocampal cultures. J Neurosci, 1995,15(11): 7702-7211.
    11.刘爱莲,孙琦,宋铁军,等.肝缺血再灌注损伤对乳酸脱氢酶活性影响的组化观察.哈尔滨医科大学学报, 1992, 26 (4) : 239-243.
    12.王万铁,陈寿权.川芎嗪注射液抗脑缺血-再灌注损伤作用机制的实验研究.中华急诊医学杂志, 2001,10(3):183-184.
    13. Zou L Y, Hao XM , Zhang GQ , et al. Effect of tet ramethyl pyrazine on L - type calcium channel in rat vent ricular myocytes. Can J Physiol Pharmacol ,2001 ,79 (7): 621 - 626.
    14.杜怡峰,孙兆林,李泱,等.川芎嗪对神经母细胞株SH-SY5Y细胞L型钙通道电流的影响.中国神经免疫学和神经病学杂志,2004 ,1 (11) :43 - 45.
    15.苏明华,周亚光,杨光田.川芎嗪对原代培养大鼠海马神经元L型钙通道电流和胞浆内钙浓度的影响.中国康复,2008,23(1):71-73.
    1. White house PJ. Paying attention to acetylcholine : The key to wisdom and quality of life . Prog Brain Res , 2004 , 14(5):311- 317.
    2.中村正信.神经递质与记忆.日本医学介绍,1987,8 (9):395-397.
    3. Co lleron D. Cholinergic function and intellectual decline in Alzheimer’s disease. Neurosci, 1986, 19(1):1-7.
    4. Wiard RP,Dekerson MC,Beek O,et al. Neuroprotective properties of the novel antiepleptic lamotrigine in a gerbil model of global cerebral ischemia.Stroke ,1995,26 (3):466-472.
    5. Chan SL, Griffin WS, Mattson MP. Evidence for caspase-mediated cleavage of AMPA receptor subunits in neuronal apoptosis and Alzheimer's disease. J Neurosci Res,1999, 57(3):315-323.
    6.党红梅,马万云,韩慧婉.川芎嗪对脑缺血下大鼠纹状体区痕量氨基酸类神经递质的影响.高等学校化学学报, 2005,26(10):1803-1807.
    7. Fu H, Li W, Liu Y, Lao Y, et al. Mitochondrial proteomic analysis and characterization of the intracellular mechanisms of bis(7)-tacrine in protectingagainst glutamate-induced excitotoxicity in primary cultured neurons. J Proteome Res,2007, 6(7):2435-2446.
    8. Tenneti L, D'Emilia DM, Troy CM, et al. Role of caspases in N-methyl-D-aspartate-induced apoptosis in cerebrocortical neurons. J Neurochem, 1998, 71(3):946-959.
    9.张萌,邸东华,李盈.川芎嗪对大鼠脑缺血再灌注后线粒体功能的影响.辽宁中医药大学学报,2009,11(2):172-173.
    10.鹿中华,王锦权,陶晓根,等.川芎嗪对脓毒症大鼠肝细胞线粒体保护作用的实验研究.中国中西医结合急救杂志,2008,15(2):85-90.
    11.赵永华,罗小星,刘煜德,等.川芎嗪对缺氧大鼠海马神经元凋亡及bcl-2、p53基因表达的影响.广州中医药大学学报,2007,24(6):490-494.
    12.俞海国,赵燕,汤云珍,等.川芎嗪对新生鼠缺氧缺血性脑损伤c-fos基因表达影响的研究.中国当代儿科杂志, 2001,3(2):204-205.
    13.王春霞,包仕尧,刘春风,等.尼莫通和川芎嗪对脑缺血再灌注时c-fos和bcl-2蛋白表达的影响.中国危重病急救杂志,1999,11(10):609-612.
    14.曲友直,高国栋,赵振伟,等.川芎嗪对局灶性脑缺血再灌注后Bcl-2和Fas-L表达的影响.中国临床康复, 2004,8(4):3082-3083.
    1. Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function. Science,1992,258(5082):597-603.
    2. Ozawa S, Kamiya H, Tsuzuki K. Glutamate receptors in the mammalian central nervous system. Prog Neurobiol,1998,54(5):581-618.
    3.陈志,冯华.谷氨酸及其受体与阿片类身体依赖性.中国药物依赖性杂志,2000,9(2):81-83.
    4. Whetsell WO Jr. Current concepts of excitotoxicity. J Neuropathol Exp Neurol, 1996,55(1):1-13.
    5. Orpiszewski J, Schormann N, Kluve-Beckerman B, et al. Protein aging hypothesis of Alzheimer disease. FASEB J, 2000,14(9):1255-1263.
    6. Iwatsubo T. [beta-amyloid cascade: current status and future directions. Rinsho Shinkeigaku,2000,40(12):1228-1230.
    7. Terry AV Jr, Buccafusco JJ. The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther, 2003,306(3):821-827.
    8 . Nordberg A. Toward an early diagnosis and treatment of Alzheimer's disease. Int Psychogeriatr, 2003,15(3):223-237.
    9. Griffin WS, Sheng JG, Royston MC, et al. Glial-neuronal interactions in Alzheimer's disease: the potential role of a 'cytokine cycle' in disease progression. Brain Pathol, 1998,8(1):65-72.
    10. Martin E, Rosenthal RE, Fiskum G. Pyruvate dehydrogenase complex: metabolic link to ischemic brain injury and target of oxidative stress. J Neurosci Res, 2005,79(2):240-247.
    11. Mancuso M, Coppede F, Murri L, et al. Mitochondrial cascade hypothesis of Alzheimer's disease: myth or reality?. Antioxid Redox Signal, 2007,9(10):1631-1646.
    12. Velliquette RA, O'Connor T, Vassar R. Energy inhibition elevates beta-secretase levels and activity and is potentially amyloidogenic in APP transgenic mice: possible early events in Alzheimer's disease pathogenesis. J Neurosci, 2005,25(47):10874-10883.
    13. Christen Y. Oxidative stress and Alzheimer disease. Am J Clin Nutr, 2000, 71(2):621-629.
    14. Pratico D, Delanty N. Oxidative injury in diseases of the central nervous system: focus on Alzheimer's disease. Am J Med,2000,109(7):577-585.
    15. Butterfield DA. Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer's disease brain. A review. Free Radic Res, 2002,36(12):1307-1313.
    16. Churcher I. Tau therapeutic strategies for the treatment of Alzheimer's disease. Curr Top Med Chem, 2006,6(6):579-595.
    17. Timm T, Matenia D, Li XY, et al. Signaling from MARK to tau: regulation, cytoskeletal crosstalk, and pathological phosphorylation. Neurodegener Dis, 2006,3(4-5):207-217.
    18. Paterlini M,Valerio A, Baruzzi F, Memo M, et al. Opposing regulation of tau protein levels by ionotropic and metabotropic glutamate receptors in human NT2 neurons. Neurosci Lett, 1998,243(1-3):77-80.
    19. Chan SL, Griffin WS, Mattson MP. Evidence for caspase-mediated cleavage of AMPA receptor subunits in neuronal apoptosis and Alzheimer's disease. J Neurosci Res,1999,57(3):315-323.
    20.顾兵,胡刚,张颖冬.亲代谢型谷氨酸受体与帕金森病相关性研究进展.临床神经病学杂志,2003,(2):121-123.
    21. Dawson LA, D jail S, GonzalesC, et al. Haracterization of transient focal ischemical-induced increases in extracellular Glutamate and as partame in spontaneously hypertensiverats.BrainResBull,2000,53 (6):767-776.
    22. Rae VL, Bowen KK, Dempsey RJ. Transient focal cerebral ischemia down regulates glutamate transportersGLT-1and EAACL expression in rat brain.Neurochemistry Res, 2001,26(5):407-502.
    23.徐俊.脑缺血时一氧化氮在谷氨酸兴奋毒性中的作用.国外医学.脑血管疾病分册,1998,(5):259-263.
    24. Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med,1994,330(9):613-622.
    25. Hollmann M, Hartley M, Heinemann S. Ca2+ permeability of KA-AMPA--gated glutamate receptor channels depends on subunit composition. Science,1991, 252(5007):851-853.
    26. Reynolds B, Seiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.Science,1992,255(5052):1707-1710.
    27. Gould E, Tanapat P, McEwen BS, et al. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. PNAS,1998,95(6): 3168–3171.
    28. Gage FH. Mammalian neural stem cells. Science, 2000,287(5457):1433-1438.
    29.张志琳,包仕尧,邵国富,等.川芎嗪对缺氧后血管内皮细胞功能保护作用的实验研究.江苏医药杂志, 2001,27(5):346-348.
    30.王万铁,陈寿权.川芎嗪注射液抗脑缺血-再灌流损伤作用机制的实验研究.中华急诊医学杂志, 2001,10(3):182-184.
    31.李德洋,石义亭,陈玉萍,等.川芎嗪对脑梗死病人脑脊液及血浆中一氧化氮含量的影响.中国中西医结合杂志,1998,18(6):342-344.
    32.雷万龙,刘勇,袁群芳,等.川芎嗪对脑缺血保护作用的实验研究.中华神经科学杂志, 2000,33(2):100-101.
    33.王万铁,陈寿权.川芎嗪注射液抗脑缺血-再灌注损伤作用机制的实验研究.中华急诊医学杂志, 2001,10(3):183-184.
    34.俞海国,赵燕,汤云珍,等.川芎嗪对新生鼠缺氧缺血性脑损伤c-fos基因表达影响的研究.中国当代儿科杂志,2001,3(2):204-205.
    35.王春霞,包仕尧,刘春风,等.尼莫通和川芎嗪对脑缺血再灌注时c-fos和bcl-2蛋白表达的影响.中国危重病急救杂志,1999,11(10):609-612.
    36.曲友直,高国栋,赵振伟,等.川芎嗪对局灶性脑缺血再灌注后Bcl-2和Fas-L表达的影响.中国临床康复, 2004,8(4):3082-3083.
    37.党红梅,马万云,韩慧婉.川芎嗪对脑缺血下大鼠纹状体区痕量氨基酸类神经递质的影响.高等学校化学学报, 2005,26(10):1803-1807.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700