恶黑细胞中的谷氨酸信号通路及其与细胞骨架蛋白分子的作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究恶黑细胞中的谷氨酸信号通路及其与细胞骨架蛋白分子的作用机制。
     方法:
     1微管相关蛋白2a (Microtubule-associated protein 2a,MAP2a)、离子型谷氨酸受体中的甲基-D-天冬氨酸受体2A(N-methyl-D-aspartate receptors 2A,NMDAR2A)、代谢型谷氨酸受体1(metabotropic glutamate receptor 1,mGluR1)在人类侵袭性恶黑细胞WM451LU细胞中的亚细胞分布差异研究:培养人胚肾细胞系HEK293细胞、WM451LU细胞;在HEK293细胞中扩增重组腺病毒-微管相关蛋白2a(adenovirus-mediated MAP2a,Ad-MAP2a);对WM451LU细胞MAP2a基因转染后进行免疫荧光双重染色及倒置荧光显微镜下观察WM451LU细胞中MAP2a、NMDAR2A及mGluR1的细胞内分布;进一步在激光扫描共聚焦显微镜下观察WM451LU细胞中MAP2a与NMDAR2A及mGluR1的亚细胞分布。
     2上调MAP2a表达及神经保护化学药干预对WM451LU细胞形态的影响观察:观察转染Ad-MAP2a、NMDAR非竞争性拮抗剂MK-801以及选择性的非竞争性mGluR1拮抗剂CPCCOEt分别作用下,WM451LU细胞中α-微管蛋白(α-tubulin)的分布、密度以及细胞形态的变化。在原子力显微镜下观察上调MAP2a表达、MK-801及CPCCOEt分别及协同作用下WM451LU细胞树突形态的影响。
     3转染Ad-MAP2a对WM451LU细胞内NMDAR2A及mGluR1蛋白表达水平的影响:通过流式细胞仪及Western Blot方法测定转染Ad-MAP2a后WM451LU细胞内NMDAR2A及mGluR1的表达。
     4观察CPCCOEt及MK-801对WM451LU细胞生长的影响。
     结果:
     1研究发现在人类侵袭性恶黑细胞WM451LU细胞中有NMDAR2A及mGluR1的表达。NMDAR2A及mGluR1与微管相关蛋白MAP2a在WM451LU细胞中具有相同的亚细胞定位:均分布于细胞浆内,并且主要位于细胞树突内。
     2转染Ad-MAP2a后WM451LU细胞内α-tubulin的密度明显增加,细胞的树突明显增长,并且α-tubulin主要位于增长的细胞树突内。在谷氨酸受体拮抗剂MK-801及CPCCOEt作用下WM451LU细胞内α-tubulin的密度明显增大,细胞的树突纤细而狭长,明显不同于阴性对照组细胞短而粗的细胞树突,且α-tubulin主要分布于纤细、狭长的细胞树突内。
     3 MK-801单独以及与MAP2a协同作用下WM451LU细胞恢复树突化,其中以二者协同作用下细胞形态的改变更为显著,细胞树突明显延长,出现大量二级、三级细胞树突,呈现出与正常黑色素细胞所特有的细胞形态极其相似的细胞形态。
     4转染Ad-MAP2a后NMDAR2A及mGluR1的表达量无明显变化。
     5 MK-801及CPCCOEt对人类侵袭性恶黑细胞WM451LU细胞增殖具有显著抑制作用。
     结论:
     1 WM451LU细胞中有NMDAR2A及mGluR1的表达,且其亚细胞分布与MAP2a一致。
     2 MK-801以及CPCCOEt具有诱导WM451LU细胞树突形成的作用,并可使WM451LU细胞树突内的微管蛋白密度增加。
     3 MK-801单独以及与MAP2协同作用下可诱导WM451LU细胞树突形成,使其呈现出与正常黑色素细胞所特有的细胞形态极其相似的细胞形态,其中以二者协同作用下细胞形态的改变更为显著。
     4 MK-801以及CPCCOEt体外可抑制WM451LU细胞的增殖。
Background:
     Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system (CNS). It acts via a number of glutamate receptor classes to induce neuronal depolarization. Glutamate receptors can be subdivided into ionotropic receptors, and the metabotropic receptors. In addition to its central function, regulatory effects of glutamate have been described in peripheral tissues such as bone, pancreas and skin. In the epidermis, glutamate is believed to play a role in barrier homeostasis and wound healing via NMDA receptors on keratinocytes. Expression of a functional mGluR5 has been reported on melanocytes, where it is not only suggested to be involved in the control of melanocyte proliferation, but also harbours potential toxicity and may ontribute to cell damage. Glutamate toxicity has been studied extensively in neurones. Excessive stimulation of both ionotropic and metabotropic glutamate receptors leads to cell death. Blockage of NMDA receptors with MK801 caused a melanocyte morphology change, which was associated with disorganisation of actin and tubulin microfilaments. Whereas the role of the glutamate signalling system in neurones is well documented, the presence of the various glutamate receptors on melanoma cells and their effects on melanoma cells behaviour has not been studied in detail. It is also unclear whether melanoma cells defects, such as in the pigmentary disorder vitiligo where functional melanocytes are lost from the epidermis by unknown mechanisms, could be related to glutamate receptors. It is necessary to elucidate the glutamate receptors expression of human melanoma cells and the effects of glutamate receptor agonists and antagonists on melanoma cells morphology and growth.
     Microtubule-associated proteins (MAPs) are a family of proteins that bind to and stabilize microtubules (MTs). MAP2 is one isoform of MAPs. Expression of MAP2 in vitro in heterologous cells induces rapid formation of stable MT bundles and cellular processes. Vijayasaradhi et al found that MAP2, a neuronspecific protein, is expressed abundantly in early invasive primary melanoma lesions and primary melanoma cell lines but is absent in metastatic melanomas lesions and cell lines. Investigation of the mechanisms that underlie the effect of MAP2 on melanoma progression showed that MAP2 expression in metastatic melanoma cell lines leads to microtubule stabilization, cell cycle arrest in G2-M phase and growth inhibition. Melanoma exhibits plasticity of differentiation and is known to differentiate along multiple, including endothelial and neuronal, cellular pathways. However, the effects of MAP2 on melanoma cells on morphology and growth are not well understood.
     Objective: Study the Glutamate signaling in melanoma cell and molecular mechanism with cytoskeleton protein.
     Methods:
     To investigate the expression, subcellular localization ,effects on melanoma growth, invasion and cell morphology change of MAP2a, NMDAR2A and mGluR1,we performed double-immunofluorescence staining coupled with confocal microscopy analysis, three dimensional atomic force microscopy analysis, flow cytometry analysis, tumor cell growth assay and in vivo study, mainly used human metastatic melanoma cell line WM451LU.
     Results:
     The results demonstrate that MAP2a, NMDAR2A and mGluR1 have similar subcellular localization, and for the first time showed that combined adenovirus-mediated MAP2a and NMDAR antagonist MK-801 treated melanoma cells led to morphologic alteration, the tumor cell represented the secondary and tertiary branches resembled normal melanocytes. NMDAR antagonist MK-801 and mGluR1 antagonist CPCCOEt showed the significant tumor growth suppression of melanomas in vitro. Therefore, MAP2a, NMDAR2A and mGluR1 appear to be a promising target for melanoma therapy.
引文
1. Sheldon AL, Robinson MB. The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention, Neurochem Int. 2007; 51(6-7): 333-355
    2. Nicoletti F, Arcella A, Iacovelli L, Battaglia G, Giangaspero F, Melchiorri D. Metabotropic glutamate receptors: new targets for the control of tumor growth? Trends Pharmacol Sci. 2007;28(5):206-213.
    3. Monaghan DT, Bridges RJ, Cotman CW. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system, Annu Rev Pharmacol Toxicol 1989; 29: 365–402
    4. Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels, Pharmacol Rev 1999;51(1):7-61.
    5. Hoogduijn MJ, Hitchcock IS, Smit NP, Gillbro JM, Schallreuter KU, Genever PG. Glutamate receptors on human melanocytes regulate the expression of MITF, Pigment Cell Res 2006;19(1):58-67.
    6. Reuhl KR, Eckhaus M, Meltzer PS, Pavan WJ, Trent JM, Chen S. Melanoma mouse model implicates metabotropic glutamate signaling in melanocytic neoplasia, Nat Genet 2003;34(1):108-112.
    7. Wiche G, Oberkanins C and Himmler A. Molecular structure and function of microtubule-associated proteins, Int Rev Cytol 1991;124:217-273
    8. Maccioni RB, Cambiazo V. Role of microtubule-associated proteins in the control of microtubule assembly, Physiol Rev 1995;75(4):835-864.
    9. Schober JM, Komarova YA, Chaga OY, Akhmanova A, Borisy GG. Microtubule- targeting-dependent reorganization of filopodia, J Cell Sci 2007;120:1235-1244
    10. Goode BL, Drubin DG, Barnes G. Functional cooperation between the microtubule and actin cytoskeletons, Curr Opin Cell Biol 2000;12(1):63-71.
    11. Kodama A, Lechler T, Fuchs E. Coordinating cytoskeletal tracks to polarize cellular movements, J Cell Biol 2004 25;167(2):203-207.
    12. Rodriguez OC, Schaefer AW, Mandato CA, Forscher P, Bement WM, Waterman-Storer CM. Conserved microtubule-actin interactions in cell movement and morphogenesis, Nat Cell Biol 2003;5(7):599-609
    13. Ferralli J, Doll T, Matus A. Sequence analysis of MAP2 function in living cells, J Cell Sci. 1994;107 (11):3115-3125.
    14. Dehmelt L, Halpain S. The MAP2/Tau family of microtubule-associated proteins, Genome Biol. 2005;6(1):204.
    15. Harada A, Teng J, Takei Y, Oguchi K, Hirokawa N. MAP2 is required for dendrite elongation, PKA anchoring in dendrites, and proper PKA signal transduction, J Cell Biol 2002;158:541-549.
    16. Ballestrem C, Wehrle-Haller B., Hinz B, Imhof BA. Actin-dependent lamellipodia formation and microtubule-dependent tail retraction control-directed cell migration, Mol. Biol. Cell. 2000;11(9):2999 -3012.
    17.宋智琦,徐艳妮,张怡,何春涤.微管相关蛋白-2基因对恶性黑素瘤细胞形态学及增殖的影响,中华皮肤科杂志2006;39(3),136-139.
    18. Takano T, Lin JH, Arcuino G, Gao Q, Yang J, Nedergaard M. Glutamate release promotes growth of malignant gliomas, Nat Med 2001 ;7(9):1010-1015.
    19. Rzeski W., Turski L, Ikonomidou C. Glutamate antagonists limit tumor growth. Bio. Pharmacol 2002;64(8):1195-1200.
    20. Fang D, Hallman J, Sangha N, Kute TE, Hammarback JA, White WL, et al. Expression of microtubule-associated protein 2 in benign and malignant melanocytes: implications for differentiation and progression of cutaneous melanoma, Am J Pathol 2001;158:2107-2015.
    21. Misri R, Pande S, Khopkar U. Confocal laser microscope, Indian J Dermatol Venereol 2006;72(5):394-397.
    22. Maimaitiyiming M, Kumanogoh H, Nakamura S, Nagata KI, Suzaki T, Maekawa S. Biochemical characterization of membrane-associated septin from rat brain, J Neurochem . 2008 3. [Epub ahead of print]
    23. Entschladen F, Drell TL, Lang K, Joseph J, Zaenker KS. Tumour-cell migration, invasion, and metastasis: navigation by neurotransmitters, Lancet Oncol. 2004;5(4):254-258.
    24. Gaggioli C, Sahai E. Melanoma invasion-current knowledge and future directions, Pigment Cell Res. 2007;20(3):161-172
    25. Hoskison MM, Yanagawa Y, Obata K, Shuttleworth CW. Calcium-dependent NMDA-induced dendritic injury and MAP2 loss in acute hippocampal slices, Neuroscience 2007;145(1):66-79.
    26. Cater HL, Gitterman D, Davis SM, Benham CD, Morrison B, Sundstrom LE. Stretch-induced injury in organotypic hippocampal slice cultures reproduces in vivo post-traumatic neurodegeneration: role of glutamate receptors andvoltage-dependent calcium channels. J Neurochem, 2007;101:434–447.
    27. Yuen EY, Jiang Q, Feng J, Yan Z. Microtubule regulation of N-methyl-D- aspartate receptor channels in neurons, J Biol Chem. 2005;280(33):29420-29427.
    28. Hayashi M, Morimoto R, Yamamoto A, Moriyama Y. Expression and Localization of Vesicular Glutamate Transporters in Pancreatic Islets,Upper Gastrointestinal Tract,and Testis, J Histochem Cytochem. 2003;51(10):1375-1390.
    29. Ciruela F, McIlhinney RA. Metabotropic glutamate receptor type 1alpha and tubulin assemble into dynamic interacting complexes, J Neurochem. 2001;76 (3):750-757.
    30. Huang XP, Hampson DR. Inhibition of microtubule formation by metabotropic glutamate receptors, J Neurochem. 2000;74(1):104-113.
    31. Lyons SA, Chung WJ, Weaver AK, Ogunrinu T, Sontheimer H. Autocrine glutamate signaling promotes glioma cell invasion, Cancer Res. 2007 1;67(19): 9463-9471.
    32. Abdul M, Hoosein N. N-methyl-D-aspartate receptor in human prostate cancer, J Membr Biol, 2005;205(3):125-128.
    33. Tak H, Jang E, Kim SB, Park J, Suk J, Yoon YS, et al. 14-3-3epsilon inhibits MK5-mediated cell migration by disrupting F-actin polymerization, Cell Signal 2007;19(11): 2379-2387.
    34. Demierre MF. What about chemoprevention for melanoma? Curr Opin Oncol 2006;18(2):180-184.
    35. Joo KM, Park K, Kong DS, Song SY, Kim MH, Nam DH, et al. Oral paclitaxel chemotherapy for brain tumors: ideal combination treatment of paclitaxel and P-glycoprotein inhibitor, Oncol Rep 2008;19(1):17-23.
    1. Sheldon AL, Robinson MB. The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention, Neurochem Int. 2007; 51(6-7): 333-355
    2. Nicoletti F, Arcella A, Iacovelli L, Battaglia G, Giangaspero F, Melchiorri D. Metabotropic glutamate receptors: new targets for the control of tumor growth? Trends Pharmacol Sci. 2007;28(5):206-213.
    3. Monaghan DT, Bridges RJ, Cotman CW. The excitatory amino acid receptors: their classes, pharmacology distinct properties in the function of the central nervous system, Annu Rev Pharmacol Toxicol 1989; 29: 365–402
    4. Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels, Pharmacol Rev 1999;51(1):7-61.
    5. Hinoi E, Takarada T, Yoneda Y. Glutamate signaling system in bone.J Pharmacol Sci. 2004;94(3):215-220.
    6. Payne HL, Ives JH, Sieghart W, Thompson CL. AMPA and kainate receptors mediate mutually exclusive effects on GABA(A) receptor expression in cultured mouse cerebellar granule neurons, J Neurochem. 2008;104(1):173-186.
    7. Fischer M, William T, Helmbold P, Wohlrab J, Marsch WCh:Expression of epidermal N-methyl-D-aspartate receptors (NMDAR1) depends on formation of the granular layer--analysis in diseases with parakeratotic cornification, Arch Dermatol Res. 2004;296(4):157-162
    8. Barbon A, La Via L, Caracciolo L, Racagni G, Riva MA, Barlati S, et al. Chronic phencyclidine administration reduces the expression and editing of specific glutamate receptors in rat prefrontal cortex, Exp Neurol 2007;208(1):54-62.
    9. Nahm WK, Philpot BD, Adams MM, Butmarc J, Bear MF, Falanga V, et al. Significance of N-methyl-D-aspartate (NMDA) receptor-mediated signaling in human keratinocytes, J Cell Physiol 2004;200(2):309-317
    10. Molitor SC, Manis PB. Evidence for functional metabotropic glutamate receptors in the dorsal cochlear nucleus, J Neurophysiol 1997;77(4):1889-1905.
    11. MacDonald JF, Jackson MF, Beazely MA. G protein-coupled receptors control NMDARs and metaplasticity in the hippocampus, Biochim Biophys Acta 2007; 1768(4):941-951.
    12. Rodríguez-Moreno A. The role of kainate receptors in the regulation of excitatorysynaptic transmission in the hippocampus, Rev Neurol. 2006 1-15;42(5):282-287.
    13. Debanne D, Daoudal G, Sourdet V, Russier M. Brain plasticity and ion channels, J Physiol Paris. 2003;97(4-6):403-414.
    14. Michaels RL, Rothman SM. Glutamate neurotoxicity in vitro: antagonist pharmacology and intracellular calcium concentrations. J Neurosci. 1990;10(1):283-292.
    15. Glenner GG. Murphy MA. Amyloidosis of the nervous system, J Neurol Sci. 1989;94(1-3):1-28.
    16. Stanciu M, Wang Y, Kentor R, Burke N, Watkins S, Kress G, et al. Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures, J Biol Chem. 2000 21;275(16): 12200-12206.
    17. Nishimura T, Faul JL, Berry GJ, Vaszar LT, Qiu D, Pearl RG, et al. Simvastatin attenuates smooth muscle neointimal proliferation and pulmonary hypertension in rats, Am J Respir Crit Care Med. 2002 15;166(10):1403-1408.
    18. Park H, Váradi A, Seok H, Jo J, Gilpin H, Liew CG, et al. mGluR5 is involved in dendrite differentiation and excitatory synaptic transmission in NTERA2 human embryonic carcinoma cell-derived neurons, Neuropharmacology. 2007;52(6):1403-1314.
    19. Bustos G, Abarca J, Campusano J, Bustos V, Noriega V, Aliaga E. Functional interactions between somatodendritic dopamine release, glutamate receptors and brain-derived neurotrophic factor expression in mesencephalic structures of the brain, Brain Res Brain Res Rev. 2004;47(1-3):126-144.
    20. Abarca J, Gysling K, Roth RH, Bustos G. Changes in extracellular levels of glutamate and aspartate in rat substantia nigra induced by dopamine receptor ligands: in vivo microdialysis studies, Neurochem Res. 1995;20(2):159-69.
    21. Aliaga E, Rage F, Bustos G, Tapia-Arancibia L. BDNF gene transcripts in mesencephalic neurons and its differential regulation by NMDA, Neuroreport. 1998 22;9(9):1959-1962.
    22. Aliaga E, Rage F, Tapia-Arancibia L, Bustos G. Negative regulation of brain-derived neurotrophic factor mRNA expression by kainic acid in substantia nigra, Brain Res Mol Brain Res. 1999 25;71(2):341-344.
    23. Bustos G, Abarca J, Fiedler J, Araneda R. Neurochemistry of the mesencephalic substantia nigra: interrelations between excitatory amino acids, N-methyl-D- aspartate type receptors and intrinsic neuronal systems, Arch Biol Med Exp (Santiago). 1988;21(1):59-64.
    24. Fischer M, William T, Helmbold P, Wohlrab J, Marsch WCh. Expression ofepidermal N-methyl-D-aspartate receptors (NMDAR1) depends on formation of the granular layer--analysis in diseases with parakeratotic cornification, Arch Dermatol Res. 2004;296 (4):157-162.
    25. Fischer M, Glanz D, William T, Klapperstueck T, Wohlrab J, Marsch WCh. N-Methyl-D-aspartate-receptors influence the intracellular calcium concentration of keratinocytes, Exp Dermatol. 2004;13(8):512-519.
    26. Fuziwara S, Inoue K, Denda M. NMDA-type glutamate receptor is associated with cutaneous barrier homeostasis. J Invest Dermatol. 2003;120(6):1023-1029..
    27. Stephenson FA. Subunit characterization of NMDA receptors, Curr Drug Targets. 2001;2(3):233-239.
    28. Schori H, Yoles E, Wheeler LA, Raveh T, Kimchi A, Schwartz M. Immune-related mechanisms participating in resistance and susceptibility to glutamate toxicity, Eur J Neurosci. 2002;16(4):557-564.
    29. Hoogduijn MJ, Hitchcock IS, Smit NP, Gillbro JM, Schallreuter KU, Genever PG. Glutamate receptors on human melanocytes regulate the expression of MITF, Pigment Cell Res 2006;19(1):58-67.
    30. Frati C, Marchese C, Fisichella G, Copani A, Nasca MR, Nicoletti F, et al. Expression of Functional mGlu5 Metabotropic Glutamate Receptors in Human Melanocytes, J Cell Physiol 2000;183(3):364-372.
    31. Reuhl KR, Eckhaus M, Meltzer PS, Pavan WJ, Trent JM, Chen S. Melanoma mouse model implicates metabotropic glutamate signaling in melanocytic neoplasia, Nat Genet 2003;34(1):108-112.
    32. Namkoong J, Shin SS, Lee HJ, Marín YE, Wall BA, Chen S, et al. Metabotropic glutamate receptor 1 and glutamate signaling in human melanoma, Cancer Res 2007 1;67(5):2298-2305.
    33. Haas HS, Siegl V, Ingolic E, Heintz E, Schraml E, Schauenstein K, et al. The non-competitive metabotropic glutamate receptor-1 antagonist CPCCOEt inhibits the in vitro growth of human melanoma, Oncol Rep 2007;17(6):1399-1404.
    34. Marín YE, Namkoong J, Cohen-Solal K, Shin SS, Martino JJ, Chen S, et al. Stimulation of oncogenic metabotropic glutamate receptor 1 in melanoma cells activates ERK1/2 via PKCepsilon, Cell Signal 2006;18(8):1279-1286..
    35. Namkoong J, Shin SS, Raines J, Degenhardt K, White E, Chen S, et al. Grm5 expression is not required for the oncogenic role of Grm1 in melanocytes, Neuropharmacology. 2005;49(1):70-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700