中链甘油三酯饮食对大鼠肥胖、胰岛素抵抗的影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     肥胖是目前全世界范围内的一大公共卫生问题,与胰岛素抵抗等非传染性慢性病的发生发展密切相关。脂肪摄入增加是导致肥胖的一个重要饮食因素,因此,控制能量和脂肪摄入量成为防治肥胖的首要饮食原则,但传统的低脂或无脂饮食又容易导致脂类维生素缺乏,并增加心脏疾病的危险性。所以如何提高脂类摄入的质量就变得非常重要。近年来人们发现,用低能量密度的MCT代替部分传统饮食中的LCT能提高脂类摄入的质量。尽管还存在争议,许多动物和人群研究证实了MCT能减轻体重和体脂,增加胰岛素敏感性,同时MCT还有助于维生素的吸收,抑制炎症因子的产生。
     普遍认为MCT减轻体重和减少脂肪沉积,调节体内能量平衡可能有以下几方面原因:低能量密度,快速的肝内转运和氧化,直接作用于脂肪组织调节相关基因表达和酶的活性,增加饱腹感以抑制食欲,增加能量消耗,许多研究也验证了MCT的这些特征。其中,MCT导致饱腹感的机制中涉及的激素包括缩胆囊肽、YY肽、抑胃肽、神经紧张素和胰多肽。但以往的研究都集中在MCT调节代谢的外周机制,如对肝脏、脂肪组织相关基因表达的影响,MCT影响能量代谢和食欲的中枢机制还不清楚。
     下丘脑是机体能量平衡的调节中枢。血液中存在的瘦素(leptin),以信号分子的形式随血液循环作用于下丘脑,然后以反馈环的形式调节摄食行为和能量平衡,保持体重的稳定。动物试验已经证明下丘脑神经中枢由于含有瘦素的受体,可以接受和整合这一信号。大量的实验证实NPY是leptin中枢作用的一种中介递质。leptin注射入血中能迅速进入下丘脑的内侧基底部、弓状核及附近的脑区,与这些部位的leptin受体结合,对NPYmRNA进行调控。因此,leptin-NPY轴可能对能量代谢调节起重要作用。在动物实验中,缺乏leptin,使小鼠出现多食、血糖增高、肥胖及弓状核NPYmRNA水平增高,给予外源性leptin,可使弓状核NPYmRNA表达接近正常,而使多食、血糖增高、肥胖等症状逆转,说明leptin参与摄食及体内能量代谢调节时,可通过NPY而发挥作用。Stephen等也发现瘦素与NPY有拮抗作用,瘦素可以通过抑制NPY的表达而降低摄食,增加产热,降低体重。研究显示MCT能影响血清瘦素浓度和脂肪组织表达瘦素mRNA,但对下丘脑瘦素受体及NPY的影响尚无相关研究。
     肥胖与胰岛素抵抗的相关性已经得到较多学者的认同,饮食诱导肥胖常伴有胰岛素抵抗的发生。研究显示脂肪组织与胰岛素抵抗密切相关,尤其是内脏脂肪。基于脂肪组织在胰岛素抵抗发生过程中的主导作用,它也被看成是调节胰岛素敏感性的作用靶点之一,通过减少体内脂肪沉积从而调节胰岛素也是可行的方法。Han等研究显示MCT能升高胰岛素敏感性和葡萄糖耐受性,该作用可能与MCT减少体重和体脂沉积有关。有研究报道MCT能增加糖尿病人和非糖尿病人的胰岛素敏感性,发现其能增加糖耐量,但其中机制尚不清楚。脂连素是近来发现的两种脂肪细胞因子,由成熟脂肪细胞分泌,在血液中浓度较高。现已证实脂连素能增加胰岛素敏感性。高脂饮食能增加脂肪组织脂肪细胞的大小,同时降低脂连素mRNA水平,这些研究表明脂肪细胞减小导致血浆脂连素水平升高,对胰岛素抵抗有保护作喟。过氧化物体增殖物激活受体Y(PPARγ)和脂肪细胞分化及脂质代谢有关,激活PPARr可促进小脂肪细胞分化,减小细胞体积,还可上调脂连素mRNA,增加胰岛素敏感性,改善胰岛素抵抗。
     本实验试图通过动物实验和分子生物学实验,观察含MCT或LCT的中等水平高脂饮食(29%)对大鼠体脂、体重、血脂、血糖、胰岛素敏感性等代谢指标的影响,并通过检测下丘脑瘦素受体、NPY和脂肪组织内脂肪细胞因子的表达水平了解MCT影响代谢可能的分子机制,为肥胖的防治和MCT的推广应用提供资料。为此,实验从以下3部分进行研究。
     第一部分MCT对大鼠代谢指标的影响
     目的高脂饮食可诱导肥胖,但饮食中脂肪含量过高可影响大鼠食欲,使致肥率降低。本实验在总结前人实验的基础上,将饮食中的脂肪含量确定在15%(W/W),供能比约占20%,为后续实验打下基础。本实验对大鼠体重、体脂、血糖、血脂、瘦素及胰岛素水平进行比较,观察MCT对大鼠代谢的影响,并帮助理解肥胖的发生机制。
     方法体重为85~115g的wistar雄性大鼠,按体重随机分为基础对照组(对照组)、含MCT的高脂组(MCT组)和含LCT的高脂组(LCT组),适宜环境下分别饲以相应饲料,记录进食量,每周称体重1次,共8周。8周术,禁食12小时,麻醉后腹主动脉取血,分离血清,罗氏公司ACCU-CHEK advantage血糖仪测定血清血糖,用全自动生化分析仪测定血脂(TG、TC、LDL、HDL),ELISA法测定空腹血清瘦素,放射免疫法测定血清胰岛素水平,根据空腹血糖和血清胰岛素计算胰岛素敏感指数(ISI),其余血清-85℃保存备用。剥离肾周及睾周脂肪组织挚,用滤纸吸干组织液后,称重。留取各组大鼠的右侧肾周脂肪组织垫,于10%福尔马林溶液中固定,病理检测脂肪细胞的大小。留取部分肝脏,病理下观察肝细胞的形态。留取左侧肾周脂肪组织挚,-80℃保存待测。同时迅速分离出下丘脑置液氮中保存,5只全脑用于下丘脑NPY、leptin含量测定,另5只用于瘦素受体(Ob-Rb)和神经肽Y(NPY)mRNA测定。
     结果MCT组大鼠体重、体脂增长均小于LCT组,与对照组相近。MCT组血浆TC浓度、低密度脂蛋白胆固醇(LDL-C)浓度、高密度脂蛋白(HDL-C)浓度均比LCT组低(P<0.01),MCT组血清TG则比LCT组显著升高(P<0.01)。MCT血清SOD活性显著高于LCT组,MDA水平明显低于LCT组。MCT组肝脏脂肪病变较轻。MCT组血清胰岛素显著低于LCT组(P<0.01),胰岛素敏感性显著高于LCT组(P<0.01),与对照组无显著差异。MCT和LET两组间饲料消耗量、能量消耗量、空腹血糖没有差异。
     结论MCT供能占总能量29%的高脂饮食能预防肥胖,减少体重增长和体脂累积。MCT饮食能增加胰岛素敏感性,改善胰岛素抵抗。MCT能减轻体内氧化应激,减轻肝脏内脂肪沉积。MCT抑制体重增长的机制,与抑制食欲,减少进食量无关,可能与通过外周或中枢机制影响能量代谢相关。
     第二部分MCT降低体重及对下丘脑瘦素受体、NPY轴的影响
     目的人群和动物研究显示中链甘油三脂(MCT)能降低体重,其机制与MCT能够抑制食欲,减少进食量和增加能量消耗有关。研究证实瘦素进入下丘脑后与瘦素受体(leptin receptor)结合通过NPY调节进食和能量消耗。本部分将观察MCT对血清、下丘脑瘦素、NPY浓度,下丘脑长型瘦素受体(Ob-Rb)、神经肽Y(NPY)mRNA和蛋白表达的影响,探讨MCT减肥的中枢机制。
     方法wistar大鼠用含29%MCT或LCT的饲料喂养8周,用ELISA法测定血清和下丘脑瘦素的水平,用放射免疫法检测外周血和下丘脑NPY的浓度,用Real-timeRT-PCR技术测定NPY、瘦素受体(Ob-Rb)基因表达水平的差异。
     结果MCT组大鼠体重增长量和体脂含量均小于LCT组(P<0.01);MCT组下丘脑瘦素高于LCT组,但无显著差异,MCT组瘦素脑/血比明显高于LCT组,MCT组大鼠下丘脑Ob-Rb基因表达水平明显高于LCT组(P<0.01);MCT组下丘脑及血清NPY浓度明显低于LCT组(P<0.01),两组间下丘脑NPY mRNA水平没有差异。
     结论MCT通过促进Ob-Rb基因表达,抑制NPY合成和分泌,这可能是MCT减肥的重要作用机制之一。还需进一步研究观察瘦素对SCOS-3及MSH和大麻素系统的影响。
     第三部分MCT对胰岛素抵抗及其相关基因表达的影响
     目的动物试验和人群研究表明,与LCT相比,MCT能提高糖耐量。脂连素被证实与胰岛素敏感性相关。过氧化物体增殖物激活受体γ(PPARγ)激活后可促进小脂肪细胞分化,增加胰岛素敏感性,还可调节脂连素和TNF-α的转录水平。TNF-α本身也可影响脂肪细胞中脂连素的表达。本课题研究MCT对血清和脂肪组织中脂连素、PPARγ、TNF-α水平的影响。
     方法雄性wistar大鼠,分别饲喂含20%MCT和LCT,8w后病理检测右侧肾周脂肪细胞的大小。ELISA法检测血清中脂连素、TNF-α的水平。Real-time RT-PCT测定脂肪组织中脂连素、PPARγmRNA表达水平,Western-blot测定脂肪组织中脂连素、PPARγ蛋白表达的水平。
     结果MCT组体脂(body fat accumulation)、外周脂肪组织的细胞直径小于LCT组。MCT组的血清脂连素含量显著低于LCT组,两组间血清TNF-α无显著差异。MCT组外周脂肪组织中脂连素、PPARγmRNA和蛋白表达水平显著高于LCT。
     结论MCT饮食增加脂肪组织中脂连素mRNA和蛋白的表达。脂肪组织中PPARγ的表达和脂连素一致,与胰岛素敏感性相关。MCT饮食可通过增加PPARγ表达,促进脂连素基因和蛋白表达,并诱导小脂肪细胞分化,减少脂肪细胞体积,从而改善机体的胰岛素敏感性。
Obesity is a public health problem.It increase the risk of life threatening diseases such as hypertension,type 2 diabetes and atherosclerosis.Increased fat intake induces overweight and obesity.Switching to low-fat or fat-free diets may not be ideal because of vitamin loss and increased risk for heart disease.One of the alternative strategies is to replace part of the conventional dietary long-chain triglyceride(LCT) with medium-chain TG(MCT) oil.Despite controversy,many studies have documented that MCTs cause significant reduction in body weight or fat pad size in animals and humans, as recently reviewed by St-Onge et al.MCTs also facilitate vitamin delivery and inhibit the production of inflammatory cytokines.
     MCT have several unique physiological and biological characteristics,as reported elsewhere over the past half-century.MCT,composed exclusively of MCFA(medium-chain fatty acid),are metabolized differently from LCT,composed exclusively of LCFA(long chain fatty acid).MCFA are absorbed via the portal system and are transported to the liver directly,whereas LCT are absorbed via the intestinal lymphatic ducts and transported as chylomicrons through the thoracic duct to reach systemic circulation.MCFA and hence MCT are easily oxidized because their intramitochondrial transport does not require carnitine palmitoyltransferase(CPT),a rate-limiting enzyme of mitochondrial-oxidation.MCT are absorbed and metabolized as rapidly as glucose.Several studies showed that MCT have more energy expenditure. They are utilized to prevent obesity and several lifestyle-related diseases.Previous studies have concentrated on the pheripheral mechanism,such as adiposity,liver, gastrointestinal hormones.However,the effect of MCT on central neuropeptide,such as neuropeptide Y(NPY),leptin receptor(Ob-R) are still unknow.
     NPY,a potent stimulator of feed intake,is mainly synthesized in the arcuate nucleus and injected into the paraventricular nucleus induced hyperphagia and reduced energy expenditure.Leptin is a signal for the regulation of food intake through hypothalamic leptin receptor(Ob-R) to regulate body fat mass.Kalra et al indicated that the over expression of Ob-Rb in the hypothalamus may contribute to the inhibitory effects of leptin on food intake and body weight.It has been well established that leptin receptor (Ob-R) regulating food intake and energy expenditure with NPY.It has been concluded that the type and amount of dietary fat can modulate the NPY mRNA expression.It is possible that the inhibitory effect of MCT on body weight gain is caused by altered downstream of the actions of Ob-Rb.We hypothesized that dietary MCT might alter leptin and leptin signaling to the brain(leptin-related hypothalamic neuropetide mRNA expression) resulting in less body weight gain.
     Insulin resistance is characterized by a reduced sensitivity of insulin to target tissues. Although obesity is a common cause of insulin resistance,the molecular link between increased adiposity and insulin sensitivity remain unclear.Animal and human studies have provided evidence that MCT impact not only lipid metabolism but also glucose metablism.Han et al found improved glucose tolerance and insulin sensitivity in MCT-fed rats,compared with LCT.Eckel et al reported that an MCT diet,compared with an LCT diet,increased insulin sensitivity in both diabetic patients and nondiabetic subjects.Adipose tissue synthesizes and secretes biologically active molecular that might be called "adipocytokines".Dysregulation of adipocytokines in obesity might play a role in the development of insulin resistance.More recently,resistin,which is a novel adipose-specific cysteine-rich protein,has been found to impair insulin sensitivity and glucose tolerance.Adiponectin is a product of the apM1 gene,which is specifically and highly expressed in human adipose tissue.Plasma adiponectin concentration and mRNA expression were decreased in obese humans,with increased adiposity,and in patients with type 2 diabetes with insulin resistance.The peroxisome proliferator-activated receptor(PPAR)-γis the master regulator of adipocyte differentiation and controls many adipocytes genes.Its synthetic ligands,thiazolidinediones(TZDs),are a new class of antidiabetic drugs that improve insulin action.Many studies demonstrated TZDs can markedly enhance the expression and secretion of adiponectin in vitro and in vivo through the activation of its promoter.Furthermore,retinoid X receptor(RXR),liver receptor homolog-1(LRH-1),tumor necrosis factor a(TNF-a) are all involved in transactivation machinery of adiponectin gene.
     Here,we tried to determine whether dietary MCT woule affect leptin and leptin's signaling pathway.Meanwhile,we also investigated the effect of MCT diet on adipose adiponectin,resistin,PPARγ,TNF-a mRNA
     PART 1 METABOLIC EFFECTS OF A MEDIUM-CHAIM TRIGLYCERIDES DIET
     Object:It is well know that high fat-diet induce obesity,but the result will be adiverse when there is too much fat in diet,because studies on establishment of obese models have revealed that too much fat down-regulatees the appetite of subjects.Thus,we induced obesity by feeding rats a high fat diet containing about 15%fat in order to provide a solid foundation for the next work.The aim of the present part was to investigated the effects of MCT diet on some physiological factors such as body weight, food intake,adipose depots,size of fat cells,serum lipid profiles,serum glucose,and insulin levels.
     Methods:Thirty male wistar rats weighting 85~115g were fed standard laboratory chow for the 1~(st) wk to allow them to adjust to the new environment.Mice were then randomly assigned to a control group(5%of weight as fat),MCT group(14%of weight as MCT) and LCT group(15%of weight as LCT).All rats were maintained in cages under appropriate temperatue,humidity,and light-dark cycle conditions.Weekly body weight and daily food intake were measured for 8 weeks.At the end of feeding period,the rats were killed by anesthetizing with sodium pentobarbital(7ml/100g of body weight i.p.) after 12h of food deprivation.Blood(inferior vena cava) was collected to obtain serum, which was stored at -80℃for analysis.One aliquot of blood was collected directly in a tube containing heparin(10μl/ml of total blood) and aprotinin(500U/ml of total blood) placed on ice and centrifuged;and the obtained blood plasma was stored at -20℃for leptin and NPY determination.The abdominal adipose tissues(perirenal,epididymal) were carefully removed using scissors and weighed.At the same time,the whole brains of five rats in each group was obtained and stored in liquid nitrogen.They were putted on ice plate the next day;the hypothalamuses were sampled and weighed,then putted in glass homogenizer.It was added with 1ml 1NHCL and homogenized,then transferred to plastic tube and stored 100min under room temperature to make the bioactive peptides dissolved completely in acid solution.After adding 1ml 1N NAOH,it was centrifuged for 10min by 4000×g under 4℃.The supernatant was stored at -20℃for determination of NPY and leptin contents.The other hypothalami was also sampled and frozen for extraction of RNA and quantitative real-time RT-PCR experiments.
     Results:Significantly decrease of body weight,the weight of adipose pads,serum total cholesterol(TC),low density lipoprotein-cholesterol(LDL) and high density lipoprotein-cholesterol(HDL-C) were noted in the group fed MCT as compared with those fed LCT.In contrast,serum total triaglyceride(TG) were significantly increased in MCT group compared to those in LCT group.There were no significant differences in serum glucose,food intake,energy intake between them.The insulin resistance in MCT group was ameliorated compared with those in LCT group.MCT diet reduced adipocyte diameter enlarged by LCT diet.
     conclusions:The results suggested dietary MCT can reduce body weigh gain,the weight of adipose pads,diameter of adipocyte,serum total cholesterol and LDL after a eight-week feeding period,and can reverse insulin resistance.
     PART 2 High Expression of Leptin Receptor in Rats Fed with Medium-chain TAG Compared with Long-chain TAG
     Object:Previous studies demonstrated that,compared with long-chain TAG(LCT), dietary medium-chain TAG(MCT) could reduce body weight gain.It has been well established that leptin acts as a signal for body fat storage through the hypothalamic leptin receptor(OB-R) regulating food intake and energy expenditure with neuropeptide Y.
     Methods:Male Wistar rats were fed with diets containing 30%MCT or LCT for 8 wk. The effects of dietary MCT on serum leptin concentration,leptin receptor and NPY mRNA levels in hypothalamus were studied in rats.NPY and leptin was extracted and measured with a specific radioimmunoassay and ELISA.
     Results:Rats fed with the MCT diets had less body weight gain and body fat accumulation in the MCT diet group than those fed with the LCT diets(P<0.01). Hypothalamus and serum NPY concentrations in rats fed with the MCT diets were lower than those in LCT group.MCT rats had significantly higher ratio of hypothalamus/serum leptin compared with LCT rats.The Ob-Rb mRNA level in the hypothalamus was significantly higher in the rats fed with the MCT diets than in those fed with the LCT diets.There was no significant difference in NPY expression between the LCT and MCT groups.
     Conculsions:These findings suggest that dietary MCT,compared with LCT,results in higher Ob-Rb mRNA level in rats.The effects of MCT on other actions of leptin such as its effects on the SCOS-3,melanocortin or endocannabinoid system should be investigated.
     PART 3 High Expression of Adiponectin and PPARγin Rats Fed with Medium-chain TAG Compared with Long-chain TAG
     Objective:Previous studies demonstrated that,compared with long-chain TAG (LCT),dietary medium-chain TAG(MCT) could improve glucose tolerance in rats and humans.It has been well established that adiponetin acts to increase insulin sensitivity. The peroxisome proliferator-activated receptorγ(PPARγ) is the master regulator of adipocyte differentiation and controls many adipocytes genes,including adiponectin and TNF-a.Furthermore,TNF-a are all involved in transactivation machinery of adiponectin gene.The effects of dietary MCT on adiponection,PPARγ,TNF-a levels in serum and adipose tissue were studied in rats.
     Methods:Serum adiponectin and TNF-a were assayed by enzyme linked immunosorbant assay(ELISA).Total RNA was isolated from the retroperitoneal fat by the method of GIT,and real-time reverse transcription polymerase chain reaction was performed to quantify mRNA of PPARγ,adiponectin.Western-blot was perfomed to quantify protein of PPARγ,adiponectin in white adipose tissue.
     Results:Rats fed the MCT diet had smaller cell diameter of the perirenal adipose tissue (P<0.01).The serum adiponectin concentration was high(P<0.01) in the MCT diet group than in the LCT diets group.Adipose adiponectin,PPARγmRNA expression was much higher in the MCT diet group than in the LCT diet group.In contrast,no differences in serum TNF-a levels expressions were found between the two groups.
     Conclusions:Dietary MCT result in a high serum adiponectin level with transcriptional activation of the adiponectin gene in rats compared with LCT diet.We speculate that improved glucose tolerance in rats fed an MCT diet may be ascribe to the high serum adiponetin level.Our results also indicate that PPARγplay significant roles in the transcriptional activation of adiponectin gene.
引文
[1] Surwit RS, Kuhn CM, Cochrane C, et al. Diet-induced type II diabetes in C57BL/6J mice [J]. Diabetes, 1988,37:1163-1167.
    
    [2] Weiser M, Frishman WH, Michaelson MD, et al. The pharmacologic approach to the treatment of obesity [J]. J Clin Pharmacol, 1997, 37:453-473.
    
    [3] St-Onge MP, Ross R, Parsons WD, et al. Medium-chain triglycerides increase energy expenditure and decrease adiposity in overweight men [J]. Obes Res, 2003, 11(3):395-402.
    
    [4] St-Onge MP, Jones PJ. Physiological effects of medium-chain triglycerides: potential agents in the prevention of obesity [J]. J Nutr, 2002, 132(3):329-332.
    
    [5] St-Onge MP, Ross R, Parsons WD, et al. Medium-chain triglycerides increase energy expenditure and decrease adiposity in overweight men [J]. Obes Res, 2003 , 11(3):395-402.
    [6] Han J, Hamilton JA, Kirkland JL, et al. Medium-chain oil reduces fat mass and down-regulates expression of adipogenic genes in rats [J]. Obes Res, 2003, 11(6):734-744.
    
    [7] Campfield LA, Smith FJ, Guisez Y, et al. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks [J]. Science, 1995, 269(5223):546-549.
    
    [8] Schwartz MW, Baskin DG, Bukowski TR, et al. Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice [J]. Diabetes, 1996, 45(4):531-535.
    
    [9] Friedman JM. The alphabet of weight control [news; comment]. Nature, 1997, 385(6612):119-120.
    
    [10] York DA. Regulation of feeding behavior: Advances in understanding from molecular and physiological approaches [news; comment]. 8th International Congress on Obesity, 1999, pp:267-277.
    
    [11] Kokot F, Ficek R. Effects of neuropeptide Y on appetite [J]. Miner Electrolyte Metab, 1999, 25(4-6):303-305.
    
    [12] Schwartz MW, Baskin DG, Bukowski TR, et al.Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice [J]. Diabetes, 1996, 45(4):531-535.
    
    [13] Stephens TW, Basinski M, Bristow PK, et al. The role of neuropeptide Y in the antiobesity action of the obese gene product [J]. Nature, 1995, 377(6549):530-532.
    
    [14] Lin S, Storlien LH, Huang XF. Leptin receptor, NPY, POMC mRNA expression in the diet-induced obese mouse brain [J]. Brain Res, 2000, 875(1-2):89-95.
    [15]Shinohara H,Wu J,Kasai M,et al.Randomly interesterified triacylglycerol containing medium-and long-chain fatty acids stimulates fatty acid metabolism in white adipose tissue of rats[J].Biosci Biotechnol Biochem,2006,70(12):2919-2926.
    [16]闻之梅,陈君石.现代营养学(第七版)[M].人民卫生出版社,1997.
    [17]Landsberg L.Hyperinsulinemia:possible role in obesity-induced hypertension.Hypertension[J].1992,19(1 Suppl):I61-6.
    [18]Nosaka N,Maki H,Suzuki Y,et al.Effects of margarine containing medium-chain triacylglycerols on body fat reduction in humans[J].J Atheroscler Thromb,2003,10(5):290-298.
    [19]Kasai M,Nosaka N,Maki H,et al.Effect of dietary medium- and long-chain triacylglycerols (MLCT) on accumulation of body fat in healthy humans[J].Asia Pac J Clin Nutr,2003,12(2):151-160.
    [20]Lasekan JB,Rivera J,Hirvonen MD,et al.Energy expenditure in rats maintained with intravenous or intragastric infusion of total parenteral nutrition solutions containing medium- or long-chain triglyceride emulsions[J].J Nutr,1992,122(7):1483-1492.
    [21]St-Onge MP,Jones PJ.Physiological effects of medium-chain triglycerides:potential agents in the prevention of obesity[J].J Nutr,2002,132(3):329-332.
    [22]St-Onge ME Ross R,Parsons WD,et al.Medium-chain triglycerides increase energy expenditure and decrease adiposity in overweight men[J].Obes Res,2003,1(3):395-402.
    [23]Han J,Hamilton JA,Kirkland JL,et al.Medium-chain oil reduces fat mass and down-regulates expression of adipogenic genes in rats[J].Obes Res,2003,11(6):734-744.
    [24]St-Onge ME Bourque C,Jones PJ,et al.Medium- versus long-chain triglycerides for 27 days increases fat oxidation and energy expenditure without resulting in changes in body composition in overweight women[J].Int J Obes Relat Metab Disord,2003,27(1):95-102.
    [25]Tsuji H,Kasai M,Takeuchi H,et al.Dietary medium-chain triacylglycerols suppress accumulation of body fat in a double-blind,controlled trial in healthy men and women[J].J Nutr,2001,131(11):2853-2859.
    [26]Hill JO,Peters JC,Yang D,et al.Thermogenesis in humans during overfeeding with medium-chain triglycerides[J].Metabolism,1989,38(7):641-648.
    [27]Yost TJ,Eckel RH.Hypocaloric feeding in obese women:metabolic effects of medium-chain triglyceride substitution[J].Am J Clin Nutr,1989,49(2):326-330.
    [28]邹大进.实用临床肥胖病学[M].中国医药科技出版社,1998.
    [29]Bach AC,Ingenbleek Y,Frey A.The usefulness of dietary medium-chain triglycerides in body weight control:fact or fancy?[J].J Lipid Res,1996,37(4):708-726.
    [30] St-Onge MP, Jones PJ. Physiological effects of medium-chain triglycerides: potential agents in the prevention of obesity [J]. J Nutr, 2002, 132(3):329-332.
    
    [31] Schlotzer E, Kanning U. Elimination and tolerance of a new parenteral lipid emulsion (SMOF)-a double-blind cross-over study in healthy male volunteers [J]. Ann Nutr Metab, 2004, 48(4):263-268.
    
    [32] Liu YM, Williams S, Basualdo-Hammond C, et al. A prospective study: growth and nutritional status of children treated with the ketogenic diet [J], J Am Diet Assoc, 2003, 103(6):707-712.
    
    [33] Bourque C, St-Onge MP, Papamandjaris AA, et al. Consumption of an oil composed of medium chain triacyglycerols, phytosterols, and N-3 fatty acids improves cardiovascular risk profile in overweight women [J]. Metabolism, 2003, 52(6):771-777.
    
    [34] St-Onge MP, Lamarche B, Mauger JF, et al. Consumption of a functional oil rich in phytosterols and medium-chain triglyceride oil improves plasma lipid profiles in men [J]. J Nutr, 2003, 133(6):1815-1820.
    
    [35] Han JR, Deng B, Sun J, et al. Effects of dietary medium-chain triglyceride on weight loss and insulin sensitivity in a group of moderately overweight free-living type 2 diabetic Chinese subjects [J]. Metabolism, 2007, 56(7):985-91.
    
    [36] Ronis MJ, Korourian S, Zipperman M, et al. Dietary saturated fat reduces alcoholic hepatotoxicity in rats by altering fatty acid metabolism and membrane composition [J]. J Nutr, 2004 , 134(4):904-912.
    
    [37] Lin MT, Yeh SL, Kuo ML, et al. Effects of medium-chain triglyceride in parenteral nutrition on rats undergoing gastrectomy [J]. Clin Nutr, 2002 , 21(1):39-43.
    
    [38] Ton MN, Chang C, Carpentier YA, et al. Epub 2005 Apr 9.In vivo and in vitro properties of an intravenous lipid emulsion containing only medium chain and fish oil triglycerides [J]. Clin Nutr, 2005, 24(4):492-501.
    
    [39] Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue [J]. Nature,1995,374(6521):479.
    
    [40] Pelleymounter. effect of the obese gene product on body weight regulation in mice [J]. Science, 1995, 269:540 - 543.
    
    [41] Campfield LA, Smith FJ, Guisez Y, et al. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks [J]. Science,1995,269(5223):546-549.
    
    [42] Schwartz MW, Baskin DG, Bukowski TR, et al. Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice [J]. Diabetes,1996,45(4):531-535.
    
    [43] Kokot F, Ficek R. Effects of neuropeptide Y on appetite. Miner Electrolyte Metab, 1999, 25(4-6):303-305.
    
    [44] Kotz CM, Briggs JE, Pomonis JD, et al. Neural site of leptin influence on neuropeptide Y signaling pathways altering feeding and uncoupling protein [J]. Am J Physiol,1998,275(2 Pt 2):R478-84.
    
    [45] Tsuji H, Kasai M, Takeuchi H, et al. Dietary Medium-Chain Triacylglycerols Suppress Accumulation of Body Fat in a Double-Blind, Controlled Trial in Healthy Men and Women [J]. J Nutr, 2001,131(11):2853-2859.
    
    [46] Noguchi O, Takeuchi H, Kubota F, et al. Larger diet-induced thermogenesis and less body fat accumulation in rats fed medium-chain triacylglycerols than in those fed long-chain triacylglycerols [J]. J Nutr Sci Vitaminol (Tokyo), 2002, 48(6):524-529.
    
    [47] Ogawa A, Nosaka N, Kasai M, et al. Dietary medium- and long-chain triacylglycerols accelerate diet-induced thermogenesis in humans [J]. J Oleo Sci, 2007, 56(6):283-287.
    
    [48] Kasai M, Nosaka N, Maki H, et al. Comparison of diet-induced thermogenesis of foods containing medium- versus long-chain triacylglycerols [J]. J Nutr Sci Vitaminol (Tokyo), 2002, 48(6):536-540.
    
    [49] Furuse M, Choi YH, Mabayo RT, et al. Feeding behavior in rats fed diets containing medium chain triglyceride [J]. Physiol Behav,1992, 52(4):815-817.
    
    [50] Chanez M, Bois-Joyeux B, Arnaud MJ, et al. Metabolic effects in rats of a diet with a moderate level of medium-chain triglycerides [J]. J Nutr, 1991, 121(5):585-594.
    
    [51] Simon E, Fernandez-Quintela A, Del Puy Portillo M. effects of medium-chain fatty acids on body composition and protein metabolism in overweight rats. J Physiol Biochem, 2000, 56(4):337-346.
    
    [52] Maffei M, Halaas J, Ravussin E, et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects [J]. Nat Med,1995,1(11):1155-1161.
    
    [53] Halaas JL, Gajiwala KS, Maffei M, et al. Weight-reducing effects of the plasma protein encoded by the obese gene [J]. Science,1995,269(5223):543-546
    
    [54] Caro JF, Kolaczynski JW, Nyce MR, et al. Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance [J]. Lancet, 1996, 348(9021):159-161.
    
    [55] Ishihara Y, White CL, Kageyama H, et al. Effects of diet and time of the day on serum and CSF leptin levels in Osborne-Mendel and S5B/P1 rats [J]. Obes Res, 2004, 12(7):1067-1076.
    
    [56] Lin S, Storlien LH, Huang XF. Leptin receptor, NPY, POMC mRNA expression in the diet-induced obese mouse brain [J]. Brain Res, 2000, 875(1-2):89-95.
    
    [57] Wilsey J, Zolotukhin S, Prima V,et al. Central leptin gene therapy fails to overcome leptin resistance associated with diet-induced obesityl[J].Am J Physiol Regul Integr Comp Physiol,2003,285(5):R1011-1020.
    [58]Zarjevski N,Cusin I,Vettor R,et al.Chronic intracerebroventricular neuropeptide-Y administration to normal rats mimics hormonal and metabolic changes of obesity[J].Endocrinology,1993,133(4):1753-1758.
    [59]Han JR,Deng B,Sun J.Effects of dietary medium-chain triglyceride on weight loss and insulin sensitivity in a group of moderately overweight free-living type 2 diabetic Chinese subjects[J].Metabolism.2007,56(7):985-991.
    [60]王绍云,宋怀东,李荣英.高脂大鼠抵抗素基因的上调表达及与胰岛素、瘦素的相关性[J].中华内分泌代谢杂志,2003,19(3).
    [61]DeFronzo RA.Dysfunctional fat cells,lipotoxicity and type 2 diabetes[J].Int J Chn Pract,2004,143(Suppl):9-21.
    [62]Heilbronn L,Smith SR,Ravussin E.Failure of fat cell proliferation,mitochondrial function and fat oxidation results in ectopic fat storage,insulin resistance and type Ⅱ diabetes melitus[J].Int J Obes Relat Metab Disord,2004,28(Suppl 4):S12-21.
    [63]Santomauro AT,Boden G,Silva ME,et al.Overnight lowering of free fatty acids with Acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects[J].Diabetes,1999,48(9):1836-1841.
    [64]Rebrin K,Steil GM,Mittelman SD,et al.Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs[J].J Clin Invest,1996,98(3):741-749.
    [65]Boden G.Role of fatty acids in the pathogenesis of insulin resistance and NIDDM[J].Diabetes,1997,46(3):536.
    [66]Nosaka N,Maki H,Suzuki Y,et al.Effects of margarine containing medium-chain triacylglycerols on body fat reduction in humans[J].J Atheroscler Thromb,2003,10(5):290-298.
    [67]St-Onge MP,Jones PJ.Greater rise in fat oxidation with medium-chain triglyceride consumption relative to long-chain triglyceride is associated with lower initial body weight and greater loss of subcutaneous adipose tissue[J].Int J Obes Relat Metab Disord,2003,27(12):1565-1571.
    [68]Kasai M,Nosaka N,Maki H,et al.Effect of dietary medium- and long-chain triacylglycerols (MLCT) on accumulation of body fat in healthy humans[J].Asia Pac J Clin Nutr,2003,12(2):151-60.
    [69]Hotta K,Funahashi T,Arita Y,et al.Plasma concentrations of a novel,adipose-specific protein,adiponectin,in type 2 diabetic patients[J].Arterioscler Thromb Vasc Biol,2000,20(6):1595-1599.
    [70] Kubota N, Terauchi Y, Yamauchi T, et al. Disruption of adiponectin causes insulin resistance and neointimal formation [J]. J Biol Chem, 2002, 277(29):25863-25866.
    
    [71] Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity [J]. Biochem Biophys Res Commun, 1999, 257(1):79-83.
    
    [72] Yang WS, Lee WJ, Funahashi T, et al. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin [J]. J Clin Endocrinol Metab, 2002, 87(4): 1626.
    
    [73] Stefan N, Vozarova B, Funahashi T, et al. Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans [J]. Diabetes, 2002, 51(6): 1884-1888.
    
    [74] Combs TP, Berg AH, Obici S, et al. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30 [J]..Clin Invest, 2001, 108(12): 1875-1881.
    
    [75] Maeda N, Shimomura I, Kishida K, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30 [J]. Nat Med, 2002, 8(7):731-737.
    
    [76] Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity [J]. Nat Med, 2001,7(8):887-888.
    
    [77] Motoshima H, Wu X, Sinha MK, et al. Differential regulation of adiponectin secretion from cultured human Omental and subcutaneous adipocytes: effects of insulin and rosiglitazone [J]. J Clin Endocrinol Metab, 2002, 87(12):5662-5667.
    
    [78] Hotta K, Funahashi T, Arita Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients [J]. Arterioscler Thromb Vasc Biol, 2000, 20(6):1595-1599.
    
    [79] Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity [J]. J Biol Chem, 1996, 271(18):10697-10703.
    
    [80] Statnick MA, Beavers LS, Conner LJ, et al. Decreased expression of apM1 in Omental and subcutaneous adipose tissue of humans with type 2 diabetes [J]. Int J Exp Diabetes Res, 2000,1(2):81-88.
    
    [81] Maeda N, Takahashi M, Funahashi T, et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein [J]. Diabetes, 2001, 50(9):2094-2099.
    
    [82] Fasshauer M, Klein J, Neumann S, et al. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes [J]. Biochem Biophys Res Commun, 2002, 25:290(3): 1084-1089.
    
    [83] Shibasaki M, Takahashi K, Itou T, et al. A PPAR agonist improves TNF-alpha-induced insulin resistance of adipose tissue in mice [J]. Biochem Biophys Res Commun, 2003, 309(2):419-424.
    
    [84] Chao L, Marcus-Samuels B, Mason MM, et al. Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones [J]. J Clin Invest, 2000,106(11):1305-1307.
    
    [85] Okuno A, Tamemoto H, Tobe K, et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats [J]. J Clin Invest, 1998, 101(6):1354-1361.
    
    [86] Han J, Hamilton JA, Kirkland JL, et al. Medium-chain oil reduces fat mass and down-regulates expression of adipogenic genes in rats [J]. Obes Res, 2003,ll(6):734-744.
    
    [87] Han J, Farmer SR, Kirkland JL, et al. Octanoate attenuates adipogenesis in 3T3-L1 preadipocytes [J]. J Nutr, 2002 , 132(5):904-910.
    
    [88] Hotta K, Funahashi T, Arita Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients [J]. Arterioscler Thromb Vasc Biol, 2000, 20(6):1595-1599.
    
    [89] Gayet C, Leray V, Saito M, et al. The effects of obesity-associated insulin resistance on mRNA expression of peroxisome proliferator-activated receptor-gamma target genes, in dogs [J]. Br J Nutr, 2007, 98(3):497-503.
    
    [90] Moore GB, Chapman H, Holder JC, et al. Differential regulation of adipocytokine mRNAs by rosiglitazone in db/db mice [J]. Biochem Biophys Res Commun, 2001, 286(4):735-741.
    
    [91] Gavrilova O, Marcus-Samuels B, Graham D, et al. Surgical implantation of adipose tissue reverses diabetes in lipoat rophic mice [J]. J Clin Invest, 2000, 105:271-278.
    
    [92] Klaus S. Adipose tissue as a regulator of energy balance [J]. Curr Drug Targets, 2004, 5:241-250.
    
    [93] Frayn KN, Fielding BA, Karpe F. Adipose tissue fatty acid metabolism and cardiovascular disease [J]. Curr Opin Lipidol, 2005, 16:409-415.
    
    [94] Arner P. Human fat cell lipolysis: biochemistry, regulation and clinical role [J]. Best Pract Res Clin Endocrinol Metab, 2005, 19:471-482.
    
    [95] Skurk T, Kolb H, Muller-Scholze S, et al. The proatherogenic cytokine interleukin-18 is secreted by human adipocytes [J]. Eur J Endocrinol, 2005, 152:863-868.
    
    [96] Yang RZ, Lee MJ, Hu H, et al. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action [J]. Am J Physiol Endocrinol Metab, 2006, 290:E1253-E1261.
    
    [97] Nedergaard J, Petrovic N, Lindgren EM, et al. PPARγ in the control of brown adipocyte differentiation [J]. Biochim Biophys Acta, 2005, 1740:293-304.
    
    [98] Van Harmelen V, Reynisdottir S, Eriksson P, et al. Leptin secretion from subcutaneous and visceral adipose tissue in women [J]. Diabetes, 1998, 47:913-917.
    
    [99] Fisher FM, McTernan PG, Valsamakis G, et al. Differences in adiponectin protein expression: effect of fat depots and type 2 diabetic status [J]. Horm Metab Res, 2002, 34:650-654.
    [100] Lihn AS, Bruun JM, He G, et al. Lower expression of adiponectin mRNA in visceral adipose tissue in lean and obese subjects [J]. Mol Cell Endocrinol, 2004, 219:9-15.
    
    [101] SharmaAM. Adipose tissue: a mediator of cardiovascular risk [J]. Int J Obes Relat Metab Disord, 2002, 26(Suppl 4):S5-S7.
    
    [102] Klaus S. Adipose tissue as a regulator of energy balance [J]. Curr Drug Targets, 2004, 5:241-250.
    
    [103] Toni R, Malaguti A, Castorina S, et al. New paradigms in neuroendocrinology: relationships between obesity, systemic inflammation and the neuroendocrine system [J]. J Endocrinol Invest, 2004, 27:182-186.
    
    [104] Frayn KN. Adipose tissue as a buffer for daily lipid flux [J]. Diabetologia, 2002, 45:1201-1210.
    
    [105] Lamounier-Zepter V, Ehrhart-Bornstein M, Bornstein SR. Mineralocorticoid-stimulating activity of adipose tissue [J]. Best Pract Res Clin Endocrinol Metab, 2005, 19:567-575.
    
    [106] Yamauchi T, Kamon J, Waki H, et al. The fatderived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity [J]. Nat Med, 2001, 7:941-946.
    
    [107] Chandran M, Phillips SA, Ciaraldi T, et al. Adiponectin: more than just another fat cell hormone? [J]. Diabetes Care, 2003, 26:2442-2450.
    
    [108] Dietze-Schroeder D, Sell H, Uhlig M, et al. Autocrine action of adiponectin on human fat cells prevents the release of insulin resistance-inducing factors [J]. Diabetes, 2005, 54:2003-2011.
    
    [109] Weyer C, Foley JE, Bogardus C, et al. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance [J]. Diabetologia, 2000, 43:1498-1506.
    
    [110] Heilbronn L, Smith SR, Ravussin E. Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus [J]. Int J Obes Relat Metab Disord, 2004, 28(Suppl 4):S12-S21.
    
    [111] Lewis GF, Carpentier A, Adeli K, et al. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes [J]. Endocr Rev, 2002, 23:201-229.
    
    [112] Frayn KN, Fielding BA, Karpe F. Adipose tissue fatty acid metabolism and cardiovascular disease [J]. Curr Opin Lipidol, 2005,16:409-415.
    
    [113] Yki-Ja¨rvinen H. Fat in the liver and insulin resistance [J]. Ann Med, 2005, 37: 347-356.
    
    
    [114] Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome [J]. Endocr Rev, 2000, 21:697-738.
    
    [115] Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia [J]. J Clin Endocrinol Metab, 2001 86:1930-1935.
    
    [116] Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes [J]. Nature, 2001,409:307-312.
    
    [117] Gong H, Ni Y, Guo X, et al. Resistin promotes 3T3-L1 preadipocyte differentiation [J]. Eur J Endocrinol, 2004,150:885-892.
    
    [118] Kim KH, Lee K, Moon YS, et al. A cysteine-rich adipose tissuespecific secretory factor inhibits adipocyte differentiation [J]. J Biol Chem, 2001, 276: 11252-11256.
    
    [119] Curat CA, Wegner V, Sengene-s C, et al. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin [J]. Diabetologia, 2006, 49:744-747.
    
    [120] Guerre-Millo M. Adipose tissue and adipokines: for better or worse [J]. Diabetes Metab, 2004, 30:13-19.
    
    [121] Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid [J]. J Clin Endocrinol Metab, 1998, 83:847-850.
    
    [122] Kershaw EE, Flier JS. Adipose tissue as an endocrine organ [J]. J Clin Endocrinol Metab, 2004, 89:2548-2556.
    
    [123] Fernandez-Real JM, Ricart W. Insulin resistance and chronic cardiovascular inflammatory syndrome [J]. Endocr Rev, 2003, 24:278-301.
    
    [124] Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue [J]. Br J Nutr, 2004, 92:347-355.
    
    [125] Rajala MW, Scherer PE. Minireview: the adipocyte-at the crossroads of energy homeostasis, inflammation, and atherosclerosis [J]. Endocrinology, 2003, 144: 3765-3773.
    
    [126] Ng TW, Watts GF, Farvid MS, et al. Adipocytokines and VLDL metabolism: independent regulatory effects of adiponectin, insulin resistance, and fat compartments on VLDL apolipoprotein B-100 kinetics? [J]. Diabetes, 2005, 54:795-802
    
    [127] Cnop M, Havel PJ, Utzschneider KM, et al. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex [J]. Diabetologia, 2003, 46:459-469.
    
    [128] Wellen KE, Hotamisligil GS. Obesity-induced inflammatory changes in adipose tissue [J]. J Clin Invest, 2003, 112:1785-1788.
    
    [129] Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes [J]. J Clin Invest, 2005, 115:1111-1119.
    [130] Bouloumie' A, Curat CA, Sengenes C, et al. Role of macrophage tissue infiltration in metabolic diseases [J]. Curr Opin Clin Nutr Metab Care, 2005, 8:347-354.
    
    [131] Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance [J]. J Clin Invest, 2003, 112: 1821-1830.
    
    [132] Tchoukalova YD, Sarr MG, Jensen MD. Measuring committed preadipocytes in human adipose tissue from severely obese patients by using adipocyte fatty acid binding protein [J]. AmJ Physiol Regul Integr Comp Physiol, 2004, 287:R1132-R1140.
    
    [133] Weisberg SP, Hunter D, Huber R, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding [J]. J Clin Invest, 2006, 116:115-124.
    
    [134] Bruun JM, Lihn AS, Pedersen SB, et al. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT [J]. J Clin Endocrinol Metab, 2005, 90:2282-2289
    
    [135] Kamei N, Tobe K, Suzuki R, et al. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance [J]. J Biol Chem, 2006, 8 281: 26602-26614
    
    [136] Gustafson B, Smith U. Cytokines promote WNT signaling and inflammation and impair the normal differentiation and lipid accumulation in 3T3-L1 preadipocytes [J]. J Biol Chem, 2006, 281:9507-9516.
    
    [137] Zhao T, Hou M, Xia M, et al. Globular adiponectin decreases leptin-induced tumor necrosis factor-a expression by murine macrophages: involvement of cAMP-PKA and MAPK pathways [J]. Cell Immunol, 2006, 238:19-30.
    
    [138] Tsatsanis C, Zacharioudaki V, Androulidaki A, et al. Adiponectin induces TNF-a and IL-6 in macrophages and promotes tolerance to itself and other pro-inflammatory stimuli [J]. Biochem Biophys Res Commun, 2005,335:1254-1263.
    
    [139] Trayhurn P. Endocrine and signalling role of adipose tissue: new perspectives on fat [J]. Acta Physiol Scand, 2005,184:285-293.
    
    [140] Wisse BE. The inflammatory syndrome: the role of adipose tissue cytokines in metabolic disorders linked to obesity [J]. J Am Soc Nephrol, 2004,15:2792-2800
    
    [141] Suganami T, Nishida J, Ogawa Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor a[J]. Arterioscler Thromb Vasc Biol, 2005, 25:2062-2068.
    
    [142] Permana PA, Menge C, Reaven PD. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance [J]. Biochem Biophys Res Commun, 2006, 341:507-514
    [143] Shiraki T, Kamiya N, Shiki S, et al. unsaturated ketone is a core moiety of natural ligands for covalent binding to peroxisome proliferator-activated receptor γ[J]. J Biol Chem, 2005, 280:14145- 14153.
    
    [144] Yu JG, Javorschi S, Hevener AL, et al. The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects [J]. Diabetes, 2002, 51:2968-2974.
    
    [145] Bajaj M, Suraamornkul S, Hardies LJ, Pratipanawatr T, DeFronzo RA. Plasma resistin concentration, hepatic fat content, and hepatic and peripheral insulin resistance in pioglitazone-treated type II diabetic patients [J]. Int J Obes Relat Metab Disord, 2004, 28:783-789.
    
    [146] Adams M, Montague CT, Prins B, et al. Activators of peroxisome proliferator-activated receptor y have depot-specific effects on human preadipocyte differentiation [J]. J Clin Invest, 1997, 100:3149-3153.
    
    [147] Okuno A, Tamemoto H, Tobe K, et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese zucker rats [J]. J Clin Invest, 1998, 101:1354-1361.
    
    [148] De Souza CJ, Eckhardt M, Gagen K, et al. Effects of pioglitazone on adipose tissue remodeling within the setting of obesity and insulin resistance [J]. Diabetes, 2001, 50:1863-1871
    
    [149] Miyazaki Y, Mahankali A, Matsuda M, et al. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients [J]. J Clin Endocrinol Metab, 2002 , 87:2784-2791.
    
    [150] Smith SR, De Jonge L, Volaufova J, et al. Effect of pioglitazone on body composition and energy expenditure: a randomized controlled trial [J]. Metabolism, 2005, 54:24-32.
    
    [151] Tiikkainen M, Ha¨kkinen AM, Korsheninnikova E, et al. Effects of rosiglitazone and metformin on liver fat content, hepatic insulin resistance, insulin clearance, and gene expression in adipose tissue in patients with type 2 diabetes [J]. Diabetes, 2004, 53:2169-2176
    
    [152] Bouskila M, Pajvani UB, Scherer PE. Adiponectin: a relevant player in PPAR-agonist-mediated improvements in hepatic insulin sensitivity? [J]. Int J Obes Relat Metab Disord, 2005, 29(Suppl 1):S17-S23.
    
    [153] Nawrocki AR, Rajala MW, Tomas E, et al. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor y agonists [J]. J Biol Chem, 2006, 281:2654-2660
    
    [154] Lin CY, Gurlo T, Haataja L, et al. Activation of peroxisome proliferator-activated receptor-γ by rosiglitazone protects human islet cells against human islet amyloid polypeptide toxicity by a phosphatidylinositol 3 -kinase-dependent pathway [J]. J Clin Endocrinol Metab, 2005, 90:6678- 6686.
    [155] Li AC, Palinski W. Peroxisome proliferator-activated receptors: how their effects on macrophages can lead to the development of a new drug therapy against atherosclerosis [J]. Annu Rev Pharmacol Toxicol, 2006, 46:1-39
    
    [156] Chinetti G, Zawadski C, Fruchart JC, et al. Expression of adiponectin receptors in human macrophages and regulation by agonists of the nuclear receptors PPARa, PPARy, and LXR [J]. Biochem Biophys Res Commun, 2004, 314: 151-158
    
    [157] Tsuchida A, Yamauchi T, Takekawa S, et al. Peroxisome proliferator-activated receptor (PPAR)γ activation increases adiponectin receptors and reduces obesity-related Inflammation in adipose tissue: comparison of activation of PPARa, PPARy and their combination [J]. Diabetes, 2005, 54:3358-3370.
    
    [158] He W, Barak Y, Hevener A, et al. Adipose-specific peroxisome proliferator-activated receptor y knockout causes insulin resistance in fat and liver but not in muscle [J]. Proc Natl Acad Sci USA, 2003, 100:15712-15717
    
    [159] Kesterson RA, Kahn BB, Magnuson MA. Deletion of PPARγin adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance [J]. Proc Natl Acad Sci USA, 2005, 102:6207-6212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700