严重烧伤大鼠早期肠道营养降低高代谢与CRF受体调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烧伤高代谢反应是严重烧伤应激、炎症反应的重要组成部分。适当的高代谢反应对机体有利,过度高代谢反应对机体有害。众所周知,中枢神经系统在烧伤高代谢反应中起重要作用,近年来越来越多的资料阐述神经-免疫-内分泌系统存在相互影响,相互调节,这为探讨烧伤高代谢发生机制及其调理提供了新思路。
     机体能量平衡的调节机制十分复杂,在中枢神经系统中,烧伤高代谢反应受下丘脑调控,下丘脑在能量平衡调节中起关键作用。二十多年来神经生物学的不断进展,大量与能量平衡有关的下丘脑神经肽及神经递质网络相继被发现,为探索烧伤高代谢反应机制提供了重要的理论基础。合成代谢作用神经肽刺激摄食,降低能量消耗,分解代谢作用神经肽抑制摄食,增加能量消耗。促肾上腺皮质激素释放因子(CRF)系统属分解代谢神经肽,CRF相关肽及其受体在创伤应激及能量代谢中的作用已有一些证据。而且许多其他中枢神经肽均通过CRF系统起作用。因此,我们推测下丘脑CRF相关肽及其受体在烧伤应激及烧伤高代谢反应中可能起着十分重要作用。CRF相关肽包括CRF、UCN(Urocortin)1、UCN2、UCN3等。1981年Vale等首先从羊下丘脑分离出CRF,CRF是41个氨基酸的神经肽,在中枢神经系统CRF通过与CRFR1、CRFR2两种高亲和力受体亚型结合,在应激反应中发挥多种多样的病理生理作用。研究表明CRFR1受体主要介导HPA轴ACTH、糖皮质激素的分泌,CRFR2受体主要介导能量平衡。UCN1是1995年由vaughan等首先报道,是在大鼠脑中发现的一种普遍存在于哺乳动物中的CRF家族的新成员,与CRF有45%的同源性,UCNs是CRFR2受体的主要配体,研究表明,UCNs可能在烧伤后高代谢反应中起重要作用。近年来,CRFR1、CRFR2受体拮抗剂相继被发现,Astressin2-B是CRFR2受体特异拮抗剂,Antalarmin是CRFR1受体特异拮抗剂,同时,反义核酸技术是目前比较成熟的下调基因表达的方法。CRF受体拮抗剂的应用及反义核酸技术为特异受体作用机制研究提供了重要手段。
     烧伤高代谢主要来自创面,肠道是烧伤高代谢的另一重要来源。肠道作为外科应激的中心器官,肠道在烧伤高代谢反应中的作用已有一些证据。我所通过大量的动物实验及临床研究证实早期肠道营养可降低烧伤高代谢反应,并由此提出“肠源性高代谢”理论。严重烧伤后早期肠道营养通过食物对胃肠道刺激,促进肠道复苏,改善肠道血循,维护肠道结构功能,调节肠道运动、分泌、代谢功能,降低肠道细菌/内毒素移位,从而降低烧伤高代谢反应。但已有的研究局限在早期肠道营养对静息能量消耗及肠道结构功能影响的研究,未涉及中枢代谢相关神经肽的变化情况。因此,我们推测,既然“肠源性高代谢”理论认为肠道参与烧伤高代谢的形成,早期肠道营养可降低烧伤高代谢反应,而中枢神经系统在烧伤高代谢反应中起重要作用,因而可以设想早期肠道营养在降低烧伤高代谢时,也可能存在由体液和神经机制通过中枢神经系统及其代谢相关肽的调节。目前国内外尚未见这方面的资料报道。
     CRF相关肽及其受体在胃肠道也有相应表达。功能研究显示大鼠外周静脉注射CRF、UCN可促进结肠的推进运动,抑制胃排空,而CRF、UCN不能通过血脑屏障,提示胃肠道局部可能也有CRF相关肽的合成与分泌,胃肠道内存在相应CRF受体。近年来,肠道粘膜、粘膜下层CRF相关肽及受体在肠道应激、肠道炎症反应及肠道粘膜屏障功能中作用研究越来越受重视。但严重烧伤应激后肠道CRF相关肽及其受体的动态变化及早期肠道营养对肠道CRF相关肽及其受体有何调节作用?国内外未见文献报道。
     本实验应用CRFR1、CRFR2受体的特异性拮抗剂及反义核酸技术,通过阻断CRFR1、CRFR2受体作用及下调下丘脑相应受体的表达,试图探索CRF受体与烧伤高代谢反应的关系;建立烧伤后早期肠道营养与静脉营养模型,观察两种不同的营养支持途径对烧伤大鼠代谢指标及下丘脑CRF相关肽及其受体的影响,为肠源性高代谢理论进一步提供依据;同时,本实验还对烧伤后早期肠道营养对回肠粘膜CRF相关肽及其受体的表达情况进行动态观察,进一步探讨早期肠道营养的作用机制。
     一、方法
     1.采用大鼠30%TBSAⅢ度烧伤模型,观察第三脑室置管应用CRFR1、CRFR2受体反义核酸及CRFR1、CRFR2受体特异拮抗剂对烧伤后第7天静息能量消耗(REE)的影响,通过RT-PCR检测应用反义核酸后下丘脑CRFR1mRNA、CRFR2mRNA的表达变化,通过Western blot检测应用反义核酸后下丘脑CRFR1、CRFR2蛋白表达变化。通过免疫组化及免疫荧光观察应用反义核酸烧伤后对下丘脑CRFR2表达变化情况。
     2.建立大鼠30%TBSAⅢ度烧伤早期肠道营养与静脉营养模型,动物随机分为正常对照组、早期肠道营养组和静脉营养组,观察烧伤后静息能量消耗(REE)变化情况及早期肠道营养对烧伤高代谢反应的影响。检测伤后1、3、5、7天不同时相点血浆ACTH、CORT、CA及血清TNFα、IL-1β、IL-6的变化情况,检测下丘脑CRFR2mRNA及蛋白表达变化。同时检测下丘脑CRFmRNA、UCN1mRNA的变化情况。
     3.建立大鼠30%TBSAⅢ度烧伤早期肠道营养与静脉营养模型,动物随机分为正常对照组、早期肠道营养组和静脉营养组,观察烧伤后回肠粘膜层CRFR1、CRFR2受体mRNA及蛋白水平表达的变化情况,以及早期肠道营养对回肠CRFR1、CRFR2受体表达的影响。同时观察烧伤后回肠粘膜层CRFmRNA、UCN1mRNA水平表达变化情况,以及早期肠道营养对回肠CRFmRNA、UCN1mRNA表达的影响。通过免疫组化检测分析回肠粘膜层CRFR1、CRFR2受体的表达情况。
     二、结果
     1.与CRFR2ODN组比较,CRFR2ASODN可明显降低烧伤静息能量消耗(REE),与CRFR1ODN组比较,CRFR1ASODN无明显降低烧伤高代谢反应作用。Astressin2-B可明显降低严重烧伤高代谢反应,Antalarmin未见明显降低烧伤高代谢反应作用。CRFR1ASODN、CRFR2ASODN明显下调严重烧伤大鼠下丘脑CRFR1mRNA、CRFR2 mRNA及蛋白水平表达。
     2.烧伤后REE均呈逐渐增高的趋势,EN组REE在伤后第3、5、7天明显低于PN组(P<0.05)。血浆ACTH、CORT烧伤后均明显增高,伤后第三天以后逐渐下降,EN组在伤后第3、5天明显低于PN组(P<0.05)。血浆儿茶酚胺(CA)浓度伤后第1天最高,以后逐渐下降,EN组在伤后第3、5天明显低于PN组(P<0.05)。烧伤后血清肿瘤坏死因子(TNFα)、IL-1β、IL-6浓度呈逐渐升高趋势,EN组在伤后第3、5、7天明显低于PN组(P<0.05)。
     3.烧伤后下丘脑CRFR2mRNA及蛋白表达均呈明显增加趋势,EN组下丘脑CRFR2mRNA及蛋白的表达在伤后第5、7天明显低于PN组。烧伤后下丘脑CRFmRNA及蛋白表达呈下降趋势,在伤后第三天降低至最低,以后逐渐回升,EN组下丘脑CRFmRNA及蛋白表达在伤后第3、5、7天明显高于PN组。烧伤后下丘脑UCN1mRNA的表达呈逐渐增高趋势,EN组下丘脑UCN1mRNA的表达在伤后第5、7天明显低于PN组。
     4.正常大鼠回肠粘膜层均有CRFmRNA、UCN1mRNA、CRFR1mRNA、CRFR2mRNA表达,烧伤后CRFmRNA、UCN1mRNA、CRFR1mRNA、CRFR2mRNA表达明显增加,早期肠道营养可下调回肠粘膜CRFmRNA、CRFR1mRNA和蛋白的表达,增加UCN1mRNA、CRFR2mRNA和蛋白的表达。
     5.免疫组化结果显示正常大鼠回肠肌间神经丛、粘膜下神经丛、粘膜层均有CRFR1、CRFR2表达,烧伤后CRFR1、CRFR2表达明显增加,早期肠道营养可下调回肠粘膜CRFR1的表达,增加CRFR2的表达。
     三、结论
     1.下丘脑CRFR2受体可能参与严重烧伤大鼠高代谢反应调节,CRFR1受体在烧伤高代谢反应中作用可能不是主要的。
     2.早期肠道营养可减低严重烧伤大鼠高代谢反应,可能通过降低烧伤大鼠血浆ACTH、CORT、儿茶酚胺、血清TNFα、IL-1β、IL-6浓度起作用。
     3.早期肠道营养下调下丘脑CRFR2mRNA及蛋白的表达,早期肠道营养可能通过下调下丘脑CRFR2mRNA及蛋白的表达降低烧伤高代谢反应。下丘脑UCN1可能参与烧伤高代谢反应的形成,下丘脑CRF可能与烧伤急性应激反应有关。
     4.回肠肌间神经丛、粘膜下神经丛、粘膜层均有CRFR1、CRFR2受体表达。早期肠道营养可明显下调回肠粘膜层CRFmRNA、CRFR1mRNA和蛋白水平的表达,增加回肠粘膜UCN1mRNA、CRFR2mRNA和蛋白水平的表达。
The hypermetabolism is an important part of the stess response to burn injury.Suitable response of hypermetabolism is beneficial,and excessive response is harmful to burn organism.The central nervous system play an important role in burn hypermetabolism response.More evidences showed that there were intercommunications among nervous,immune and endocrine system,which gave us new idea of burn hypermetabolism mechanism and metabolism intervention.
     The regulation mechanism of energy balance is more complicated.The hypothalamus is a center of energy balance regulation.The burn injury hypermetabolism is also regulated by hypothalamus.The hypothalamus play a critical role in energy balance.Along with neurobiology advancement in twenty years,many hypothalamic neuropeptides and neurotransmitters related to energy balance were discovered gradually,which provided us with more importance rationale to search for burn injury hypermetabolism mechanism.The anabolic neuropeptides provoke ingestion,lower energy expenditure,and catabolic neuropeptides restrain ingestion,increase energy expenditure.The corticotrophin releasing factor(CRF) system belongs to catabolic neuropeptides.There were some evidences of CRF related peptides and its receptor roles in stress and energy metabolism. Roles of many other neuropeptides may go through CRF system.We presumed that the hypothalamic CRF related peptides and its receptors may play an important role in burn stress and hypermetabolism response. The hypothalamic CRF related peptides include CRF ,Urocortin1(UCN1),UCN2 and UCN3. Corticotropin-releasing factor (CRF) is a 41-residue peptide characterized from ovine hypothalamus by Vale et al in 1981.Within the brain, CRF binds to two receptor types,referred to as the CRFR1 and the CRFR2 receptors.The corticotrophin releasing factor (CRF) system could play diverse pathophysiologic role in stress response. The CRFR1 is the primary receptor that activates the secretion of ACTH and cortisone of hypothalamic-pituitary-adrenal(HPA) axis in response to a stressor,CRFR2 receptor regulates energy balance.Urocortin1 is a 40-amino acid peptide expressed in the mammalian brain.Urocortins show a particularly high specificity for CRFR2 receptor.Recent investigations have demonstrated that urocortins could play a significant role in the regulation of burn injury hypermetabolism.Recently,CRFR1,CRFR2 receptor specific antagonist had been discovered successively,astressin2-B was specific antagonist of CRFR2 receptor,antalarmin was specific antagonist of CRFR1 receptor.Meanwhile,antisense nucleic acids technique was a good way which can lower gene expression.This specific antagonist of CRF receptors and antisense nucleic acid technique had become a valuable tool for in vivo characterization of CRFR2 receptor function.
     Hypermetabolism of burn injury is mainly from wound,the gut is another importance source.The intestinal tract is a central organ to manifest surgical stress.The view that hypermetabolism is regulated by gut has gained acceptance in recent years.On the basis of many animal experiments and clinical studies in our institute,we concluded that early enteral nutrition can lower burn injury hypermeatbolism,and proposed“Enterogenous Hypermetabolism”theory.Early enteral nutrition is an essential stimulant to the growth and renewal of the mucosal cells of gastrointestinal tract.It could regulate the gastrointestinal tract movement,secretion and cell metabolism,lower intestinal ischemia injury,preserve the structure and function of gastrointestinal tract,reduce intestinal bacteria/endotoxin translocation,decrease hypermetabolism response.But,studies now only refer to the effects of early enteral nutrition on REE and the structure and function of gastrointestinal tract.As is known to all that hypermetabolism is regulated by central nervous system,there were no any data of central neuropeptides related to burn hypermetabolism by gut and the effect of early enteral nutrition on burn hypermetabolism.We suppose that the effect of early enteral nutrition on REE is through central neuropeptides related to metabolism.
     CRF related peptides and its receptors were also discovered expressing in gastrointestinal tract.Functional studies demonstrated that peripheral injection of CRF or Ucn 1 can also stimulate colonic transit and defecation,inhibit gastric emptying in rats.CRF or UCN 1 didn’t pass through blood-brain barrier,it indicated that there were peripheral CRF,UCN 1,CRFR1 and CRFR2 receptors in gastrointestinal tract.Recently,some published data show that CRF related peptides and its receptors in gastrointestinal tract mucosa,submucous layer play an important role in gut stress response,inflammatory reaction and mucosal barrier function.But until now,there is no data showing that the changes of CRF related peptides and its receptors and effects of early enteral nutrition on CRF related peptides and its receptors in gastrointestinal tract after burn injury.
     Objectives
     To investigate the relation between CRF receptors and burned hypermetabolism response,and observe the effects of early enteral nutrition on hypermetabolism,hypothalamus and ileum mucosa CRF related peptides and its receptors.
     Methods
     1. In this study we employed a stainless-steel cannula implanted into the 3rd ventricle animal model, after at least one week to recover from these operations, SD rats were inflicted with 30% TBSA full thickness flame burn on the back,to observe the effects of CRFR1ASODN,CRFR2ASODN and astressin2-B,antalarmin on resting energy expenditure(REE) at PBD7.The hypothalamic CRFR1mRNA,CRFR2mRNA expression level were determined by RT-PCR at PBD7 after CRFR1ASODN,CRFR2ASODN injection.The changes of hypothalamic CRFR1,CRFR2 were determined at PBD7 after CRFR1ASODN, CRFR2ASODN injection by Western blot and immunohistochemistry.
     2. The animal model of early enteral nutrition and parenteral nutrition was employed,SD rats were divided randomly into control group,parenteral nutrition(PN) group and early enteral nutrition(EN) group,and inflicted with 30% TBSA full thickness flame burn on the back.The resting energy expenditure(REE) were determined at PBD1, 3, 5, 7 respectively,and plasma ACTH,CORT,CA,and serum TNFα,IL-1β,IL-6 were detected at 1d, 3d, 5d, 7d postburn respectively.The hypothalamic CRFR2mRNA,CRFmRNA and UCN1mRNA were detected respectively by RT-PCR.The hypothalamic CRFR2 and CRF were detected respectively by Western blot.
     3. We employed early enteral nutrition and parenteral nutrition animal model, SD rats were divided randomly into control group,parenteral nutrition(PN) group and early enteral nutrition(EN) group,and inflicted with 30% TBSA full thickness flame burn on the back.The ileum mucosal CRFR1mRNA,CRFR2mRNA,CRFmRNA and UCN1mRNA were detected respectively by RT-PCR.The ileum mucosal CRFR1,CRFR2, CRF were detected respectively by Western blot.The ileum CRFR1 and CRFR2 immunohistochemistry expression were investigated.
     Results
     1. REE in CRFR2ASODN group were significantly lower than that of CRFR2ODN group.There was no significant difference of REE between CRFR1ASODN group and CRFR1ODN group.Compared with burn control group,astressin2-B lowered REE significantly.There was no significant difference of REE between antalarmin group and burned control group.CRFR1ASODN,CRFR2ASODN significantly lowered hypothalamic CRFR1mRNA,CRFR2 mRNA and protein level expression in burned rats.
     2. There was an obvious increasing trend of REE after severe burn injury.REE in EN group was significantly lower than that of PN group on PBD3,5,7 respectively (P<0.05).Plasma ACTH and CORT increased and peaked at PBD3,and subsided gradually after PBD3.Plasma ACTH and CORT in EN group were significantly lower than that of PN group on 3d,5d postburn respectively(P<0.05).Plasma CA increased and peaked at PBD1,and subsided gradually after PBD1.Plasma CA in EN group was significantly lower than that of PN group on 3d,5d postburn respectively(P<0.05).Serum TNFα,IL-1β,IL-6 increased gradually after burn injury, Serum TNFα,IL-1β,IL-6 in EN group were significantly lower than that of PN group on 3d,5d,7d postburn respectively(P<0.05).
     3. The hypothalamic CRFR2mRNA and protein expression increased gradually after burn injury. The hypothalamic CRFR2mRNA and protein expression in EN group were obviously lower than that of PN on 5d,7d postburn respectively.The hypothalamic CRFmRNA and protein expression decreased gradually after burn injury and peaked at PBD3.The hypothalamic CRFmRNA and protein expression in EN group were obviously higher than that of PN on 3d 5d,7d postburn respectively.The hypothalamic UCN1mRNA expression increased gradually after burn injury ,and UCN1mRNA expressions in EN group were obviously lower than that of PN on 5d,7d postburn respectively.
     4. The ileum mucosa CRFmRNA,UCN1mRNA,CRFR1mRNA,CRFR2mRNA expression in normal control group rats were lower and increased gradually after burn injury.Early enteral nutrition lowered obviously ileum mucosa CRFmRNA, CRFR1mRNA and protein expressions, and increased UCN1mRNA,CRFR2mRNA and protein expressions.
     5. The immunohistochemistry results also indicated that CRFR1 and CRFR2 receptor expressed in myenteric nerve plexus,submucous layer and mucosa of normal rats and increased significantly after burn injury.Early enteral nutrition lowered CRFR1 expression and increased CRFR2 expression in ileum mucosa.
     Conclusions
     1. The hypothalamic CRFR2 receptor is a main regulator and CRFR1 receptor may be of no importance in severely burned hypermetabolism response.
     2. Early enteral nutrition can lower severely burned hypermetabolism and plays very important roles in mediating hypermetabolism by decreasing plasma ACTH, CORT,CA and serum TNFα,IL-1β,IL-6.
     3. Early enteral nutrition plays important roles in lowering hypermetabolism by decreasing hypothalamic CRFR2mRNA and protein expression.The hypothalamic UCN1 may take part in hypermetabolism response, hypothalamic CRF may relate to burn stress response.
     4. CRFR1,CRFR2 expression in rat myenteric nerve plexus, submucous layer and mucosa were discovered.Early enteral nutrition lowered obviously ileum mucosa CRFmRNA,CRFR1mRNA and protein expressions,and increased UCN1mRNA, CRFR2mRNA and protein expressions.
引文
1.黎鳌、杨宗城主编.烧伤治疗学.第二版,北京:人民卫生出版社,1995;458-461.
    2. Wrona D.Neural-immune interactions: an integrative view of the bidirectional relationship between the brain and immune systems.J Neuroimmunol 2006;172 (1-2):38-58.
    3. Hillebrand JJ,de-Wied D,Adan RA. Neuropeptides, food intake and body weight regulation: a hypothalamic focus.Peptides 2002;23(12):2283-2306.
    4. Meister B.Neurotransmitters in key neurons of the hypothalamus that regulate feeding behavior and body weight.Physiology & Behavior 2007;92:263-271.
    5. Cerri M,Morrison SF.Corticotropin releasing factor increases in brown adipose tissue thermogenesis and heart rate through dorsomedial hypothalamus and medullary raphe pallidus.Neuroscience 2006;140(2):711-721.
    6. Richard D,Lin Q,Timofeeva E.The corticotropin-releasing factor family of peptides and CRF receptors: their roles in the regulation of energy balance.Eur J Pharmacol 2002;440(2-3): 189-197.
    7. Cullen MJ,Ling N,Foster AC,et al.Urocortin, corticotropin releasing factor-2 receptors and energy balance.Endocrinology 2001;142(3):992-999.
    8. Vale W,Spiess J,Rivier C,et al.Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin.Science 1981; 213(4514):1394-1397.
    9. Vaughan J,Donaldson C,Bittencourt J,et al.Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 1995;378(6554): 287-292.
    10. Chance WT,Dayal R,Friend LA,et al.Possible role of CRF peptides in burn-induced hypermetabolism.Life Sci 2006;78(7):694–703.
    11. Chance WT,Dayal R,Friend LA,et al.Possible role of CRF peptides in burn-induced hypermetabolism.Life Sci 2006;78(7):694-703.
    12. Zoumakis E,Rice KC,Gold PW,et al.Potential uses of corticotropin-releasing hormone antagonists.Ann N Y Acad Sci 2006;1083:239-251.
    13. Hoare SR,Sullivan SK,Fan J,et al.Peptide ligand binding properties of the corticotropin releasing factor(CRF)type 2 receptor: pharmacology of endogenously expressedreceptors,G-protein-coupling sensitivity and determinants of CRFR2 receptor selectivity. Peptides.2005;26(3):457-470.
    14.汪仕良.烧伤后代谢与缺血缺氧.中华烧伤杂志.2002;18(4):199-200.
    15.汪仕良,尤忠义,余斌等.烧伤后肠源性高代谢研究--高代谢及内毒素.肠外与肠内营养.2005;12(1):24-28.
    16. Chen ZY, Wang SL, Yu B,et al. A comparison study between early enteral nutrition and parenteral nutrition in severe burn patients.Burns 2007;33(6):708-712
    17. Tache Y,Bonaz B.Corticotropin-releasing factor receptors and stress-related alterations of gut motor function.J Clin Invest 2007;117(1):33-40.
    18. Martinez V,Wang L,Rivier J,et al.Central CRF, urocortins and stress increase colonic transit via CRFR1 receptors while activation of CRFR2 receptors delays gastric transit in mice.J Physiol 2004;556(Pt1):221-234.
    19.高翔,胡品津.豚鼠结肠肌间神经丛促皮质激素释放激素神经元的表达及其生理特性.实用医学杂志2004;20(9):989-992.
    20. Porcher C,Juhem A,Peinnequin A,et al.Expression and effects of metabotropic CRFR1 and CRFR2 receptors in rat small intestine.Am J Physiol Gastrointest Liver Physiol 2005;288(5): G1091-1103.
    21. Porcher C,Peinnequin A,Pellissier S,et al.Endogenous expression and in vitro study of CRF-related peptides and CRF receptors in the rat gastric antrum.Peptides 2006;27(6): 1464-1475.
    22. Muramatsu Y, Fukushima K, Iino K,et al.Urocortin and corticotropin-releasing factor receptor expression in the human colonic mucosa.Peptides 2000;21:1799-1809.
    23. Tache Y.Corticotropin releasing factor receptor antagonists: potential future therapy in gastroenterology? Gut 2004;53(7): 919-921.
    24. Fukudo S.Role of corticotropin-releasing hormone in irritable bowel syndrome and intestinal inflammation. J Gastroenterol.2007;42(Suppl 17):48-51.
    25. Ferrier L.Significance of increased human colonic permeability in response to corticotrophin-releasing hormone (CRH).Gut 2008;57(1):7-9.
    26. Wallon C,Yang PC,Keita AV,et al.Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro.Gut 2008;57:50-58.
    1. Liebsch G,Landgraf R,Gerstberger R,et al.Chronic infusion of a CRH1 receptor antisense oligodeoxynucleotide into the central nucleus of the amygdala reduced anxiety-related behavior in socially defeated rats.Regul-Pept 1995;59(2): 229-239.
    2. Smagin GN , Howell LA , Ryan DH , et al.The role of CRFR2 receptors in corticotropin-releasing factor and urocortin-induced anorexia.Neuroreport 1998;9(7): 1601-1606.
    3. Paxinos G,Watson C.The rat brain in stereotaxic coordinates. New York:Academic Press 1986;C18-37,S37-78,80,H87-105.
    4.黎鳌、杨宗城、肖光夏等.实验烧伤外科学.重庆:重庆大学出版社,1997:204-206.
    5.黄培堂等译.分子克隆实验指南.第三版,北京:科学出版社, 2003:96-105.
    6.盛志勇、杨宗城主编.烧伤治疗学.第三版,北京:人民卫生出版社,2006:421-423.
    7. Hillebrand JJ,De-Wied D,Adan RA. Neuropeptides, food intake and body weight regulation: a hypothalamic focus.Peptides 2002;23(12):2283-2306.
    8. Meister B.Neurotransmitters in key neurons of the hypothalamus that regulate feeding behavior and body weight. Physiology & Behavior 2007;92:263-271.
    9. Cerri M,Morrison SF.Corticotropin releasing factor increases in brown adipose tissue thermogenesis and heart rate through dorsomedial hypothalamus and medullary raphe pallidus. Neuroscience 2006;140(2): 711-721.
    10. Richard D,Lin Q,Timofeeva E.The corticotropin-releasing factor family of peptides and CRF receptors:their roles in the regulation of energy balance.Eur J Pharmacol 2002; 40(2-3): 189-197.
    11. Arai M,Assil IQ,Abou-Samra AB.Characterization of three corticotropin-releasing factor receptors in catfish:a novel third receptor is predominantly expressed in pituitary and urophysis.Endocrinology 2001;142(1): 446-454.
    12. Rivest S,Laflamme N,Nappi RE.Immune challenge and immobilization stress induce transcription of the gene encoding the CRF receptor in selective nuclei of the rat hypothalamus.J Neurosci 1995;15(4):2680-2695.
    13. Nazarloo HP,Nishiyama M,Tanaka Y,et al.Down-regulation of corticotropin-releasing hormone receptor type 2beta mRNA expression in the rat cardiovascular systemfollowing food deprivation.Regul Pept 2002;105(2):121-129.
    14. Reul JMHM,Holsboer F.Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression.Curr Opin Pharmacol 2002;2(1): 23-33.
    15. Chance WT,Dayal R,Friend LA,et al.Possible role of CRF peptides in burn-induced hypermetabolism.Life Sci 2006;78(7):694-703.
    16. Reyes TM,Lewis K,Perrin MH,et al.Urocortin II:a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci USA 2001;98:2843-2848.
    17. Chalmers DT,Lovenberg TW,De-Souza EB.Localization of novel corticotropin-releasing factor receptor (CRFR2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRFR1 receptor mRNA expression. J Neurosci 1995;15(10): 6340-6350.
    18. Richard D,Rivest R,Naimi N,et al.Expression of corticotropin-releasing factor and its receptors in the brain of lean and obese Zucker rats.Endocrinology 1996;137: 4786-4795.
    19. Timofeeva E,Richard D.Functional activation of CRH neurons and expression of the genes encoding CRH and its receptors in fooddeprived lean (Fa/?) and obese (fa/fa) Zucker rats.Neuroendocrinology 1997;66:327-340.
    20. Smith GW,Aubry JM,Dellu F,et al.Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety,impaired stress response,and aberrant neuroendocrine development.Neuron 1998;20:1093-1102.
    21. Heinrichs SC,Tache Y.Therapeutic potential of CRF receptor antagonists:a gut brain perspective.Expert Opin Invest Drugs 2001;10:647-659.
    22. Zoumakis E,Rice KC,Gold PW,et al.Potential uses of corticotropin-releasing hormone antagonists.Ann N Y Acad Sci 2006;1083:239-251.
    23. Hoare SR,Sullivan SK,Fan J,et al.Peptide ligand binding properties of the corticotropin releasing factor(CRF) type 2 receptor:pharmacology of endogenously expressed receptors,G-protein-coupling sensitivity and determinants of CRFR2 receptor selectivity. Peptides 2005;26(3):457-470.
    1.黎鳌、杨宗城、肖光夏等.实验烧伤外科学.重庆:重庆大学出版社,1997;204-206.
    2.彭曦、汪仕良、谭银铃等.大鼠静脉输液装置的设计和制作.第三军医大学学报.1999;21(7):532-533.
    3.黄培堂等译.分子克隆实验指南.第三版,北京:科学出版社, 2003;96-105.
    4.彭曦、尤忠义、王裴等.不同营养支持途径对烧伤后肠源性高代谢的影响.肠外与肠内营养.2005;12(3):159-161,164.
    5.汪仕良、黎鳌.烧伤后肠源性高代谢.中华烧伤杂志.2001;17(4): 200-201.
    6.彭曦、汪仕良、尤忠义等.烧伤后清洁肠道与肠源性高代谢的实验研究.中华烧伤杂志.2001;17(4):207-209.
    7.汪仕良、尤忠义、余斌等.烧伤后肠源性高代谢研究--高代谢及内毒素.肠外与肠内营养. 2005;12(1):24-28.
    8. Peck MD,Kessler M,Cairns BA,et al.Early enteral nutrition does not decrease hypermetabolism associated with burn injury. J Trauma 2004;57(6): 1143-1148; discussion 1148-1149.
    9. Noordenbos J,Hansbrough JF,Gutmacher H,et al.Enteral nutritional support and wound excision and closure do not prevent postburn hypermetabolism as measured by continuous metabolic monitoring.J Trauma 2000;49(4):667-671;discussion 671-672.
    10. Mochizuki H,Trocki O,Dominioni L,et al.Mechanism of prevention of postburn hypermetabolism and catabolism by early enteral feeding.Ann Surg 1984;200 (3):297-319.
    11. Dominioni L,Trocki O,Mochizuki H,et al.Prevention of severe postburn hypermetabolism and catabolism by immediate intragastric feeding.JBCR 1984;5: 106-112.
    12. Mochizuki H,Trocki O,Dominioni L,et al.Reduction of postburn hypermetabolism by early enteral feeding. Curr Surg 1985;42(2):121–125.
    13. Lee JO,Benjamin D,Herndon DN.Nutrition support strategies for severely burned patients.Nutr Clin Pract 2005;20(3): 325-330.
    14. Herndon DN, Barrow RE, Stein M, et al.Increased mortality with intravenous supplemental feeding in severely burned patients.JBCR 1989;10:309-313.
    15. Saito H,Trocki O,Alexander JW,et al.The effect of route of nutrient administration on the nutritional state,catabolic hormone secretion,and gut mucosal integrity after burn injury. JPEN 1987;11(1):1-7.
    16. Chen ZY, Wang SL, Yu B,et al. A comparison study between early enteral nutrition and parenteral nutrition in severe burn patients.Burns 2007;33(6):708-712.
    17. Brand PH,Qi N,Metting PJ,et al.A self-powered constant infusion device for use in unrestrained rats. Am J Physiol Heart Circ Physiol 2000;278(6):H2157-162.
    18. Gianotti L,Nelson JL,Alexander JW,et al.Post injury hypermetabolic response and magnitude of translocation: Prevention by early enteral nutrition.Nutrition 1994;10(3): 225-231.
    19. Bale TL,Contarino A,Smith GW,et al.Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress.Nat Genet 2000;24:410-414.
    20. Coste SC,Kesterson RA,Heldwein KA,et al.Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2.Nat Genet 2000;24:403-409.
    21. Million M,Saunders P,Rivier J,et al.Compound 338-86-15,a novel peptide CRF-R2 antagonist,selectively blocks CRF and stress-induced delayed gastric emptying in rats.Soc Neurosci Abstr 2001;27: 817-839.
    22. Cullen MJ,Ling N,Foster AC,et al.Urocortin, corticotropin releasing factor-2 receptors and energy balance.Endocrinology 2001;142:992-999.
    23. Contarino A,Heinrichs SC,Gold LH.Understanding corticotropin releasing factor neurobiology: contributions from mutant mice.Neuropeptides 1999;33:1-12.
    24. Richard D,Rivest R,Naimi N,et al.Expression of corticotropin-releasing factor and its receptors in the brain of lean and obese Zucker rats.Endocrinology 1996;137: 4786-4795.
    25. Timofeeva E,Richard D.Functional activation of CRH neurons and expression of thegenes encoding CRH and its receptors in fooddeprived lean(Fa/?) and obese(fa/fa) Zucker rats. Neuroendocrinology 1997;66:327-340.
    26. Makino S,Nishiyama M,Asaba K,et al.Altered expression of type 2 CRH receptor mRNA in the VMH by glucocorticoids and starvation.Am J Physiol:Regul Integr Comp Physiol 1998;44: R1138-1145.
    27. Nishiyama M,Makino S,Asaba K,et al.Leptin effects on the expression of type-2 CRH receptor mRNA in the ventromedial hypothalamus in the rat.J Neuroendocrinol 1999;11(4):307-314.
    28. King BM.The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight.Physiology & Behavior 2006;87:221-244.
    29. Chance WT,Dayal R,Friend LA,et al.Possible role of CRF peptides in burn-induced hypermetabolism.Life Sci 2006; 78(7):694-703.
    30. Ohata H,Shibasaki T.Effects of urocortin 2 and 3 on motor activity and food intake in rats.Peptides 2004;25(10): 1703-1709.
    31. Dieterich KD,Lehnert H,De Souza EB.Corticotropin-releasing factor receptors:an overview.Exp Clin Endocrinol Diabetes 1997;105:65-82.
    32. Vaughan J,Donaldson C,Bittencourt J,et al.Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 1995; 378(6554):287-292.
    33. Krahn DD,Gosnell BA,Majchrzak MJ.The anorectic effects of CRH and restraint stress decrease with repeated exposures. Biol Psychiatry 1990;27:1094-1102.
    34. Rothwell NJ.Central effects of CRF on metabolism and energy balance.Neurosci Biobehav Rev 1990;14:263-271.
    35. De Fanti BA,Martinez JA.Central urocortin activation of sympathetic-regulated energy metabolism in Wistar rats.Brain Res 2002;930:37-41.
    36. LeFeuvre RA,Rothwell NJ,Stock MJ.Activation of brown fat thermogenesis in response to central injection of corticotropin releasing hormone in the rat.Neuropharmacology 1987;26:1217-1221.
    37. Cabanac M,Richard D.Acute intra-ventricular CRF lowers the hoarding threshold in male rats.Physiol Behav 1995;57:705-710.
    38. Shibasaki T,Yamauchi N,Kato Y,et al.Involvement of corticotropin-releasing factor in restraint stress-induced anorexia and reversion of the anorexia by somatostatin in the rat.Life Sci 1988;43:1103-1110.
    39. Rohner-Jeanrenaud F,Walker CD,Greco-Perotto R,et al.Central corticotropin-releasing factor administration prevents the excessive body weight gain of genetically obese (fa/fa) rats.Endocrinology 1989;124:733-739.
    40. Heinrichs SC,Lapsansky J,Behan DP,et al.Corticotropinreleasing factor-binding protein ligand inhibitor blunts excessive weight gain in genetically obese Zucker rats and rats during nicotine withdrawal.Proc Natl Acad Sci USA 1996;93:15475-15480.
    41. Richard D.Involvement of corticotrophin-releasing factor in the control of food intake and energy expenditure. Ann NY Acad Sci 1993;697:155-172.
    42. Richard D,Lin Q,Timofeeva E.The corticotropin-releasing factor family of peptides and CRF receptors: their roles in the regulation of energy balance.Eur J Pharmacol 2002;440(2-3): 189-197.
    1. Lovenberg TW,Liaw CW,Grigoriadis DE,et al.Cloning and characterization of a functionally distinct corticotropin-releasing factor receptor subtype from rat brain. Proc Natl Acad Sci USA 1995;92:836-840.
    2. Martinez V, Wang L, Rivier JE, et al.Differential actions of peripheral corticotropin-releasing factor (CRF), urocortin II, and urocortin III on gastric emptying and colonic transit in mice: role of CRF receptor subtypes 1 and 2. J Pharmacol Exp Ther 2002;301:611-617.
    3. Nozu T,Martinez V,Rivier J,et al.Peripheral urocortin delays gastric emptying: role of CRF receptor 2.Am J Physiol Gastrointest Liver Physiol 1999;276:G867-874.
    4. Pappas T,Debas H,Tache Y.Corticotropin-releasing factor inhibits gastric emptying in dogs.Regul Pept 1985;11:193-199.
    5. Wang L,Martinez V,Rivier JE,et al.Peripheral urocortin inhibits gastric emptying and food intake in mice:differential role of CRF receptor 2.Am J Physiol Regul Integr Comp Physiol 2001;281:R1401-1410.
    6. Kihara N,Fujimura M,Yamamoto I,et al.Effects of central and peripheral urocortin on fed and fasted gastroduodenal motor activity in conscious rats.Am J Physiol Gastrointest Liver Physiol 2001;280:G406-419.
    7. Williams CL,Villar RG,Peterson JM,et al.Stress-induced changes in intestinal transit in the rat:a model for irritable bowel syndrome.Gastroenterology 1988;94:611-621.
    8. Maillot C,Million M,Wei JY,et al.Peripheral corticotropin-releasing factor and stress-stimulated colonic motor activity involve type 1 receptor in rats.Gastroenterology 2000;119:1569-1579.
    9. Mancinelli R,Azzena GB,Diana M,et al.In vitro excitatory actions of corticotropin-releasing factor on rat colonic motility.J Auton Pharmacol 1998;18:319-324.
    10. Williams CL,Peterson JM,Villar RG,et al.Corticotropinreleasing factor directly mediates colonic responses to stress.Am J Physiol Gastrointest Liver Physiol 1987;253:G582-586.
    11. Mayer EA,Collins SM.Evolving pathophysiologic models of functional gastrointestinaldisorders.Gastroenterology 2002;122:2032-2048.
    12. Hanani M,Wood JD.Corticotropin-releasing hormone excites myenteric neurons in the guinea-pig small intestine.Eur J Pharmacol 1992;211:23-27.
    13. Porcher C,Juhem A,Peinnequin A,et al.Expression and effects of metabotropic CRFR1 and CRFR2 receptors in rat small intestine.Am J Physiol Gastrointest Liver Physiol 2005;288:G1091-1103.
    14. Harada S, Imaki T, Naruse M,et al.Urocortin mRNA is expressed in the enteric nervous system of the rat. Neuroscience Letters 1999;267:125-128.
    15. Kawahito Y,Sano H,Kawata M,et al.Local secretion of corticotropin-releasing hormone by enterochromaf?n cells in human colon.Gastroenterology 1994;106:859-865.
    16. Kawahito Y, Sano H, Mukai S,et al. Corticotropin releasing hormone in colonic mucosa in patients with ulcerative colitis.Gut 1995;37:544-551.
    17. Hirasawa G, Takeyama J, Ito M, et al.Urocortin and corticotropin-releasing factor receptor expression in the human colonic mucosa.Peptides 2000;21:1799-1809.
    18. Chatzaki E,Charalampopoulos I,Leontidis C,et al.Urocortin in human gastric mucosa: relationship to inflammatory activity.J Clin Endocrinol Metab 2003;88:478-483.
    19. Bamberger CM, Bamberger AM.The peripheral CRH/urocortin system.Ann NY Acad Sci 2000;917:290-296.
    20. Turnbull AV,Vale W,Rivier C.Urocortin, a corticotropin-releasing factor-related mammalian peptide, inhibits edema due to thermal injury in rats.Eur J Pharmacol 1996;303:213-216.
    21. Agnello D, Bertini R, Sacco S, et al.Corticosteroid- independent inhibition of tumor necrosis factor production by the neuropeptide urocortin.Am J Physiol 1998;275:757-762.
    22. Muramatsu Y, Fukushima K, Iino K, et al.Urocortin and corticotropin-releasing factor receptor expression in the human colonic mucosa.Peptides 2000;21:1799-1809.
    23. Gonzalez-Rey E, Fernandez-Martin A, Chorny A, et al.Therapeutic effect of urocortin and adrenomedullin in a murine model of Crohn’s disease.Gut 2006;55(6):824-832.
    24. Gonzalez-Rey E,Chorny A,Varela N, et al.Urocortin and Adrenomedullin Prevent Lethal Endotoxemia by Down-Regulating the Inflammatory Response.Am J Pathol 2006;168(6):1921-1930.
    25. Saruta M,Takahashi K,Suzuki T,et al.Urocortin 1 in colonic mucosa in patients with ulcerative colitis.J Clin Endocrinol Metab 2004;89:5352-5361.
    26. Neunlist M,Toumi F,Oreschkova T,et al.Human ENS regulates the intestinal epithelial barrier permeability and a tight junction-associated protein ZO-1 via VIPergic pathways.Am J Physiol Gastrointest Liver Physiol 2003;285:G1028-1036.
    27. Schemann M,Neunlist M.The human enteric nervous system.Neurogastroenterol Motil 2004;16:55–59.
    28. Toumi F,Neunlist M,Cassagnau E,et al.Human submucosal neurones regulate intestinal epithelial cell proliferation:evidence from a novel co-culture model.Neurogastroenterol Motil 2003;15:239–242.
    29. Ferrier L.Significance of increased human colonic permeability in response to corticotrophin-releasing hormone (CRH).Gut 2008;57(1):7-9.
    30. Wallon C,Yang PC,Keita AV,et al.Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro.Gut 2008;57:50-58.
    31. Saruta M,Takahashi K,Suzuki T,et al.Urocortin 3/stresscopin in human colon: possible modulators of gastrointestinal function during stressful conditions. Peptides 2005;26:1196-1206.
    32. Chang J, Hoy JJ, Idumalla PS,et al.Urocortin 2 expression in the rat gastrointestinal tract under basal conditions and in chemical colitis.peptides 2007:28(7):1453-1460.
    33. Fukudo S.Role of corticotropin-releasing hormone in irritable bowel syndrome and intestinal inflammation. J Gastroenterol.2007;42(Suppl 17):48-51.
    1. Vale W,Spiess J,Rivier C,et al. Characterization of a 41- residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin.Science 1981;213:1394- 1397.
    2. Vaughan J,Donaldson C,Bittencourt J,et al.Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature. 1995 Nov 16; 378(6554): 287-92.
    3. Reyes TM,Lewis K,Perrin MH,et al. Urocortin II:a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci U S A 2001;98:2843-2848.
    4. Lewis K,Li C,Perrin MH,et al.Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor.Proc Natl Acad Sci USA 2001;98:7570-7575.
    5. 5.Muglia LJ, Bethin KE, Jacobson L, et al.Pituitary–adrenal axis regulation in CRH-deficient mice. Endocr Res 2000;26:1057-1066.
    6. Merchenthaler I,Vigh S,Petrusz P,et al.Immunocytochemical localization of corticotropin-releasing factor (CRF) in the rat brain. Am J Anat 1982;165:385-396.
    7. Sawchenko PE,Swanson LW. Organization of CRF immunoreactive cells and fibers in the rat brain: immunohistochemical studies.In: De Souza EB,Nemeroff CB(Eds). Corticotropin- Releasing Factor:Basic and Clinical Studies of a Neuropeptide. CRC,Boca Raton 1990;30-51.
    8. 8.Heinrichs SC,Tache Y. Therapeutic potential of CRF receptor antagonists:a gut brain perspective.Expert Opin Invest Drugs 2001;10:647-659.
    9. 9.LeFeuvre RA,Rothwell NJ,Stock MJ.Activation of brown fat thermogenesis in response to central injection of corticotropin releasing hormone in the rat.Neuropharmacology 1987;26:1217-1221.
    10. Heinrichs SC,Richard D.The role of corticotropin-releasing factor and urocortin in the modulation of ingestive behavior. Neuropeptides 1999;33:350-359.
    11. Bittencourt JC,Vaughan J,Arias C,et al.Urocortin expression in rat brain:evidence against a pervasive relationship of urocortin-containing projections with targets bearingtype 2 CRF receptors.J Comp Neurol 1999;415:285-312.
    12. Smith GW,Aubry JM,Dellu F,et al.Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety,impaired stress response,and aberrant neuroendocrine development.Neuron 1998;20:1093-1102.
    13. Moreau JL,Kilpatrick G,Jenck F.Urocortin,a novel neuropeptide with anxiogenic-like properties.NeuroReport 1997;8:1697-1701.
    14. Hsu SY,Hsueh AJW.Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin releasing hormone receptor.Nat Med 2001;7:605-611.
    15. Kozicz T,Gaszner B,Arimura,A. The activation of urocortin immunoreactive neurons in the Edinger-Westhphal nucleus following various acute stressors.Soc Neurosci Abstr 2001;27:414,412.
    16. Weninger SC,Peters LL,Majzoub JA.Urocortin expression in the Edinger-Westphal nucleus is up-regulated by stress and corticotropin-releasing hormone deficiency.Endocrinology 2000;141:256-263.
    17. Perrin MH,Donaldson CJ,Chen R,et al.Cloning and functional expression of a rat brain corticotropin releasing factor(CRF) receptor.Endocrinology 1993;133:3058-3061.
    18. Lovenberg TM,Liaw CW,Grigoriadis DF,et al. Cloning and characterization of functionally distinct corticotropin-releasing factor receptor subtype from rat brain.Proc Natl Acad Sci USA 1995;92:836-840.
    19. Arai M,Assil IQ,Abou-Samra AB. Characterization of three corticotropin-releasing factor receptors in catfish:a novel third receptor is predominantly expressed in pituitary and urophysis.Endocrinology 2001;142:446-454.
    20. Wong ML,Licinio J,Pasternak KI,et al. Localization of corticotropin-releasing hormone(CRH) receptor mRNA in adult rat brain by in situ hybridization histochemistry. Endocrinology 1994;135:2275-2278.
    21. Dieterich KD,Lehnert H,De Souza EB.Corticotropin- releasing factor receptors:an overview.Exp Clin Endocrinol Diabetes 1997;105:65-82.
    22. Richard D,Rivest R,Naimi N,et al.Expression of corticotropin-releasing factor and its receptors in the brain of lean and obese Zucker rats.Endocrinology 1996;137: 4786-4795.
    23. Rivest S,Laflamme N,Nappi RE.Immune challenge and immobilization stress induce transcription of the gene encoding the CRF receptor in selective nuclei of the rat hypothalamus.J Neurosci 1995;15:2680-2695.
    24. Timofeeva E,Richard D. Functional activation of CRH neurons and expression of the genes encoding CRH and its receptors in fooddeprived lean (Fa/?) and obese (fa/fa) Zucker rats.Neuroendocrinology 1997;66:327-340.
    25. Sarnyai Z,Shaham Y,Heinrichs SC. The role of corticotropinreleasing factor in drug addiction.Pharmacol Rev 2001;53:209-243.
    26. Muramatsu Y,Fukushima K,Iino K,et al.Urocortin and corticotropin- releasing factor receptor expression in the human colonic mucosa.Peptides 2000;21:1799-1809.
    27. Lovenberg TW,Chalmers DT, Liu C,et al.CRF2αand CRF2βreceptor mRNAs are differently distributed between the rat central nervous system and peripheral tissues.Endocrinology 1995;136:4139-4142.
    28. Kostich WA, Chen AR,Sperle K,et al.Molecular identification and analysis of a novel human corticotropin- releasing factor (CRF) receptor:The CRF2 gamma receptor.Mol Endocrinol 1998;12:1077-1085.
    29. Van PettK,Viau V,Bittencourt JC,et al.Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse.J Comp Neurol 2000;428:191-212.
    30. Bale TL,Contarino A,Smith GW,et al. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety- like behaviour and are hypersensitive to stress.Nat Genet 2000;24:410-414.
    31. Coste SC,Kesterson RA,Heldwein KA,et al.Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin- releasing hormone receptor-2.Nat Genet 2000;24:403-409.
    32. Chen CY,Million M,Adelson DW,et al.Compound 338-086-15,a novel peptidergic CRF receptor subtype 2 antagonist, selectively blocks urocortin-induced inhibition of gastric contractility in anesthesized rats.Soc Neurosci Abstr 2001;27:839-821.
    33. Million M,Saunders P,Rivier J,et al.Compound 338-86-15,a novel peptide CRF-R2 antagonist,selectively blocks CRF and stress-induced delayed gastric emptying in rats.Soc Neurosci Abstr 2001;27:839-817.
    34. Arai M,Assil IQ,Abou-Samra AB.Characterization of three corticotropin-releasingfactor receptors in catfish: a novel third receptor is predominantly expressed in pituitary and urophysis. Endocrinology 2001;142:446-454.
    35. Ardati A,Gottowik J,Henriot S,et al.Pharmacological characterisation of the recombinant human CRF binding protein using a simple assay.J Neurosci Methods 1998;80:99-105.
    36. Jahn O,Eckart K,Sydow S,et al.Pharmacological characterization of recombinant rat corticotropin releasing factor binding protein using different sauvagine analogs.Peptides 2001;22:47-56.
    37. Behan DP,Heinrichs SC,Troncoso JC,et al.Displacement of corticotropin-releasing factor from its binding protein as a possible treatment for Alzheimer’s disease.Nature 1995;378: 284-287.
    38. Behan DP,Grigoriadis DE,Lovenberg T,et al.Neurobiology of corticotropin releasing factor (CRF) receptors and CRF-binding protein: implications for the treatment of CNS disorders.Mol Psychiatry 1996;1;265-277.
    39. Krahn DD,Gosnell BA,Majchrzak MJ.The anorectic effects of CRH and restraint stress decrease with repeated exposures. Biol Psychiatry 1990;27:1094-1102.
    40. Benoit SC,Thiele TE,Heinrichs SC,et al.Comparison of central administration of corticotropin-releasing hormone and urocortin on food intake, conditioned taste aversion, and c-Fos expression.Peptides 2000;21:345-351.
    41. Krahn DD,Gosnell BA,Levine AS,et al.Behavioral effects of corticotropin-releasing factor:localization and characterization of central effects.Brain Res 1988;443:63-69.
    42. Currie PE,Taylor KM,Coiro C,et al.Hypothalamic urocortin (UCN):suppression of food intake, neuropeptide Y (NPY) stimulated eating and metabolism.Soc Neurosci Abstr 2001;27:422,417.
    43. Rothwell NJ. Central effects of CRF on metabolism and energy balance.Neurosci Biobehav Rev 1990;14:263-271.
    44. De Fanti BA,Martinez JA.Central urocortin activation of sympathetic-regulated energy metabolism in Wistar rats.Brain Res 2002;930:37-41.
    45. Ohata H,Shibasaki T.Effects of urocortin 2 and 3 on motor activity and food intake in rats.Peptides 2004;25(10): 1703-1709.
    46. Cabanac M,Richard D.Acute intra-ventricular CRF lowers the hoarding threshold inmale rats.Physiol Behav 1995;57:705-710.
    47. Rivest S,Richard D. Involvement of corticotropin-releasing factor in the anorexia induced by exercise.Brain Res Bull 1990;25:169-172.
    48. Shibasaki T,Yamauchi N,Kato Y,et al.Involvement of corticotropin-releasing factor in restraint stress-induced anorexia and reversion of the anorexia by somatostatin in the rat.Life Sci 1988;43:1103-1110.
    49. Weninger SC,Muglia LJ,Jacobson L,et al.CRH deficient mice have a normal anorectic response to chronic stress.Regul Pept 1999;84:69-74.
    50. Swiergiel AH,Dunn AJ.CRF-deficient mice respond like wildtype mice to hypophagic stimuli.Pharmacol Biochem Behav 1999;64:59-64.
    51. Rohner-Jeanrenaud F,Walker CD,Greco-Perotto R,et al.Central corticotropin-releasing factor administration prevents the excessive body weight gain of genetically obese (fa/fa) rats.Endocrinology 1989;124:733-739.
    52. Heinrichs SC,Lapsansky J,Behan DP,et al.Corticotropinreleasing factor-binding protein ligand inhibitor blunts excessive weight gain in genetically obese Zucker rats and rats during nicotine withdrawal.Proc Natl Acad Sci USA 1996;93:15475-15480.
    53. Spina M,Merlo-Pich E,Chan RKW,et al.Appetite-suppressing effects of urocortin, a CRF related neuropeptide.Science 1996;273:1561-1564.
    54. Lin Q,Huang Q,Picard F,et al.Urocortin mRNA levels in the Edinger–Westphal nucleus is down-regulated in several rodent models of obesity and by urocortin.Soc Neurosci Abstr 2001;27:636,631.
    55. Watts AG,Sanchez-Watts G,Kelly AB.Distinct patterns of neuropeptide gene expression in the lateral hypothalamic area and arcuate nucleus are associated with dehydration-induced anorexia.J Neurosci 1999;19:6111-6121.
    56. Kelly AB,Watts AG.The region of the pontine parabrachial nucleus is a major target of dehydration-sensitive CRH neurons in the rat lateral hypothlamic area.J Comp Neurol 1998;394:48-63.
    57. Heinrichs SC,LapsanskyJ,Lovenberg TW,et al.Corticotropin- releasing factor CRF1,but not CRF2,receptors mediate anxiogenic-like behavior.Regul Pept 1997;71(1):15-21.
    58. Arase K,York DA,Shimizu H,et al.Effects of corticotropin- releasing factor on food intake and brown adipose tissue thermogenesis in rats.Am J Physiol Endocrinol Metab1988;255(3 Pt 1): E255-259.
    59. Cullen MJ,Ling N,Foster AC,et al.Urocortin, corticotropin releasing factor-2 receptors and energy balance.Endocrinology 2001;142:992-999.
    60. Contarino A,Heinrichs SC,Gold LH.Understanding corticotropin releasing factor neurobiology: contributions from mutant mice.Neuropeptides 1999;33:1-12.
    61. Makino S,Nishiyama M,Asaba K,et al.Altered expression of type 2 CRH receptor mRNA in the VMH by glucocorticoids and starvation.Am J Physiol:Regul Integr Comp Physiol 1998;44:R1138-1145.
    62. Nishiyama M,Makino S,Asaba K,et al.Leptin effects on the expression of type-2 CRH receptor mRNA in the ventromedial hypothalamus in the rat.J Neuroendocrinol 1999;11(4):307-314.
    63. Bradbury MJ,McBurnie MI,Denton DA,et al.Modulation of urocortin-induced hypophagia and weight loss by corticotropin-releasing factor receptor 1 deficiency in mice.Endocrinology 2000;141:2715-2724.
    64. Hotta M,Shibasaki T,Arai K,et al.Corticotropin- releasing factor receptor type 1 mediates emotional stress-induced inhibition of food intake and behavioral changes in rats.Brain Res 1999;823:221-225.
    65. Chalmers DT,Lovenberg TW,De-Souza EB.Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J Neurosci 1995;15(10): 6340-6350.
    66. Imaki T,Naruse M,Harada S,et al.Corticotropin-releasing factor up-regulates its own receptor mRNA in the paraventricular nucleus of the hypothalamus.Mol Brain Res 1996;38:166-170.
    67. Mansi JA,Rivest S,Drolet G.Regulation of corticotrophin releasing factor type 1 (CRF1) receptor messenger ribonucleic acid in the paraventricular nucleus of rat hypothalamus by exogenous CRF.Endocrinology 1996;137:4619-4629.
    68. Behan DP,Desouza EB,Lowry PJ,et al.Corticotropin releasing factor (CRF) binding protein:a novel regulator of CRF and related peptides.Front Neuroendocr 1995; 16:362-382.
    69. Dautzenberg FM,Hauger R.The CRF peptide family and their receptors:yet morepartners discovered.Trends Pharmacol Sci 2002;23:71–77.
    70. Richard D,Huang Q,Timofeeva E.The corticotropin-releasing hormone system in the regulation of energy balance in obesity. Int J Obes 2000;24(Suppl 2):S36-S39
    71. Rivest S,Richard D.Hypothalamic paraventricular nucleus lesions do not prevent anorectic effect of exercise in male rats.Am J Physiol 1990;259:R579-R584.
    72. Dagnault A,Richard D.The lesion of the paraventricular nucleus of the hypothalamus does not prevent the effect of estradiol on energy balance.Am J Physiol 1993;267:E32-E38.
    73. Dagnault A,Richard D.Study of brain sites of CRF-estrogen interactions.Soc Neurosci Abstr 1994;20:589.
    74. Egawa M,Yoshimatsu H,Bray GA.Preoptic area injection of corticotropin-releasing hormone stimulates sympathetic activity.Am J Physiol 1990;259:R799-R806.
    75. Arase K,Shargill MS,Bray GA.Effects of intraventricular nfusion of corticotropin-releasing factor on VMH-lesioned bese rats.Am J Physiol 1989;256:R751-756.
    76. Chance WT,Dayal R,Friend LA,et al.Possible role of CRF peptides in burn-induced hypermetabolism.Life Science 2006;78,694–703.
    77. Hillebrand JJ,de-Wied D,Adan RA. Neuropeptides, food intake and body weight regulation: a hypothalamic focus.Peptides. 2002;23(12):2283-306.
    78. Meister B.Neurotransmitters in key neurons of the hypothalamus that regulate feeding behavior and body weight. Physiology & Behavior.2007;92:263-271

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700