用户名: 密码: 验证码:
蝉花中多球壳菌素类长链碱的测定方法学研究及代谢轮廓分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蝉花(Cordyceps cicadae)是我国传统的一种名贵中药材,与冬虫夏草同属虫菌复合体,且具有相近的药用价值,所以医家常将蝉花作为冬虫夏草的代用品。蝉花的主要活性成分之一是多球壳菌素(myriocin,ISP-1),多球壳菌素除具有较强的免疫抑制活性,还具有抗动脉粥样硬化、抗真菌等药理作用。
     ISP-1在野生和人工蝉花药材的含量很低,这也是产业化的瓶颈。目前人们以期通过蝉花发酵的方法提高其产量。因此,建立多球壳菌素类长链碱的检测和评价方法并优化蝉花菌发酵生产多球壳菌素具有十分重要的现实意义。本论文以蝉花为研究对象,建立了一套多球壳菌素分析技术平台;建立了同时测定蝉花中四种多球壳菌素类长链碱(myriocin-like long-chain bases,MLB)的方法;对蝉花鞘氨醇类长链碱(sphingoid long-chain bases,SLB)进行了代谢轮廓分析。主要内容及结论如下:
     1、蝉花中多球壳菌素含量低、成分复杂,检测困难。本论文选择固相萃取(solid phase extract,SPE)进行样品的纯化,考察了萃取小柱种类、上样量、洗脱和解析溶剂等因素对ISP-1净化的影响。建立了SPE-HPLC分析蝉花多球壳菌素方法,结果表明该方法简便易行、重现性好,可用于蝉花中ISP-1含量的测定,其中ISP-1的平均回收率为98.95%,RSD为2.22%。同时运用质谱验证了样品中的目标成分与多球壳菌素一致性,并根据碎片荷质比(m/z)推测了ISP-1分子离子的合理裂解方式。
     2、由于ISP-1没有特征吸收基团,采用紫外检测器检测,选择性和灵敏度较低。为此,探索并建立了一个多球壳菌- 9-氯甲酸芴甲酯(Fmoc-Cl)的反应体系,以吡啶溶解的ISP-1与四氢呋喃为溶剂的Fmoc-Cl在40℃反应10 min为优化的反应条件。运用MS技术对Fmoc-Cl与ISP-1的衍生物的结构进行了分析,推断出ISP-1与Fmoc-Cl发生衍生化反应同时ISP-1的分子内发生了内酯化反应。考察了衍生剂的浓度、反应温度、反应时间等因素对ISP-1衍生物形成的影响及多球壳菌素衍生物的稳定性。以Fmoc-Cl为衍生化试剂,构建了一个多球壳菌素柱前衍生并采用紫外检测的HPLC分析系统。定量限和检测限分别为0.102μg/mL、0.045μg/mL,线性范围为2.0 ~ 500.0μg/mL。采用此方法对天然和人工蝉花中多球壳菌素进行了分析,结果显示天然蝉花中多球壳菌素的含量远远低于人工蝉花。
     3、ISP-1与鞘氨醇(sphingosine,So)、植物鞘氨醇(phytosphingosine,Phy)和二氢鞘氨醇(sphinganine,Sa)均属MLB,具有重要的生理作用。为此,建立了邻苯二甲醛(o-phthalic aldehyde,OPA)柱前衍生-HPLC-UV同时分析这四种MLB的方法。采用LC-MS技术分析了ISP-1、Phy、So和Sa衍生物的结构,并推测其质谱裂解途径。考察了衍生化反应体系中缓冲盐浓度和pH、OPA量、2-巯基乙醇量、衍生反应时间、衍生反应温度等因素对四种MLB衍生物形成的影响及稳定性。结果发现控制反应温度,2-巯基乙醇能够选择性参与邻苯二甲醛与ISP-1的反应。该方法检测性能指标为:检出限分别为1.7、1.2、1.4和0.9μg/mL;加样回收率都大于96%;日内和日间精密度的RSD小于4.0%。优化的样品水解条件为:水解温度110℃、水解时间16 h、溶剂量4 mL。采用此方法对6种不同碳源的蝉花样品中四种MLB进行了分析,结果显示平均含量最高的ISP-1、So、Sa都分布在蔗糖组(340.19μg/g,124.02μg/g,387.84μg/g),而Phy在麦芽糖组(407.78μg/g)。
     4、为了阐明蝉花中ISP-1与SLB相关性,利用OPA柱前衍生-HPLC-UV-MS技术,开展蝉花SLB代谢轮廓分析。精密度、重现性、稳定性等3项试验里10个色谱峰的保留时间和峰面积的RSD分别低于1.7%和4.5%。获取24个菌丝体样品的峰面积,经主成分分析模式识别,提取了2个主成分,其累积贡献率分别为79.16%和13.06%。蝉花SLB代谢轮廓分析的结论为:主成分得分图能够区分ISP-1不同含量的6个碳源组;2个主成分与ISP-1的含量曾负相关;所分析的10个变量(色谱峰)在组间的差异有统计学意义。经LC-MS、文献和网上数据库的分子量筛选,8种SLB被推断。
Cordyceps cicadae, a caterpillar-shaped Chinese traditional medicinal mushroom, is one of the entomopathogenic fungal, which belongs to the class Ascomycetes and DongChongXiaCao group in Chinese herbs. In addition to a strong immunosuppressive activity, myriocin has anti-atherosclerotic, anti-fungal and other pharmacological effects.
     However, both scarce resources of wild medicinal materials and lower production from wild and natruanl C. cicadae, have limited its industrial output and become a bottleneck. It is imperative to establish more efficient and effective detection methods for myriocin and carring out metabolomics studies for C. cicadae. Facing to low content of myriocin and serious interference, this paper has developed new methods of detection for myriocin and other three sphingoid bases by pre-column derivatization and HPLC. By 6 different carbon sources for fermentation model, preliminary study about metabolomics of sphingoid bases in C. cicadae was carried out. The main contents and conclusions are as follows:
     1. To establish a sensitive method for the determination of the content of myriocin in samples collected from submerged cultivation in C. cicadae, sample was extracted with methanol and solid phase extraction, and identified by MS. Myriocin in C. cicadae was separated on a ODS column.The mobile phase was acetonitrile -water (65∶35) at a flow rate of 1.0 mL/min. The UV detection wavelength was 203 nm. Myriocin in sample solution was well separated. The average recovery was 98.95% with RSD 2.22% ( n = 6) and the linear range was 0.15– 7.54μg. The method is convenient, rapid, accurate, and sensitive, thereby leading to a wide and effective analysis for the determination of the myriocin-like immunoregulational ingredients in C. cicadae.
     2. A more sensitive method, based on the pre-column derivatization with 9-fluorenylmethyl chloroformate, was developed for the determination of myriocin. The derivatization reaction was performed in organic solvents of pyridine and tetrahydrofuan at 40oC. Several factors influencing the derivative yield were investigated and optimized. The formed derivative was stable for more than 24 h at room temperature. The detection wavelength was 262 nm. The system offered the following analytical parameters: the limit of detection was 0.045μg/ mL, the linear correlation coefficient was 0.9963 and the linear range response was from 2.0 to 500.0 μg ml-1. The precision of the method was < 2.0%. As a preliminary application, the method has been successfully applied to the determination of myriocin in natural and cultured C. cicadae.
     3. ISP-1, is potent inhibitor of the de novo sphingolipid biosynthesis via inhibiting the key enzyme serine palmitoyltransferase synthase. To study the cellular accumulation of ISP-1, phytosphingosine (Phy), sphingosine (So), and sphinganine (Sa), we developed a method of simultaneous determination for ISP-1, Phy, So and Sa. Several factors influencing the derivative yield were investigated and optimized. The formed derivative was stable for more than 8 h at 4 oC in refrigerator. The detection wavelength was 230 nm. The detection limits of 1.7μg/ml for ISP-1(signal-to-noise ratio S/N =3:1), 1.2μg/mL for Phy, 1.4μg/ml for So and 0.9μg/ml for Sa were established.The average recovery for ISP-1, Phy, So and Sa was higher than 96%. As a preliminary application, the method has been successfully applied to the determination of 4 sphingoid bases in C. cicadae from 6 different carbon sources.
     4. According to the result of C. cicadae in the HPLC-UV-MS, 10 components were identified. SPSS software was used to process the data obtained with different carbon sources as a model. Principal component analysis (PCA) and metabolic profile analysis of sphingolipid metabolism were carried out, respectively. Results of metabolic profiling analysis of sphingoid long-chain bases show that the score plot of PCA had the ability to distinguish six carbon groups, that two principal components had a negative correlation with the ISP-1 levels, and that the analysis of 10 variables (peaks) differences between the groups was statistically significant. By LC-MS analysis and the molecular weight contrast, eight metabolites have been proved.
引文
[1]李冰岚.蝉药的本草学考证[J].现代应用药学, 1993, 10: 22-23.
    [2]幸兴球.大蝉草和小蝉草的分类[J].微生物学报, 1975, 15: 2l- 26.
    [3]李挺,宋斌,林群英.蝉花的研究进展[J].中草药, 2008, 31: 1443-1448.
    [4]李玉玲.冬虫夏草菌研究与利用概况[J].青海畜牧兽医杂志,2007, 37: 35-36.
    [5]钟石,计东风,陈诗,等.蛹虫草研究进展[J].桑蚕通报, 2006, 37: 6-8.
    [6]葛飞,夏成润,李春如,等.蝉拟青霉菌丝体与天然蝉花中化学成分的比较分析[J].菌物学报, 2007, 26: 68-75.
    [7] Fujita T., Inoue K., Yamamoto S., et al. Fungal metabolites. Part 11. A potent immunosuppressive activety found in Isaria sinclairii metabolite[J]. J. Antibiot., 1994, 47: 208-215.
    [8] Miyake Y., Kozutsumi Y., Nakamura S., et al. Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppressant, ISP-1 [J]. Biochem. Biophys. Res. Commun., 1995, 211: 396-403.
    [9] Duarte N., Ferreira M.J., Martins M., et al. Antibacterial activity of ergosterol peroxide against Mycobacterium tuberculosis:dependence upon system and medium employed [J]. Phytother. Res., 2007, 21: 601-604.
    [10] Kappos L., Antel J., Comi G., et al. Oral fingolimod (FTY720) for relapsing multiple sclerosis [J]. N. Engl. J. Med., 2006, 355: 1124-1140.
    [11] Halloran P.F. Immunosuppressive drugs for kidney transplantation [J]. N. Engl. J. Med., 2004, 351: 2715-2729.
    [12] Hojjati M.R., Li Z.Q., Zhou H.W., et al. Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice. J. Biol. Chem., 2005, 280: 10284-10289.
    [13] Wasser S.P. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides [J]. Appl. Microbiol. Biotechnol., 2002, 60: 258-274.
    [14] Park T.S., Rosebury W., Kindt E.K., et al. Serine palmitoyltransferase inhibitor myriocin induces the regression of atherosclerotic plaques in hyperlipidemic ApoE-deficient mice [J]. Pharmacol. Res., 2008, 58: 45-51.
    [15] Glaros E.N., Kim W.S, Rye K.A., et al. Inhibition of atherosclerosis by the serine palmitoyl transferase inhibitor myriocin is associated with reduced plasma glycosphingolipid concentration [J]. Biochem. Pharmacol., 2007, 73: 1340-1346.
    [16] Glaros E.N., Kim W., Garner B., anti-atherogenic mechanisms of sphingolipid synthesisinhibitor myriocin in hepatocytes [J]. Atheroscler. Suppl., 2009, 10: 715-718.
    [17] Park T.S., Panek R.L., Rekthel M.D., et al. Modulation of lipoprotein metabolism by inhibition of sphingomyelin synthesis in ApoE knockout mice [J]. Atherosclerosis, 2006, 189: 264-272.
    [18]肖朝华,周建华,吴衡生.多球壳菌素对高糖诱导肾小球系膜细胞肥大及细胞外基质合成的影响[J].实用儿科临床杂志, 2006, 21: 268-270
    [19]温鲁,唐玉玲,张平.蝉花与有关虫草活性成分检测比较[J].江苏中医药, 2006, 27: 45-46
    [20]于金贵,应诗达.腺苷控制性降压的实验研究[J].中华麻醉学杂志, 1991, 11: 259-261.
    [21]李瑞雪,胡飞,陈安徽,等.蝉拟青霉高产虫草素菌株液体培养工艺的研究[J].徐州工程学院学报, 2007, 22: 23-30.
    [22]蔡有华,刘学铭.虫草素的研究与开发进展[J].中草药, 2007, 38: 1269-1272.
    [23]柴一秋,韦忠民,陈祝安,等.从蝉拟青霉培养物中提取N6-(2-羟乙基)腺苷的方法[P]. 2006.中国, ZL200610008465.7
    [24] Furuya T., Hirotani M. Matsuzawa M. N6-(2-hydroxyethyl) adenosine, a biologically active compound from cultured mycelia of Cordyceps and Isaria species [J]. Phytochemistry. 1983, 22: 2509-2512.
    [25] Kuo Y.C., Lin L.C., Don M.J., et al. Cyclodesipeptide and dioxomorpholine derivatives isolated from the insect-body portion of the fungus Cordyceps cicadae [J]. J. Chin. Med., 2002, 13: 209-219.
    [26] Kuo Y.C., Weng S.C., Chou C.J., et al. Activation and proliferation signals in primary human T lymphocytes inhibited by ergosterol peroxide isolated from Cordyceps cicadae [J]. Br. J. Pharmacol., 2003, 140: 895-906.
    [27] Kaqamizono T., Nishino E., Matsumoto K., et al. Bassiatin, a new platelet aggregation inhibitor produced by Beauveria bassiana K-717 [J]. J. Antibiot., 1995, 48: 1407-1412.
    [28] Lin H.I, Lee Y.J., Chen B.F., et al. Involvement of Bcl-2 family, cytochrome and caspase 3 in induction of apoptosis by beauvericin in human non-small cell lung cancer cells [J]. Cancer Lett., 2003, 230: 248-259.
    [29] Kiho T., Nagai K., Miyamoto I., et al. Polysaccharides in fungi. XXV. Biological activities of two Galactomannans from the insect-body portion of Chan hua (fungus: Cordyceps cicadae) [J]. Yakugaku Zasshi. 1990, 110: 286-288.
    [30]迟秋阳,陈宝骥,杨晓华,等.蝉花多糖的提取及其免疫药理作用的研究[J].军队医药杂志, 1996, 6: 44-46.
    [31] Takano F., Yahagi N., Yahagi R., et al. The liquid culture filtrates of Paecilomyces tenuipes (Peck) Samson (=Isaria japonica Yasuda) and Paecilomyces cicadae (Miquel) Samson(=Isaria sinclairii (Berk.) Llond) regulate Th1 and Th2 cytokine response in murine Peyer’s patch cells in vitro and ex vivo [J]. Int. Immunopharmacol., 2005, 5: 903-916.
    [32]谭艾娟,武立琨,余晓蓓,等.蝉拟青霉产透明质酸最佳液体培养基的筛选[J].食品科学, 2007, 28: 294-296
    [33]朱建明,吴从俊,秦俊,等.透明质酸治疗膝关节早期骨性关节炎疗效观察[J].中国中医骨伤科杂志. 2007, 15: 53-54
    [34]刘森琴,温鲁,夏敏,等.人工培育蝉花的活性成分含量测定[J].安徽农业科学, 2008, 36: 429, 467.
    [35]宋捷民,忻家础,朱英,等.蝉花对小鼠血糖及造血功能影响[J].中华中医药学刊, 2007, 25: 1 144-1145.
    [36]金周慧,陈以平,邓跃毅,等.蝉花菌丝延缓肾小球硬化的作用机制研究[J].中国中西医结合肾病杂志, 2005, 6: 132-136.
    [37]许洪义,朱燕,程东庆,中药蝉花的研究进展[J].中医药信息, 2008, 25: 27-29.
    [38] Futerman A.H., Riezman H. The ins and outs of sphingolipid synthesis [J]. Trends in Cell Biol., 2005, 15: 312-318.
    [39] Tafesse F.G., Ternes P., Holthuis J.C., et al. The multigenic sphingomyelin synthase family [J]. J. Biol. Chem., 2006, 281: 421-425.
    [40] Abe A., Radin N.S., Shayman J.A., et al. Structural and stereochemical studies of potent inhibitors of glucosylceramide synthase and tumor cell growth [J]. J. Lipid Res., 1995, 36: 611-621.
    [41] Cowart L.A., Obeid L.M. Yeast sphingolipids: Recent developments in understanding biosynthesis, regulation, and function [J]. Biochim. Biophys. Acta, 2007, 1771: 421-431.
    [42] Nagiec M.M., Young C.L., Zaworski P.G., et al. Yeast sphingolipid bypass mutants as indicators of antifungal agents selectively targeting sphingolipid synthesis [J]. Biochem. Biophys. Res. Commun., 2003, 307: 369-374.
    [43] Gable K., Slife H., Bacikova D., et al. Tsc3p is an 80-amino acid protein associated with serine palmitoyltransferase and required for optimal enzyme activity [J]. J. Biol. Chem., 2000, 17: 7597-603.
    [44] Grilley M.M., Stock S.D., Dickson R.C., et al. Syringomycin action gene SYR2 is essential for sphingolipid 4-hydroxylation in Saccharomyces cerevisiae [J]. J. Biol Chem., 1998, 273: 11062-11068.
    [45] Chang H.C., Hsu C., Hsu H.K., et a1. Functional role of caspases in sphingosine- induced apoptosis in human hepatoma cells [J]. IUBMB Life, 2003, 55: 403- 407.
    [46] Gentil B., Grimot F., Riva C., et al. Commitment to apoptosis by ceramides depends on mitochondrial respiratory function, cytochrome C release and caspase-3 activation inHep-G2 cells [J]. Mol. Cell. Biochem., 2003, 254: 203- 210.
    [47] K?gedal K., Zhao M., Svensson I., et a1. Sphingosine- induced apoptosis is dependent on lysosomal proteases [J]. Biochem. J., 2001, 359: 335-343.
    [48] Kim S.S., Chae H.S., Bach J.H., et a1. P53 mediates ceramide- induced apoptosis in SKN-SH cells [J]. Oncogene, 2002, 21: 2020- 2028.
    [49] Prinetti A., Prioni S., Loberto N., et al. Regulation of tumor phenotypes by caveolin-1 and sphingolipid-controlled membrane signaling complexes [J]. Biochim. Biophys. Acta, 2008, 1780: 585-596.
    [50]黄韵,余应年,杨军.鞘脂类研究进展[J].浙江大学学报(医学版), 2005, 34: 375-378.
    [51] Connor C.E., Burrows J., Hearps A.C., et a1. Cell cycle arrest of hem atopoietic cell lines after treatm ent with ceramide is commonly associated with retinoblastoma activation [J]. Cytometry, 2001, 43:164-169.
    [52] Magnoni C., Euciidi E., Benassii M., et a1. Ultraviolet B radiation induces actlvation of neutral and acidic sphingomyelinases and ceramide generation in cultured normal human keratinocytes [J]. Toxicol In Vitro, 2002, 16: 349-355.
    [53] Kolesnick R.K., Fuks Z. Radiation and ceramide - induced apoptosis [J]. Oncogene, 2003, 22: 5897-5906.
    [54] Yang J., Duerksen P.J. Activation of a p53- independent, sphingolipid- mediated cytolyticpathway in p53-negative mouse fibroblast cells treated with N-methyl-N-nitro-N- nitrosoguanidine [J]. J. Biol. Chem., 2001, 276: 129-135.
    [55] Fiehn O., KoPka J., D?rmann P., et al. Metabolite profiling for plant funetional genomies. Nat. Biotechnol., 2000, 18, 1157-1161.
    [56] Nieholson J.K., Lindon J.C., Holmes E. Metabonomies: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data [J]. Xenobiotica, 1999, 29: 1181-1189.
    [57] Hanzlik R.P., Fang J., Koen Y.M., et al. Filling and mining the reactive metabolite target protein database [J]. Chem. Biol. Interact., 2009, 179: 38-44.
    [58] Marlon P.Q, Rima K.D. Metabolomics tools for identifying biomarkers for neuropsychiatric diseases [J]. Neurobiol. Dis., 2009, 35: 165-176.
    [59] Ravenzwaay B.V., Cunha G.C., Leibold E., et al. The use of metabolomics for the discovery of new biomarkers of effect [J]. Toxicol. Lett., 2007, 172: 21-28.
    [60] Hiemstra M., AndréK. Comprehensive multi-residue method for the target analysis of pesticides in crops using liquid chromatography–tandem mass spectrometry [J]. J Chromatogr A, 2007, 1154: 3-25.
    [61] Zheng Y.F., Xu G.W., Liu D.Y., et al. Study of urinary nucleosides as biological marker incancer patients analyzed by micellar electrokinetic capillary chromatography [J]. Electrophoresis, 2002, 23: 4104-4109.
    [62] Khan M.T.H., Ather A. Metabolomics– systematic studies of the metabolic profiling[M]. Advances in Phytomedicine. 2006, 22: 411-419.
    [63] Yamamoto H., Yamaji H., Fukusaki E., et al. Canonical correlation analysis for multivariate regression and its application to metabolic fingerprinting [J]. Biochem. Eng. J., 2008, 40: 199-204.
    [64] Ruperez F.J., Garcia-Martinez D., Baena B., et al. Dunaliella salina extract effect on diabetic rats: Metabolic fingerprinting and target metabolite analysis [J]. J Pharm Biomed Anal, 2009, 49: 786-792.
    [65] Fukusaki E., Kobayashi A. Plant metabolomics: potential for practical operation [J]. J. Biosci. Bioeng., 2005, 100: 347-354.
    [66] Viant M.R., Pincetich C.A., Tjeerdema R.S., et al. Metabolic effects of dinoseb, diazinon and esfenvalerate in eyed eggs and alevins of Chinook salmon (Oncorhynchus tshawytscha) determined by 1H NMR metabolomics [J]. Aquat. Toxicol., 2006, 77: 359-371.
    [67]冉小蓉,梁琼麟,罗国安,等.代谢组学的应用及进展[J].中成药, 2005, 27: 381-385.
    [68]徐雯,林东海,刘昌孝.代谢组学研究现状与展望[J].药学学报, 2005, 40: 769-774.
    [69] Theodoridis G., Gika H.G., Wilson I.D., et al. LC-MS-based methodology for global metabolite profiling in metabonomics/metabolomics [J]. Trends Analyt Chem, 2008, 27: 251-260.
    [70] Dunn W.B., Ellis D.I. Metabolomies: Current analytical platforms and methodologies [J]. Trends Analyt Chem, 2005, 24: 285-294.
    [71] Sofia M., Jacques V., Sofia M., et al. Metabolomics technologies and metabolite identification [J]. Trends Analyt Chem, 2007, 26: 855-866.
    [72] Gavaghan C.L., Wilson I.D., Nicholson J.K., et al. Physiologieal variationin metabolie Phenotyping and functional genomie studies: use of orthogonal signal corretion and PLS- DA [J]. FEBS Lett., 2002, 530: 191-196.
    [73] Holmes E., Antti H. Chemometric, contributions to the evolution of metabonomies: mathematieal solutions to eharaeterising and interpreting complex biological NMR [J]. Analyst, 2002, 127: 1549-1557.
    [74] Jiang H., Xie Z., Koo H.J., et al. Metabolic profiling and phylogenetic analysis of medicinal Zingiber species: Tools for authentication of ginger (Zingiber officinale Rosc.) [J]. Phytochemistry, 2006, 67: 1673-1685.
    [75] Slim R.M., Robertson D.G., Ajbassam M., et a1. Effect of dexamethasone on the metabonom ics profile associated with phosphodiesterase inhibitor induced vascular lesionsin rats [J]. Toxicol. Appl. Pharmacol., 2002, 183: 108- 116.
    [76] Watkins S.M., Reifsnyder P.R., Pan H.J., et a1. Lipid metabolome: wide effects of the PPAR gamma agonist rosiglitazone [J]. J. Lipid Res., 2002, 43: 1809-1817.
    [77] Lindon J.C., Nicholson J.K., Holmes E., et al. Contemporary issues in toxicology the role of metabonomics in toxicology and its evaluation by the COMET project [J]. Toxicol. Appl. Pharmacol., 2003, 187: 137-46.
    [78]刘昌孝.代谢组学在中药现代化研究中的意义[J].中草药. 2004, 35: 601-605.
    [79]黄玉荣,魏广力,龙红,等.钩藤多动合剂的药效作用及用代谢物组学方法研究其生化机制[J].中草药, 2005, 36: 398-402.
    [80] Hellmold H., Nilsson C.B., Schuppe-Koistinen I., et al. Identification of end points relevant to detection of potentially adverse drug reactions [J]. Toxicol. Lett., 2002, 127: 239-243.
    [81] Brindle J.T., Antti H., Holmes E., et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics [J]. Nat Med., 2002, 8: 1439-1444.
    [82] Wang Y., Bollard M.E., Keun H., et a1. Spectral editing and pattern recognition methods applied to high resolution magicangle spinning 1H nuclear magnetic resonance spectroscopy of liver tissues [J]. Anal. Biochem., 2003, 323: 26-32.
    [83] Xu G.W., Liebich H. Normal and modified nucleosides in urine as potential tumor markers determined by MEKC and HPLC [J]. Am Clin Lab, 2001, 20 :22 - 32.
    [84] Yang J., Xu G.W., Hong Q., et al. Discrimination of Type 2 diabetic patients from healthy controls by using metabonomics method based on their serum fatty acid profiles [J]. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 813: 53-58.
    [85] Yang J., Xu G.W., Kong H., et al. Artificial neural network classification based on high-performance liquid chromatography of urinary and serum nucleosides for the clinical diagnosis of cancer [J]. J Chromatogr B, 2002, 780: 27-33.
    [86] Broadhurst D., Zhang N., Hayes A., et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations [J]. Nat. Biotechnol., 2001, 19: 45-50.
    [87] Gonzalez O., Iriarte G., Ferreirós N., et al. Optimization and validation of a SPE– HPLC– PDA - fluorescence method for the simultaneous determination of drugs used in combined cardiovascular therapy in human plasma [J]. J Pharm Biomed Anal, 2009, 50: 630-639.
    [88] H?rning O.B., Theodorsen S., Vorm O., et al. Solid phase extraction-liquid chromatography (SPE-LC) interface for automated peptide separation and identification by tandem mass spectrometry [J]. Int J Mass Spectrom, 2007, 268: 147-157.
    [89] Puig P., Borrull F., Calull M., et al. Recent advances in coupling solid-phase extraction andcapillary electrophoresis (SPE–CE) [J]. Trends Analyt Chem, 2007, 26: 664-678.
    [90] Bahrami G., Kiani A. Sensitive high-performance liquid chromatographic quantitation of gabapentin in human serum using liquid–liquid extraction and pre-column derivatization with 9-fluorenylmethyl chloroformate [J]. J Chromatogr B, 2006, 835: 123-126.
    [91] Herráez-Hernández R., Cháfer-Pericás C., Verdú-Andrés J., et al. An evaluation of solid phase microextraction for aliphatic amines using derivatization with 9-fluorenylmethyl chloroformate and liquid chromatography [J]. J Chromatogr A, 2006, 1104: 40-46.
    [92] Cháfer-Pericás C., Herráez-Hernández R., Campíns-FalcóP., et al. A new selective method for dimethylamine in water analysis by liquid chromatography using solid-phase microextraction and two-stage derivatization with o-phthalaldialdehyde and 9-fluorenylmethyl chloroformate [J]. Talanta, 2005, 66: 1139-1145.
    [93] K?r?s A., HanczkóR., Jámbor A., et al. Analysis of amino acids and biogenic amines in biological tissues as their o-phthalaldehyde/ethanethiol/fluorenylmethyl chloroformate derivatives by high-performance liquid chromatography: A deproteinization study [J]. J Chromatogr A, 2007, 1149: 46-55.
    [94] Nedelkoska T.V., Low G.K.C. High-performance liquid chromatographic determination of glyphosate in water and plant material after pre-column derivatisation with 9-fluorenylmethyl chloroformate [J]. Anal. Chim. Acta, 2004, 511: 145-153.
    [95] Herráez-Hernández R., Cháfer-Pericás C., Campíns-FalcóP., et al. Analysis of methylamine by solid-phase microextraction and HPLC after on-fibre derivatization with 9-fluorenylmethyl chloroformate [J]. Anal. Chim. Acta, 2004, 513: 425-433.
    [96] Kim J.W., Kim S.U., Lee H.S., et al. Determination of 1-deoxynojirimycin in Morus alba L. leaves by derivatization with 9-fluorenylmethyl chloroformate followed by reversed-phase high-performance liquid chromatography [J]. J Chromatogr A, 2003, 1002: 93-99.
    [97] Zhen L., Sha Y.F., Huang T.M., et al. High-performance liquid chromatographic determination of vertilmicin in rat plasma using sensitive fluorometric derivatization [J]. J Chromatogr B, 2005, 828: 2-8.
    [98] Akhtar M.H., Bryan M. Extraction and quantification of major carotenoids in processed foods and supplements by liquid chromatography [J]. Food Chem, 2008, 111: 255-261.
    [99] Durán-Merás I., Galeano-Díaz T., Airado D., et al. Post-column on-line photochemical derivatization for the direct isocratic-LC-FLD analysis of resveratrol and piceid isomers in wine [J]. Food Chem, 2008, 109: 825-833.
    [100] Dickson R.C., Lester R.L. Sphingolipid functions in Saccharomyces cerevisiae [J]. Biochim. Biophys. Acta, 2002, 1583: 13-25.
    [101] Ramljak D., Dickson R.B. Signaling Pathways in the Normal and Neoplastic Breast.Handbook of Cell Signaling, 2003: 565-571.
    [102] Shimada N., Terada S., Imai H., et al. Characterization and expression of sphingoid long-chain base (LCB) kinase in Arabidopsis thaliana [J]. Chem. Phys. Lipids, 2009, 160: S349-351.
    [103] Edsall, L.C., Spiegel S. Enzymatic measurement of sphingosine 1-phosphate [J]. Anal. Biochem., 1999, 272: 80-86.
    [104] Murata N., Sato K., Tomura H., et al. Quantitative measurement of sphingosine 1-phosphate by radioreceptor- binding assay [J]. Anal. Biochem., 2000, 282: 115-120.
    [105] Berdyshev E.V., Gorshkova I.A., Garcia J.G.N., et al. Quantitative analysis of sphingoid base-1-phosphates as bisacetylated derivatives by liquid chromatography–tandem mass spectrometry [J]. Anal. Biochem., 2005, 339: 129-136.
    [106] Spassieva S., Bielawski J., Anelli V., et al. Combination of c17 sphingoid base homologues and mass spectrometry analysis as a new approach to study sphingolipid metabolism [J]. Meth. Enzymol., 2007, 434: 233-241.
    [107] Bruce S.J., Jonsson P., Antti H., et al. Evaluation of a protocol for metabolic profiling studies on human blood plasma by combined ultra-performance liquid chromatography/mass spectrometry: From extraction to data analysis [J]. Anal. Biochem., 2008, 372: 237-249.
    [108] Sullards M.C. Analysis of sphingomyelin, glucosylceramide, ceramide, sphingosine, and sphingosine 1-phosphate by tandem mass spectrometry [J]. Meth. Enzymol., 2000, 312: 32-45.
    [109] Cho Y.H., Yoo H.S., Min J.K., et al. Comparative study of naphthalene- 2, 3 - dicarboxaldehyde and o-phthalaldehyde fluorogenic reagents for chromatographic detection of sphingoid bases [J]. J Chromatogr A, 2002, 977: 69-76.
    [110] Min J.K., Yoo H.S., Lee E.Y., et al. Simultaneous quantitative analysis of sphingoid base 1-phosphates in biological samples by o-phthalaldehyde precolumn derivatization after dephosphorylation with alkaline phosphatase [J]. Anal. Biochem., 2002, 303: 167-175.
    [111] Lester R.L., Dickson R.C. High-performance liquid chromatography analysis of molecular species of sphingolipid-related long chain bases and long chain base phosphates in saccharomyces cerevisiae after derivatization with 6-aminoquinolyl-n-hydroxysuccinimidyl carbamate [J]. Anal. Biochem., 2001, 298: 283-292.
    [112] Lee B.J., Kim J.S., Jung S.J., et al. Inhibitory effects of myriocin, sphingolipid biosynthesis inhibitor, on gallstone formation in C57BL/6J mice [J]. Gastroenterology, 2009, 136(Supplement 1): A-1.
    [113] Glaros E.N., Kim W.S., Wu B.J., et al. Inhibition of atherosclerosis by the serine palmitoyltransferase inhibitor myriocin is associated with reduced plasma glycosphingolipid concentration [J]. Biochem. Pharmacol., 2007, 73: 1340-1346.
    [114] Penno A., Eckardstein A.V., Hornemann T., et al. SPTLC3 subunit of serine palmitoyltransferase is responsible for the generation of short chain sphingoid bases [J]. Chem. Phys. Lipids, 2008, 154: S40-S41
    [115]凌笑酶,刘养清,杜鸣,等.用高效液相色谱-紫外检测法测定赖氨酸注射液中赖氨酸含量[J].沈阳药科大学学报, 2000, 17: 349-352.
    [116] Roth M. Fluorescence reaction for amino acids [J]. Anal. Chem., 1971, 43: 880-882
    [117] Ribar S., Karmeli? I., Mesari? M., et al. Sphingoid bases in dairy products [J]. Food Res. Intern., 2007, 40: 848-854.
    [118] Ribar S., Feher-Turkovi? L., Karmeli? I., et al. Sphingoid bases in infant formulas [J]. Food Chem, 2007, 103: 173-180.
    [119] Markham J.E., Li J., Cahoon E.B., et al. Separation and identification of major plant sphingolipid classes from leaves [J]. J. Biol. Chem., 2006, 281: 22684-22694.
    [120] Dalluge J.J., Smith S., Sanchez-Riera F., et al. Potential of fermentation profiliIlg via rapid measurememt of acid metabolism by liquid chromatography-tandem mass spectrometry [J]. J Chromatogr A, 2004, 1043: 3-7.
    [121] Ow D.S.W., Nissom P.M., Philp R., et al. Global transcriptional analysis of metabolic burden due to plasmid maintenance in Escherichia coli DH5αduring batch fermentation [J]. Enzyme Microb. Technol., 2006, 39: 391-398.
    [122] Ciani M., Beco L. Comitini F. Fermentation behaviour and metabolic interactions of multistarter wine yeast fermentations [J]. Int. J. Food Microbiol., 2006, 108: 239-245.
    [123] Grün C.H., Dorsten F.A., Jacobs D.M., et al. GC–MS methods for metabolic profiling of microbial fermentation products of dietary polyphenols in human and in vitro intervention studies [J]. J Chromatog B, 2008, 871: 212-219.
    [124] Echten-Deckert G., Herget T. Sphingolipid metabolism in neural cells [J]. Biochim. Biophys. Acta, 2006, 1758: 1978-1994.
    [125] Zheng W., Kollmeyer J., Symolon H., et al. Ceramides and other bioactive sphingolipid backbones in health and disease: Lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy [J]. Biochim. Biophys. Acta, 2006, 1758: 1864-1884.
    [126] Hu C., Heijden R., Wang M., et al. Analytical strategies in lipidomics and applications in disease biomarker discovery [J]. J Chromatogr B, 2009, 877: 2836-2846.
    [127] Ni Y., Su M., Qiu Y., et al. Metabolic profiling using combined GC–MS and LC–MS provides a systems understanding of aristolochic acid-induced nephrotoxicity in rat [J].FEBS Lett., 2007, 581: 707-711.
    [128] Farag M.A., Huhman D.V., Lei Z., et al. Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of Medicago truncatula using HPLC–UV–ESI–MS and GC–MS [J]. Phytochemistry, 2007, 68: 342-354.
    [129] Qiu Y., Su M., Liu Y., et al. Application of ethyl chloroformate derivatization for gas chromatography–mass spectrometry based metabonomic profiling [J]. Anal. Chim. Acta, 2007, 583: 277-283.
    [130] Xie B., Gong T., Gao R., et al. Development of rat urinary HPLC-UV profiling for metabonomic study on Liuwei Dihuang Pills [J]. J Pharm Biomed Anal, 2009, 49: 492-497.
    [131] Nielsen N.P.V., Carstensen J.M., Smedsgaard J., et al. Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping [J]. J Chromatogr A, 1998, 805: 17-35.
    [132]王婷婷,李清,毕开顺,等.白芷挥发油GC指纹图谱研究[J].药物分析杂志, 2007, 27: 1340-1343
    [133]向刚,杨柳,张霞,等.烟草中多酚类物质的超高效液相色谱指纹图谱及聚类分析[J].光谱实验室,2009, 26: 621-630.
    [134]吴孔弦,谷雪,阎超,等.加压毛细管电色谱法用于银杏叶的指纹图谱研究[J].分析化学, 2009, 37: 581-584
    [135] Eriksson L., Johansson E., Kettaneh-Wold N., et al. Multi- and megavariate data analysis: principles and applications [M].Sweden:Umetrics Acadenmy, 2001, 43-63.
    [136] Idborg-Bjorkman H., Edlund P.O., Kvalheim O.M., et al. Screening of biomarkers in rat urine using LC/electrospray ionization–MS and two-way data analysis [J]. Anal. chem., 2003, 75: 4784-4792.
    [137] Matreya catalog. lipids, biochemicals, and standards for life science research, 2009-2010: 2-6
    [138] Lipid bank[EB/OL]. http: //www.lipidbank.jp.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700