肥胖易感与肥胖抵抗大鼠的代谢组学与转录组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肥胖是机体能量摄入大于消耗的一种慢性能量平衡失调的结果,表现为机体脂肪组织量过多或脂肪组织的比例过高。近几十年来,大量的研究集中在引发肥胖的遗传学机制,以及各种环境因素诱发肥胖的病理基础,并取得了积极的成果。肥胖易感(obesity-prone, OP)和肥胖抵抗(obesity-resistant, OR)现象是指同一种属实验动物在接受相同的饮食喂养后,动物之间出现的两种体重表型,即部分动物产生明显的肥胖,而另一些动物的体重增长比例相对较低。OP与OR这两种表型的产生是遗传和环境因素之间互作的结果。针对OP与OR大鼠的研究将会有助于进一步认识肥胖及其所诱发的代谢性异常发生的机制,为寻找肥胖发生规律及有效的防治措施提供实验依据。目前,未见采用代谢组学与转录组学对OP与OR大鼠之间的代谢与基因表达进行对比研究的报道。因此,本课题采用了代谢组学、转录组学与分子生物学方法对OP与OR大鼠之间的代谢与基因表达进行对比研究,主要实验内容和结果包括:
     ⑴大鼠对高脂饮食喂养不同反应的药物代谢组学研究利用药物代谢组学(Pharmaco-metabonomics)方法,发现了大鼠高脂饮食喂养前的基础代谢表型存在差异,主要包括肠道菌群结构以及能量代谢上的差异等,这些基础代谢表型上的差异与大鼠对高脂饮食干预后体重差异相关。同时,在链尿佐菌素(STZ)诱导的大鼠糖尿病模型上进一步验证了药物代谢组学方法,并发现大鼠化学干预前的尿液代谢谱与其血糖升高水平相关。
     ⑵肥胖易感与肥胖抵抗大鼠生化代谢特征的比较各种生化分析表明OP与OR大鼠在肝脏脂质代谢和胰岛素敏感性等方面表现出显著性差异。胰岛素耐受实验和胰岛素敏感指数(HOMA-IR)表明OP动物的胰岛素敏感性较OR动物下降,而OP大鼠血清中游离脂肪酸、酮体、肝脏总胆固醇和甘油三酯水平显著升高;但是,OP与OR大鼠血清中总胆固醇、甘油三酯、低密度脂蛋白、高密度脂蛋白和空腹血糖等的水平并无显著性差异;
     ⑶肥胖易感与肥胖抵抗大鼠血清、尿液和肝脏组织提取物中代谢物的比较研究表明:①OP与OR大鼠的血清、尿液和肝组织提取物中多种氨基酸的含量存在显著差异,并以肝组织中的差异氨基酸数量为最多,包括各种生酮和生糖氨基酸水平在OP组的升高,说明氨基酸代谢的差异是两种体重表型大鼠之间存在的重要差异特征之一;②OP与OR动物肝脏和血清差异代谢物中包含多种饱和长链脂肪酸的升高如十四烷酸、十六烷酸、硬脂酸等和多不饱和脂肪酸的下降如亚油酸和花生四烯酸,说明两种体重表型动物的肝脏脂肪酸代谢存在明显差异;③长期高脂饮食喂养后,动物的尿液代谢物分析表明OP与OR动物体内的肠道菌群结构存在差异,这些菌群上的差别可能在动物体重增长的调节上产生影响;④与OR动物相比,OP动物尿液代谢物中儿茶酚胺类递质的代谢终产物如高香草酸、扁桃酸和4-羟基苯乙酸明显升高。同时,OP大鼠血清中三羧酸循环中间体柠檬酸、α-酮戊二酸和苹果酸等也显著高于OR大鼠,说明OP大鼠体内的交感神经系统活性及能量代谢过程更为活跃,可能与OP动物体内更多的能量需求有关。
     ⑷肥胖易感与肥胖抵抗大鼠转录组学比较发现两组动物肝脏中有近80种基因在转录水平表现出显著差异(≥1.5倍),差异表达的基因主要涉及到脂质代谢、酮体生成、酶调节和转录调节等代谢通路。结合RT-PCR验证的结果,发现部分重要的基因如Ephx2, Nr3c2, Igfals, Pparg, Apoa4, Hmgcs1等在OP大鼠中明显上调。差异表达的基因及相关的代谢组学结果表明肥胖个体中易发代谢性异常的部分机制和相关的代谢途径。
     本课题通过对高脂饮食喂养和STZ干预前大鼠尿液的代谢物分析,发现大鼠高脂饮食或化学干预前尿液中代谢物谱存在差异,而这些差异与动物干预后体重增长或血糖升高出现不同反应密切相关,这些结果为未来采用代谢组学方法预测药理学结果提供了实验依据。高脂饮食喂养建立的OP大鼠体内的整体代谢特征与OR大鼠不同,具体包括:交感神经系统活性、能量代谢、脂肪酸代谢、氨基酸代谢以及肠道菌群结构等;OP和OR两种表型的转录组学比较也揭示了部分参与脂质代谢、酮体生成、血压调节和脂肪细胞分化等调控过程的基因存在差异性表达。两种组学研究手段的结合为系统地阐释肥胖个体的代谢特征及其发生机制提供了更加全面的信息,也为不同组学在复杂性疾病机制的整合研究提供了有益的参考和方法学。
Obesity is the result of energy imbalance within an organism, that is, energy intake exceeds energy expenditure, characterized with excessive accumulation of fat mass or the higher proportion of adipose tissue to body weight. During the past decades, a large number of researches have been focused on the genetic etiology and the pathological basis of environmental factors of obesity. Obesity-prone (OP) and obesity-resistant (OR) phenomena are two body weight phenotypes among animals within the same strain which are fed with identical diet. The OP and OR phenotypes are interactive results of both genetic and environmental factors. As a result, the comprehensive study on OP and OR rats would facilitate the elucidation of mechanism of obesity, and the obese-related metabolic disorders. Currently, there is no report on comparison of metabolic and transcript profiles between OP and OR rats with metabonomic and transcriptomic approaches. Therefore, we intend to compare the metabolic and transcript profiles between OP and OR rats with the approaches of metabonomics, transcriptomics and molecular biology in this study. The main results are as following:
     ⑴Pharmaco-metabonomic study on different responses to high fat diet feeding in rats We have detected characterized urinary metabolic profiles of OP and OR rats before high fat diet feeding. These differences between OP and OR rats included structure of gut microflora and energy metabolism, which were relative with body weight gain after high fat diet feeding. Additionally, we also validated the pharmaco-metabonomic concept in streptozotocin (STZ)-induced diabete model, which revealed that the predose unrinary metabolic profile was predictive for the increasing extent of postdose blood glucose.
     ⑵The comparisons of biochemistry between OP and OR rats The differences between OP and OR rats included not only body weight, but lipids metabolism and insulin sensitivity as well, characterized with insulin resistance, increasing in serum free fatty acids and ketone body, and hepatic TC and TG in OP rats. However, no significant differences were observed in serum TG, TC, LDL, HDL and fasting glucose between OP and OR rats.
     ⑶Comparisons of metabolites in serum, urine and liver tissue between OP and OR rats①There were significant differences in amino acids concentration between OP and OR rats,especially in liver tissue, such as high concentrations in ketogenic and glucogenic amino acids in OP rats, suggesting differences in amino acids metabolism;② The different metabolites between OP and OR rats included increasing of various saturated fatty acids and decreasing of polyunsaturated fatty acids in OP rats;③The urinary metabolites analysis indicated that different structure or metabolism of gut microflora might exist between the two phenotypes, which probably influenced the regulation of body weight gain;④The end-products of catecholamines in urine and intermediates of krebs cycle in serum in OP rats were all up-regulated, suggesting that the activity of sympatheic nervous system and energy metabolism was higher in OP rats than OR rats.
     ⑷Transcriptomic comparisons between OP and OR rats Nearly 80 differently expressed hepatic genes were found between OP and OR rats (more than 1.5 fold ratio). These genes were involved in pathways of lipids metabolism, ketone body production, enzymatic and transcriptional regulation, most of which were consistent with results of metabonomic investigation. Combined with real time RT-PCR, we found that genes such as Ephx2, Nr3c2, Igfals, Pparg, Apoa4 and Hmgcs1were up-regulated in OP rats. The differentially expressed genes and metabolites partly explained the metabolic processes to metabolic disorders among obese subjects.
     Our study discloses the relationship between pre-dose metabolic profiles and body weight increasing (or blood glucose rising) through analysis of urine samples before high fat diet feeding (or STZ injection), which provides experimental evidence for application of metabonomics in pharmacological evaluation in the future. The metabonomic investigation indicates that the global metabolic patterns between OP and OR rats are different, including sympathetic nervous system, energy metabolism, fatty acid metabolism, amino acid metabolism and gut microflora. The comparative transcript profiles between OP and OR rats reveal some differentially expressed genes involved in lipids metabolism, ketone body production, blood pressure regulation and adipoctyes differentiation processes.
     The combined strategy of metabonomics and transcriptomics provides comprehensive information of metabolic characters of obesity and corresponding mechanisms to obese-related metabolic disorders from a systematic view, e.g. gut microflora-involved body weight regulation, Ephx2 gene in catecholamines metabolism pathway, and Pparg in hepatic lipids transport. Therefore, this study provides practical reference for integration of different“omics”in research of complex diseases.
引文
1. Heini, A. F.; Weinsier, R. L., Divergent trends in obesity and fat intake patterns: the American paradox. Am J Med 1997, 102, (3), 259-64.
    2. Bradley, D. W., The epidemic of overweight and obesity: a challenge to medicine, public health and public policy. N C Med J 2006, 67, (4), 268-72.
    3. Hensrud, D. D.; Klein, S., Extreme obesity: a new medical crisis in the United States. Mayo Clin Proc 2006, 81, (10 Suppl), S5-10.
    4. Addison, C. C.; White, M. S.; Jenkins, B. W.; Young, L., Combating the epidemic of obesity and cardiovascular disease: perspectives from school-aged children. Int J Environ Res Public Health 2006, 3, (3), 268-73.
    5. Grossman, J. B., Obesity prevention in pediatrics. J Natl Med Assoc 2006, 98, (10), 1714.
    6. Sanna, E.; Soro, M. R.; Calo, C., Overweight and obesity prevalence in urban Sardinian children. Anthropol Anz 2006, 64, (3), 333-44.
    7. Anand, S. S., Obesity: the emerging cost of economic prosperity. Cmaj 2006, 175, (9), 1081.
    8. Wardle, J.; Brodersen, N. H.; Cole, T. J.; Jarvis, M. J.; Boniface, D. R., Development of adiposity in adolescence: five year longitudinal study of an ethnically and socioeconomically diverse sample of young people in Britain. Bmj 2006, 332, (7550), 1130-5.
    9. Hui, L.; Bell, A. C., Overweight and obesity in children from Shenzhen, Peoples Republic of China. Health Place 2003, 9, (4), 371-6.
    10. Cheng, T. O., Fast food and obesity in China. J Am Coll Cardiol 2003, 42, (4), 773.
    11. Cheng, T. O., Obesity in Chinese children. J R Soc Med 2004, 97, (5), 254.
    12. Salgado Junior, W.; Santos, J. S.; Sankarankutty, A. K.; Castro, E. S. O. D., Nonalcoholic fatty liver disease and obesity. Acta Cir Bras 2006, 21, 72-78.
    13. Ma, S.; Cutter, J.; Tan, C. E.; Chew, S. K.; Tai, E. S., Associations of diabetes mellitus and ethnicity with mortality in a multiethnic Asian population: data from the 1992 Singapore National Health Survey. Am J Epidemiol 2003, 158, (6), 543-52.
    14. Peterson, L. R., Obesity and insulin resistance: Effects on cardiac structure, function, and substrate metabolism. Curr Hypertens Rep 2006, 8, (6), 451-6.
    15. Forbes, G. B.; Prochaska, E.; Weitkamp, L. R., Genetic factors in abdominal obesity, a risk factor for stroke. N Engl J Med 1988, 318, (16), 1070.
    16. Lustig, R. H.; Sen, S.; Soberman, J. E.; Velasquez-Mieyer, P. A., Obesity, leptin resistance, and the effects of insulin reduction. Int J Obes Relat Metab Disord 2004, 28, (10), 1344-8.
    17. Wauters, M.; Considine, R. V.; Van Gaal, L. F., Human leptin: from an adipocyte hormone to an endocrine mediator. Eur J Endocrinol 2000, 143, (3), 293-311.
    18. Madiehe, A. M.; Schaffhauser, A. O.; Braymer, D. H.; Bray, G. A.; York, D. A., Differential expression of leptin receptor in high- and low-fat-fed Osborne-Mendel and S5B/Pl rats. Obes Res 2000, 8, (6), 467-74.
    19. Rolland, V.; Roseau, S.; Fromentin, G.; Nicolaidis, S.; Tome, D.; Even, P. C., Body weight, body composition, and energy metabolism in lean and obese Zucker rats fed soybean oil or butter. Am J Clin Nutr 2002, 75, (1), 21-30.
    20. Levin, B. E.; Triscari, J.; Sullivan, A. C., Abnormal sympatho- adrenal function and plasma catecholamines in obese Zucker rats. Pharmacol Biochem Behav 1980, 13, (1), 107-13.
    21. Hill, J. O., Understanding and addressing the epidemic of obesity: an energy balance perspective.Endocr Rev 2006, 27, (7), 750-61.
    22. Stettler, N., Environmental factors in the etiology of obesity in adolescents. Ethn Dis 2002, 12, (1), S1-41-5.
    23. Lin, S.; Thomas, T. C.; Storlien, L. H.; Huang, X. F., Development of high fat diet-induced obesity and leptin resistance in C57Bl/6J mice. Int J Obes Relat Metab Disord 2000, 24, (5), 639-46.
    24. Woods, S. C.; Seeley, R. J.; Rushing, P. A.; D'Alessio, D.; Tso, P., A controlled high-fat diet induces an obese syndrome in rats. J Nutr 2003, 133, (4), 1081-7.
    25. Lopez, I. P.; Marti, A.; Milagro, F. I.; Zulet Md Mde, L.; Moreno-Aliaga, M. J.; Martinez, J. A.; De Miguel, C., DNA microarray analysis of genes differentially expressed in diet-induced (cafeteria) obese rats. Obes Res 2003, 11, (2), 188-94.
    26. Fukuchi, S.; Hamaguchi, K.; Seike, M.; Himeno, K.; Sakata, T.; Yoshimatsu, H., Role of fatty acid composition in the development of metabolic disorders in sucrose-induced obese rats. Exp Biol Med (Maywood) 2004, 229, (6), 486-93.
    27. Jang, I.; Hwang, D.; Lee, J.; Chae, K.; Kim, Y.; Kang, T.; Kim, C.; Shin, D.; Hwang, J.; Huh, Y.; Cho, J., Physiological difference between dietary obesity-susceptible and obesity-resistant Sprague Dawley rats in response to moderate high fat diet. Exp Anim 2003, 52, (2), 99-107.
    28. Levin, B. E.; Hogan, S.; Sullivan, A. C., Initiation and perpetuation of obesity and obesity resistance in rats. Am J Physiol 1989, 256, (3 Pt 2), R766-71.
    29. Levin, B. E., Obesity-prone and -resistant rats differ in their brain [3H]paraminoclonidine binding. Brain Res 1990, 512, (1), 54-9.
    30. Levin, B. E.; Keesey, R. E., Defense of differing body weight set points in diet-induced obese and resistant rats. Am J Physiol 1998, 274, (2 Pt 2), R412-9.
    31. Otukonyong, E. E.; Dube, M. G.; Torto, R.; Kalra, P. S.; Kalra, S. P., High-fat diet-induced ultradian leptin and insulin hypersecretion are absent in obesity-resistant rats. Obes Res 2005, 13, (6), 991-9.
    32. Levin, B. E.; Dunn-Meynell, A. A., Defense of body weight against chronic caloric restriction in obesity-prone and -resistant rats. Am J Physiol Regul Integr Comp Physiol 2000, 278, (1), R231-7.
    33. Levin, B. E., Sympathetic activity, age, sucrose preference, and diet-induced obesity. Obes Res 1993, 1, (4), 281-7.
    34. Zemel, M. B.; Shi, H., Pro-opiomelanocortin (POMC) deficiency and peripheral melanocortins in obesity. Nutr Rev 2000, 58, (6), 177-80.
    35. Goodacre, R., Making sense of the metabolome using evolutionary computation: seeing the wood with the trees. J Exp Bot 2005, 56, (410), 245-54.
    36. Keun, H. C.; Ebbels, T. M.; Antti, H.; Bollard, M. E.; Beckonert, O.; Schlotterbeck, G.; Senn, H.; Niederhauser, U.; Holmes, E.; Lindon, J. C.; Nicholson, J. K., Analytical reproducibility in (1)H NMR-based metabonomic urinalysis. Chem Res Toxicol 2002, 15, (11), 1380-6.
    37. German, J. B.; Bauman, D. E.; Burrin, D. G.; Failla, M. L.; Freake, H. C.; King, J. C.; Klein, S.; Milner, J. A.; Pelto, G. H.; Rasmussen, K. M.; Zeisel, S. H., Metabolomics in the opening decade of the 21st century: building the roads to individualized health. J Nutr 2004, 134, (10), 2729-32.
    38. Taylor, J.; King, R. D.; Altmann, T.; Fiehn, O., Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics 2002, 18 Suppl 2, S241-8.
    39. Plumb, R. S.; Stumpf, C. L.; Gorenstein, M. V.; Castro-Perez, J. M.; Dear, G. J.; Anthony, M.; Sweatman, B. C.; Connor, S. C.; Haselden, J. N., Metabonomics: the use of electrospray mass spectrometry coupled to reversed-phase liquid chromatography shows potential for the screening of raturine in drug development. Rapid Commun Mass Spectrom 2002, 16, (20), 1991-6.
    40. Qiu, Y.; Su, M.; Liu, Y.; Chen, M.; Gu, J.; Zhang, J.; Jia, W., Application of ethyl chloroformate derivatization for gas chromatography-mass spectrometry based metabonomic profiling. Analytica Chimica Acta 2007, 583, 277-283.
    41. Howells, S. L.; Maxwell, R. J.; Peet, A. C.; Griffiths, J. R., An investigation of tumor 1H nuclear magnetic resonance spectra by the application of chemometric techniques. Magn Reson Med 1992, 28, (2), 214-36.
    42. Ghauri, F. Y.; Nicholson, J. K.; Sweatman, B. C.; Wood, J.; Beddell, C. R.; Lindon, J. C.; Cairns, N. J., NMR spectroscopy of human post mortem cerebrospinal fluid: distinction of Alzheimer's disease from control using pattern recognition and statistics. NMR Biomed 1993, 6, (2), 163-7.
    43. Brindle, J. T.; Antti, H.; Holmes, E.; Tranter, G.; Nicholson, J. K.; Bethell, H. W.; Clarke, S.; Schofield, P. M.; McKilligin, E.; Mosedale, D. E.; Grainger, D. J., Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat Med 2002, 8, (12), 1439-44.
    44. Yang, J.; Xu, G.; Kong, H.; Zheng, Y.; Pang, T.; Yang, Q., Artificial neural network classification based on high-performance liquid chromatography of urinary and serum nucleosides for the clinical diagnosis of cancer. J Chromatogr B Analyt Technol Biomed Life Sci 2002, 780, (1), 27-33.
    45. Zheng, Y. F.; Xu, G. W.; Liu, D. Y.; Xiong, J. H.; Zhang, P. D.; Zhang, C.; Yang, Q.; Lv, S., Study of urinary nucleosides as biological marker in cancer patients analyzed by micellar electrokinetic capillary chromatography. Electrophoresis 2002, 23, (24), 4104-9.
    46. Yang, J.; Xu, G.; Hong, Q.; Liebich, H. M.; Lutz, K.; Schmulling, R. M.; Wahl, H. G., Discrimination of Type 2 diabetic patients from healthy controls by using metabonomics method based on their serum fatty acid profiles. J Chromatogr B Analyt Technol Biomed Life Sci 2004, 813, (1-2), 53-8.
    47.刘昌孝,代谢组学在中药现代化研究中的意义.中草药2004, 35, (6), 601-605.
    48.黄玉荣,魏广力,龙红,等,钩藤多动合剂的药效作用及用代谢物组学方法研究其生化机制.中草药2005, 36, (3), 398-402.
    49. Watkins, S. M.; Reifsnyder, P. R.; Pan, H. J.; German, J. B.; Leiter, E. H., Lipid metabolome-wide effects of the PPARgamma agonist rosiglitazone. J Lipid Res 2002, 43, (11), 1809-17.
    50. Lindon, J. C.; Nicholson, J. K.; Holmes, E.; Antti, H.; Bollard, M. E.; Keun, H.; Beckonert, O.; Ebbels, T. M.; Reily, M. D.; Robertson, D.; Stevens, G. J.; Luke, P.; Breau, A. P.; Cantor, G. H.; Bible, R. H.; Niederhauser, U.; Senn, H.; Schlotterbeck, G.; Sidelmann, U. G.; Laursen, S. M.; Tymiak, A.; Car, B. D.; Lehman-McKeeman, L.; Colet, J. M.; Loukaci, A.; Thomas, C., Contemporary issues in toxicology the role of metabonomics in toxicology and its evaluation by the COMET project. Toxicol Appl Pharmacol 2003, 187, (3), 137-46.
    51. Hellmold, H.; Nilsson, C. B.; Schuppe-Koistinen, I.; Kenne, K.; Warngard, L., Identification of end points relevant to detection of potentially adverse drug reactions. Toxicol Lett 2002, 127, (1-3), 239-43.
    52. Raamsdonk, L. M.; Teusink, B.; Broadhurst, D.; Zhang, N.; Hayes, A.; Walsh, M. C.; Berden, J. A.; Brindle, K. M.; Kell, D. B.; Rowland, J. J.; Westerhoff, H. V.; van Dam, K.; Oliver, S. G., A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 2001, 19, (1), 45-50.
    53. Clayton, T. A.; Lindon, J. C.; Cloarec, O.; Antti, H.; Charuel, C.; Hanton, G.; Provost, J. P.; Le Net, J. L.; Baker, D.; Walley, R. J.; Everett, J. R.; Nicholson, J. K., Pharmaco-metabonomic phenotypingand personalized drug treatment. Nature 2006, 440, (7087), 1073-7.
    54. Ji, H.; Friedman, M. I., Fasting plasma triglyceride levels and fat oxidation predict dietary obesity in rats. Physiol Behav 2003, 78, (4-5), 767-72.
    55. Snitker, S.; Macdonald, I.; Ravussin, E.; Astrup, A., The sympathetic nervous system and obesity: role in aetiology and treatment. Obes Rev 2000, 1, (1), 5-15.
    56. van Baak, M. A., The peripheral sympathetic nervous system in human obesity. Obes Rev 2001, 2, (1), 3-14.
    57. Chang, S.; Graham, B.; Yakubu, F.; Lin, D.; Peters, J. C.; Hill, J. O., Metabolic differences between obesity-prone and obesity-resistant rats. Am J Physiol 1990, 259, (6 Pt 2), R1103-10.
    58. Qiu, Y.; Su, M.; Liu, Y.; Chen, M.; Gu, J.; Zhang, J.; Jia, W., Application of ethyl chloroformate derivatization for gas chromatography-mass spectrometry based metabonomic profiling. Anal Chim Acta 2007, 583, (2), 277-83.
    59. Heavey, P. M.; Savage, S. A.; Parrett, A.; Cecchini, C.; Edwards, C. A.; Rowland, I. R., Protein-degradation products and bacterial enzyme activities in faeces of breast-fed and formula-fed infants. Br J Nutr 2003, 89, (4), 509-15.
    60. Phipps, A. N.; Stewart, J.; Wright, B.; Wilson, I. D., Effect of diet on the urinary excretion of hippuric acid and other dietary-derived aromatics in rat. A complex interaction between diet, gut microflora and substrate specificity. Xenobiotica 1998, 28, (5), 527-37.
    61. Williams, R. E.; Eyton-Jones, H. W.; Farnworth, M. J.; Gallagher, R.; Provan, W. M., Effect of intestinal microflora on the urinary metabolic profile of rats: a (1)H-nuclear magnetic resonance spectroscopy study. Xenobiotica 2002, 32, (9), 783-94.
    62. Nicholls, A. W.; Mortishire-Smith, R. J.; Nicholson, J. K., NMR spectroscopic-based metabonomic studies of urinary metabolite variation in acclimatizing germ-free rats. Chem Res Toxicol 2003, 16, (11), 1395-404.
    63. Nicholson, J. K.; Holmes, E.; Lindon, J. C.; Wilson, I. D., The challenges of modeling mammalian biocomplexity. Nat Biotechnol 2004, 22, (10), 1268-74.
    64. Guarner, F.; Malagelada, J. R., Gut flora in health and disease. Lancet 2003, 361, (9356), 512-9.
    65. Xu, J.; Gordon, J. I., Inaugural Article: Honor thy symbionts. Proc Natl Acad Sci U S A 2003, 100, (18), 10452-9.
    66. O'Hara, A. M.; Shanahan, F., The gut flora as a forgotten organ. EMBO Rep 2006, 7, (7), 688-93.
    67. Turnbaugh, P. J.; Ley, R. E.; Mahowald, M. A.; Magrini, V.; Mardis, E. R.; Gordon, J. I., An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, (7122), 1027-31.
    68. Ley, R. E.; Turnbaugh, P. J.; Klein, S.; Gordon, J. I., Microbial ecology: human gut microbes associated with obesity. Nature 2006, 444, (7122), 1022-3.
    69. Yadav, H.; Jain, S.; Sinha, P. R., Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition 2007, 23, (1), 62-8.
    70. Matsuzaki, T.; Yamazaki, R.; Hashimoto, S.; Yokokura, T., Antidiabetic effects of an oral administration of Lactobacillus casei in a non-insulin-dependent diabetes mellitus (NIDDM) model using KK-Ay mice. Endocr J 1997, 44, (3), 357-65.
    71. Dumas, M. E.; Barton, R. H.; Toye, A.; Cloarec, O.; Blancher, C.; Rothwell, A.; Fearnside, J.; Tatoud, R.; Blanc, V.; Lindon, J. C.; Mitchell, S. C.; Holmes, E.; McCarthy, M. I.; Scott, J.; Gauguier, D.; Nicholson, J. K., Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A 2006, 103, (33), 12511-6.
    72. Li, F.; Lu, X.; Liu, H.; Liu, M.; Xiong, Z., A pharmaco-metabonomic study on the therapeutic basis and metabolic effects of Epimedium brevicornum Maxim. on hydrocortisone-induced rat using UPLC-MS. Biomed Chromatogr 2007, 21, (4), 397-405.
    73.杨叶红,庄鹓,方京冲,朱禧星,胡仁明,空腹血糖受损患者胰岛素抵抗状况的再评价.中国临床医学2007, 14, (2), 240-41.
    74. West, D. B.; Boozer, C. N.; Moody, D. L.; Atkinson, R. L., Dietary obesity in nine inbred mouse strains. Am J Physiol 1992, 262, (6 Pt 2), R1025-32.
    75. Buettner, R.; Parhofer, K. G.; Woenckhaus, M.; Wrede, C. E.; Kunz-Schughart, L. A.; Scholmerich, J.; Bollheimer, L. C., Defining high-fat-diet rat models: metabolic and molecular effects of different fat types. J Mol Endocrinol 2006, 36, (3), 485-501.
    76. Bruce, R.; Godsland, I.; Walton, C.; Crook, D.; Wynn, V., Associations between insulin sensitivity, and free fatty acid and triglyceride metabolism independent of uncomplicated obesity. Metabolism 1994, 43, (10), 1275-81.
    77. Reinehr, T.; Kiess, W.; Andler, W., Insulin sensitivity indices of glucose and free fatty acid metabolism in obese children and adolescents in relation to serum lipids. Metabolism 2005, 54, (3), 397-402.
    78. Kadowaki, T.; Yamauchi, T.; Kubota, N.; Hara, K.; Ueki, K.; Tobe, K., Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 2006, 116, (7), 1784-92.
    79. Weyer, C.; Funahashi, T.; Tanaka, S.; Hotta, K.; Matsuzawa, Y.; Pratley, R. E.; Tataranni, P. A., Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001, 86, (5), 1930-5.
    80. Hotta, K.; Funahashi, T.; Bodkin, N. L.; Ortmeyer, H. K.; Arita, Y.; Hansen, B. C.; Matsuzawa, Y., Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes 2001, 50, (5), 1126-33.
    81. Serkova, N. J.; Jackman, M.; Brown, J. L.; Liu, T.; Hirose, R.; Roberts, J. P.; Maher, J. J.; Niemann, C. U., Metabolic profiling of livers and blood from obese Zucker rats. J Hepatol 2006, 44, (5), 956-62.
    82. Robosky, L. C.; Wells, D. F.; Egnash, L. A.; Manning, M. L.; Reily, M. D.; Robertson, D. G., Metabonomic identification of two distinct phenotypes in Sprague-Dawley (Crl:CD(SD)) rats. Toxicol Sci 2005, 87, (1), 277-84.
    83. Williams, R. E.; Lenz, E. M.; Evans, J. A.; Wilson, I. D.; Granger, J. H.; Plumb, R. S.; Stumpf, C. L., A combined (1)H NMR and HPLC-MS-based metabonomic study of urine from obese (fa/fa) Zucker and normal Wistar-derived rats. J Pharm Biomed Anal 2005, 38, (3), 465-71.
    84. Li, H.; Ni, Y.; Su, M.; Qiu, Y.; Zhou, M.; Qiu, M.; Zhao, A.; Zhao, L.; Jia, W., Pharmacometabonomic phenotyping reveals different responses to xenobiotic intervention in rats. J Proteome Res 2007, 6, (4), 1364-70.
    85. Yang, J.; Zhao, X.; Liu, X.; Wang, C.; Gao, P.; Wang, J.; Li, L.; Gu, J.; Yang, S.; Xu, G., High performance liquid chromatography-mass spectrometry for metabonomics: potential biomarkers for acute deterioration of liver function in chronic hepatitis B. J Proteome Res 2006, 5, (3), 554-61.
    86. Molfino, A.; Rossi Fanelli, F.; Laviano, A., Sympathetic nervous system activity may link hyperphagia and fat deposition in human obesity. Am J Physiol Endocrinol Metab 2007, 293, (4), E1129.
    87. Daly, P. A.; Young, J. B.; Landsberg, L., Effect of cold exposure and nutrient intake on sympathetic nervous system activity in rat kidney. Am J Physiol 1992, 263, (4 Pt 2), F586-93.
    88. Knehans, A. W.; Romsos, D. R., Effects of diet on norepinephrine turnover in obese (ob/ob) mice. J Nutr 1984, 114, (11), 2080-8.
    89. Schwartz, J. H.; Young, J. B.; Landsberg, L., Effect of dietary fat on sympathetic nervous system activity in the rat. J Clin Invest 1983, 72, (1), 361-70.
    90. Young, J. B.; Macdonald, I. A., Sympathoadrenal activity in human obesity: heterogeneity of findings since 1980. Int J Obes Relat Metab Disord 1992, 16, (12), 959-67.
    91. Vander Tuig, J. G.; Romsos, D. R., Effects of dietary carbohydrate, fat, and protein on norepinephrine turnover in rats. Metabolism 1984, 33, (1), 26-33.
    92. Hamilton, J. M.; Mason, P. W.; McElroy, J. F.; Wade, G. N., Dissociation of sympathetic and thermogenic activity in brown fat of Syrian hamsters. Am J Physiol 1986, 250, (3 Pt 2), R389-95.
    93. Sakaguchi, T.; Arase, K.; Fisler, J. S.; Bray, G. A., Effect of a high-fat diet on firing rate of sympathetic nerves innervating brown adipose tissue in anesthetized rats. Physiol Behav 1989, 45, (6), 1177-82.
    94. Huang, Z. H.; Wang, J.; Gage, D. A.; Watson, J. T.; Sweeley, C. C.; Husek, P., Characterization of N-ethoxycarbonyl ethyl esters of amino acids by mass spectrometry. J Chromatogr 1993, 635, (2), 271-81.
    95. Eisenhofer, G.; Kopin, I. J.; Goldstein, D. S., Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 2004, 56, (3), 331-49.
    96. Young, J. B.; Daly, P. A.; Uemura, K.; Chaouloff, F., Effects of chronic lard feeding on sympathetic nervous system activity in the rat. Am J Physiol 1994, 267, (5 Pt 2), R1320-8.
    97. Egan, B. M., Neurohumoral, hemodynamic and microvascular changes as mechanisms of insulin resistance in hypertension: a provocative but partial picture. Int J Obes 1991, 15 Suppl 2, 133-9.
    98. Mancia, G.; Bousquet, P.; Elghozi, J. L.; Esler, M.; Grassi, G.; Julius, S.; Reid, J.; Van Zwieten, P. A., The sympathetic nervous system and the metabolic syndrome. J Hypertens 2007, 25, (5), 909-20.
    99. Jia, W.; Li, H.; Zhao, L.; Nicholson, J. K., Gut microbiota: a potential new territory for drug targeting. Nat Rev Drug Discov 2008, 7, (2), 123-9.
    100. Eckburg, P. B.; Bik, E. M.; Bernstein, C. N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S. R.; Nelson, K. E.; Relman, D. A., Diversity of the human intestinal microbial flora. Science 2005, 308, (5728), 1635-8.
    101. Xu, J.; Bjursell, M. K.; Himrod, J.; Deng, S.; Carmichael, L. K.; Chiang, H. C.; Hooper, L. V.; Gordon, J. I., A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 2003, 299, (5615), 2074-6.
    102. Backhed, F.; Ding, H.; Wang, T.; Hooper, L. V.; Koh, G. Y.; Nagy, A.; Semenkovich, C. F.; Gordon, J. I., The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 2004, 101, (44), 15718-23.
    103.薛长勇,郑子新,张荣欣,张效良,李溪雅,井上修二,下丘脑腹内侧核损伤性肥胖大鼠氨基酸代谢的变化.营养学报2000, 22, (2), 127-30.
    104. Pico, C.; Pons, A.; Palou, A., Blood amino acid compartmentation in obese rats is specifically altered in the iliac vein. Biochem Mol Biol Int 1994, 33, (3), 421-7.
    105. Proenza, A., Roca, P, Crespi, C, Llado I, Palou A., Blood amino acid compartmentation in men and women with different degrees of obesity. J nutr. Biochem 1998, 9, 697-704.
    106. El Hafidi, M.; Perez, I.; Zamora, J.; Soto, V.; Carvajal-Sandoval, G.; Banos, G., Glycine intakedecreases plasma free fatty acids, adipose cell size, and blood pressure in sucrose-fed rats. Am J Physiol Regul Integr Comp Physiol 2004, 287, (6), R1387-93.
    107.马慧娟,宋光耀,游离脂肪酸与胰岛素抵抗.国外医学.老年医学分册2002, 23, (3), 122-125.
    108. Hotamisligil, G. S.; Johnson, R. S.; Distel, R. J.; Ellis, R.; Papaioannou, V. E.; Spiegelman, B. M., Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science 1996, 274, (5291), 1377-9.
    109. Storlien, L. H.; Baur, L. A.; Kriketos, A. D.; Pan, D. A.; Cooney, G. J.; Jenkins, A. B.; Calvert, G. D.; Campbell, L. V., Dietary fats and insulin action. Diabetologia 1996, 39, (6), 621-31.
    110. Vessby, B.; Aro, A.; Skarfors, E.; Berglund, L.; Salminen, I.; Lithell, H., The risk to develop NIDDM is related to the fatty acid composition of the serum cholesterol esters. Diabetes 1994, 43, (11), 1353-7.
    111. Schmid, G. M.; Converset, V.; Walter, N.; Sennitt, M. V.; Leung, K. Y.; Byers, H.; Ward, M.; Hochstrasser, D. F.; Cawthorne, M. A.; Sanchez, J. C., Effect of high-fat diet on the expression of proteins in muscle, adipose tissues, and liver of C57BL/6 mice. Proteomics 2004, 4, (8), 2270-82.
    112.高春芳,肥胖相关肝病的常见生物化学改变.中华肝脏病杂志2004, 12, (7), 433-434.
    113. Chen, J. J.; Wu, R.; Yang, P. C.; Huang, J. Y.; Sher, Y. P.; Han, M. H.; Kao, W. C.; Lee, P. J.; Chiu, T. F.; Chang, F.; Chu, Y. W.; Wu, C. W.; Peck, K., Profiling expression patterns and isolating differentially expressed genes by cDNA microarray system with colorimetry detection. Genomics 1998, 51, (3), 313-24.
    114. Kim, S.; Sohn, I.; Ahn, J. I.; Lee, K. H.; Lee, Y. S.; Lee, Y. S., Hepatic gene expression profiles in a long-term high-fat diet-induced obesity mouse model. Gene 2004, 340, (1), 99-109.
    115. Vidal-Puig, A.; Jimenez-Linan, M.; Lowell, B. B.; Hamann, A.; Hu, E.; Spiegelman, B.; Flier, J. S.; Moller, D. E., Regulation of PPAR gamma gene expression by nutrition and obesity in rodents. J Clin Invest 1996, 97, (11), 2553-61.
    116. Rahimian, R.; Masih-Khan, E.; Lo, M.; van Breemen, C.; McManus, B. M.; Dube, G. P., Hepatic over-expression of peroxisome proliferator activated receptor gamma2 in the ob/ob mouse model of non-insulin dependent diabetes mellitus. Mol Cell Biochem 2001, 224, (1-2), 29-37.
    117. Bedoucha, M.; Atzpodien, E.; Boelsterli, U. A., Diabetic KKAy mice exhibit increased hepatic PPARgamma1 gene expression and develop hepatic steatosis upon chronic treatment with antidiabetic thiazolidinediones. J Hepatol 2001, 35, (1), 17-23.
    118. Memon, R. A.; Tecott, L. H.; Nonogaki, K.; Beigneux, A.; Moser, A. H.; Grunfeld, C.; Feingold, K. R., Up-regulation of peroxisome proliferator-activated receptors (PPAR-alpha) and PPAR-gamma messenger ribonucleic acid expression in the liver in murine obesity: troglitazone induces expression of PPAR-gamma-responsive adipose tissue-specific genes in the liver of obese diabetic mice. Endocrinology 2000, 141, (11), 4021-31.
    119. Gavrilova, O.; Haluzik, M.; Matsusue, K.; Cutson, J. J.; Johnson, L.; Dietz, K. R.; Nicol, C. J.; Vinson, C.; Gonzalez, F. J.; Reitman, M. L., Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J Biol Chem 2003, 278, (36), 34268-76.
    120. Serougne, C.; Felgines, C.; Ferezou, J.; Hajri, T.; Bertin, C.; Mazur, A., Hypercholesterolemia induced by cholesterol- or cystine-enriched diets is characterized by different plasma lipoprotein and apolipoprotein concentrations in rats. J Nutr 1995, 125, (1), 35-41.
    121. Barter, P. J.; Rajaram, O. V.; Chang, L. B.; Rye, K. A.; Gambert, P.; Lagrost, L.; Ehnholm, C.;Fidge, N. H., Isolation of a high-density-lipoprotein conversion factor from human plasma. A possible role of apolipoprotein A-IV as its activator. Biochem J 1988, 254, (1), 179-84.
    122. Guyard-Dangremont, V.; Lagrost, L.; Gambert, P., Comparative effects of purified apolipoproteins A-I, A-II, and A-IV on cholesteryl ester transfer protein activity. J Lipid Res 1994, 35, (6), 982-92.
    123. Gauthier, M. S.; Favier, R.; Lavoie, J. M., Time course of the development of non-alcoholic hepatic steatosis in response to high-fat diet-induced obesity in rats. Br J Nutr 2006, 95, (2), 273-81.
    124. Luria, A.; Weldon, S. M.; Kabcenell, A. K.; Ingraham, R. H.; Matera, D.; Jiang, H.; Gill, R.; Morisseau, C.; Newman, J. W.; Hammock, B. D., Compensatory mechanism for homeostatic blood pressure regulation in Ephx2 gene-disrupted mice. J Biol Chem 2007, 282, (5), 2891-8.
    125. Morisseau, C.; Hammock, B. D., Epoxide hydrolases: mechanisms, inhibitor designs, and biological roles. Annu Rev Pharmacol Toxicol 2005, 45, 311-33.
    126. Node, K.; Huo, Y.; Ruan, X.; Yang, B.; Spiecker, M.; Ley, K.; Zeldin, D. C.; Liao, J. K., Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science 1999, 285, (5431), 1276-9.
    127. Wang, Y.; Wei, X.; Xiao, X.; Hui, R.; Card, J. W.; Carey, M. A.; Wang, D. W.; Zeldin, D. C., Arachidonic acid epoxygenase metabolites stimulate endothelial cell growth and angiogenesis via mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways. J Pharmacol Exp Ther 2005, 314, (2), 522-32.
    128. Sinal, C. J.; Miyata, M.; Tohkin, M.; Nagata, K.; Bend, J. R.; Gonzalez, F. J., Targeted disruption of soluble epoxide hydrolase reveals a role in blood pressure regulation. J Biol Chem 2000, 275, (51), 40504-10.
    129. Funder, J. W., Mineralocorticoid receptors: distribution and activation. Heart Fail Rev 2005, 10, (1), 15-22.
    130. Caprio, M.; Feve, B.; Claes, A.; Viengchareun, S.; Lombes, M.; Zennaro, M. C., Pivotal role of the mineralocorticoid receptor in corticosteroid-induced adipogenesis. Faseb J 2007, 21, (9), 2185-94.
    131. Baxter, R. C.; Martin, J. L.; Beniac, V. A., High molecular weight insulin-like growth factor binding protein complex. Purification and properties of the acid-labile subunit from human serum. J Biol Chem 1989, 264, (20), 11843-8.
    132. Hwa, V.; Haeusler, G.; Pratt, K. L.; Little, B. M.; Frisch, H.; Koller, D.; Rosenfeld, R. G., Total absence of functional acid labile subunit, resulting in severe insulin-like growth factor deficiency and moderate growth failure. J Clin Endocrinol Metab 2006, 91, (5), 1826-31.
    133. Fischer, F.; Schulte, H.; Mohan, S.; Tataru, M. C.; Kohler, E.; Assmann, G.; von Eckardstein, A., Associations of insulin-like growth factors, insulin-like growth factor binding proteins and acid-labile subunit with coronary heart disease. Clin Endocrinol (Oxf) 2004, 61, (5), 595-602.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700