鼻咽癌血清代谢组学初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼻咽癌(nasopharyngeal carcinoma,NPC)是一种具有罕见的地理和种族分布特征的恶性肿瘤。在东南亚和我国南方地区(广东、广西、湖南、福建、江西)常见,在中国南方,其发病率和死亡率均居世界首位,严重危害国人的生命和健康。虽然目前的研究结果认为NPC的发病与EB病毒感染、遗传易感性和接触化学致癌物有关,但NPC的发病机制仍然不明。发现新的有效的NPC分子标志物将有助于NPC的诊断、临床治疗、预后判断及其发病机制的研究,寻找新的有效的NPC诊断方法将有助于NPC的早期诊断。
     以高通量为特征的组学技术具有发现肿瘤相关分子的潜能。如cDNA芯片技术分析NPC的基因表达谱,已发现一些可能与NPC发病相关的异常表达基因;比较蛋白质组学技术分析NPC细胞/组织的蛋白质表达谱,已发现一些可能与NPC发生发展及转移有关的差异表达蛋白质。代谢组学是继基因组学、蛋白质组学等之后的一个新兴学科,被定义为生物系统对病理生理刺激或遗传修饰等发生的动态的、多参数的反应,其研究的是代谢产物的完整模式,根据细胞、组织、器官或有机体的发育、生理或病理状态的不同而有质和量的差异。代谢组学可被用于阐明来源于基因组和蛋白质组改变的下游与疾病相关的生物化学反应的改变。在药物的药效和毒性评价、药物作用机理研究、营养干预、疾病诊断、转基因食品的开发、植物表型分型、中药指纹识别等方面,代谢组学技术展现了广阔的应用前景。同样,它在识别与肿瘤发生发展相关的小分子物质、发现肿瘤分子标志物、肿瘤代谢特征和治疗靶标方面具有独特的优势。
     当前,代谢组学研究中存在两个难点同时也是热点问题:一是对细胞、组织或体液中所有的代谢产物进行定性、定量分析;二是对细胞、组织或体液分析得到的代谢产物复杂数据体系中的有用信息进行提取。本研究利用色谱-质谱联用技术,结合能有效提取和利用复杂二维数据系统中有用信息的化学计量学多元校正、多元分辨和模式识别方法,达到有效地提取血清代谢物指纹中有用信息的目的。
     本研究采用气相色谱-质谱联用技术(Gas Chromatography-MassSpectrometry,GC-MS)对102例NPC初诊患者和107例健康对照血清进行分析,建立了NPC与健康对照血清的代谢指纹图谱;将代谢指纹图谱(GC-MS分析得到的总离子流图)导入NIST107质谱数据库,进行检索,共鉴定出47种内源性化合物。在此基础上,采用分类特征变量法寻找到潜在的代谢标志物4个,分别为:乳酸(lactic acid),赖氨酸(L-Lysine),甘氨酸(glycine)及葡糖醛酸内酯(glucuronolactone);并采用化学计量学模式识别的方法(PCA、PLS-DA、ULDA),建立了针对NPC和健康对照的判别模型,并计算其判别能力,十折交互校验法对所得模型的预测能力进行评估,结果证实所得模型具有良好的判别与预测能力;双盲实验对另30例NPC初诊患者和30例健康对照血清代谢指纹图谱的ULDA判别模型的判别能力进行验证,结果证实了判别模型的可靠性与稳定性。研究结果为寻找NPC分子标志物、NPC代谢相关通路研究及NPC的诊断提供了新的思路与方法。
Nasopharyngeal carcinoma (NPC) is a malignancy with an unusual geographical and ethnic distribution across the world. It is prevalent in southern China and Southeast Asia, particularly in the Cantonese population, where its incidence has remained high for decades. And it remains a serious healthcare problem in these regions nowadays. Recent studies have demonstrated that the etiology of NPC is complex, involving multiple factors including genetic susceptibility, infection with the Epstein-Barr virus (EBV) and exposure to chemical carcinogens. Although numerous efforts have been made to reveal the molecular mechanism of NPC carcinogenesis and development, it remains poorly understood. Finding effective biomarkers for NPC will benefit its diagnosis, treatment effect, prognosis judgement and mechanism study.
     High-throughput technologies such as microarrays and proteomics have the potential to find important molecules previously unidentified in NPC. Analysis for gene expression profiles of NPC have been reported using a cDNA array, and revealed that certain genes with aberrant expressions possibly contributed to pathogenesis of NPC. Comparative proteomics has introduced a new approach to cancer research, analysis of NPC cell/tissue has identified differential expression proteins associated with the development and progression of this disease. Metabonomics, defined as the "the quantitative measurement of the dynamic multiparametric response of a living system to pathophysiological stimuli or genetic modification", is a new discipline arise following genomics, transcriptomics and proteomics. Differences at metabolites level can be used to elucidate changes that occur downstream from genomic and proteomic alterations associated with disease-related biochemical reactions. Because these processes precede changes in cell morphology that predict disease, metabolomics approaches may permit early diagnosis or real-time monitoring of the effects of a disease or therapeutic intervention, and providing new opportunities to uncover biomarkers and therapeutic targets for NPC as well as reveal the molecular mechanism underlying this disease.
     Metabolomics has been successfully applied to many fields such as toxicological screening, nutrition intervention, plant genotype discrimination, disease diagnosis, ect. However, extracting useful information from complex data system of all metabolites, is one of the difficult points existing in metabolomics research. To solve this problem, combination of hyphenated chromatographic instruments and effective chemometric approaches were adopted.
     In this study, we adopted Gas Chromatography-Mass Spectrometry (GC-MS) technology to analyze the metabolites profiling of sera from 102 cases of NPC at first diagnosis and 107 cases of normal healthy people; acquired the spectrum data of each case, and established the metabolites profiling of NPC and healthy control separately. The spectrum data (totoal ion current, TIC) were input and searched in the NIST107 database, 47 endogenous compounds were identified. And then, Classified Characteristic Variable Method was adopted to find potential biomarkers, results in 4 biomarkers, they are lactic acid, L-Lysine, glycine and glucuronolactone. At the same time, model recognition methods (PCA, PLS-DA and ULDA) were adopted to build recognition models for discriminating between NPC and healthy controls, 10-fold cross validation analysis evaluated the prediction ability of ULDA model. Results turn out to be perfect. Double blind experiment validated the reliability and stability of recognition model ULDA.
     These results provide a new way for NPC diagnosis and a new idea for finding biomarkers, NPC-associated metabolomic pathways.
引文
[1]Vokes E.E.,Liebowitz D.N.,Weichselbaum R.R.Nasopharyngeal carcinoma.Lancet.1997;350(9084):1087-1091.
    [2]Yu M.C.,Yuan J.M.Epidemiology of nasopharyngeal careinoma.Semin Cancer Biol.2002;12(6):421-429.
    [3]Tao Q.,Chan A.T.Nasopharyngeal carcinoma:molecular pathogenesis and therapeutic developments.Experr Rev Mol Med.2007;9(12):1-24.
    [4]Devi B.C.,Pisani P.,Tang T.S.,et al.High incidence of nasopharyngeal careinoma in native people of Sarawak,Borneo Island.Cancer Epidemiol Biomarkers Prev.2004;13(3):482-486.
    [5]Marks J.E.,Phillips J.L.,Menck H.R.The National Cancer Data Base report on the relationship of race and national origin to the histology of nasopharyngeal carcinoma.Cancer.1998;83(3):582-588.
    [6]Wei W.I.,Sham J.S.Nasopharyngeal Carcinoma.Lancet.2005;365(9476):2041-2054.
    [7]Lo K.W.,To K.F.,Huang D.P.Focus on nasopharyngeal carcinoma.Cancer Cell.2004;5(5):423-428.
    [8]Young L.S.,Rickinson A.B.Epstein-Barr virus:40 years on.Nat Rev Cancer.2004;4(10):757-768.
    [9]Jia W.H.,Feng B.J.,Xu Z.L.,et al.Familial risk and clustering of nasopharyngeal careinoma in Guangdong,China.Cancer.2004;101(2):363-369.
    [10]Zeng Y.X.,Jia W.H.Familial nasopharyngeal careinoma.Semin Cancer Biol.2002;12(6):443-450.
    [11]Mirvish S.S.Role of N-nitroso tompounds(NOC)and N-nitrosation in etiology of gastric,esophageal,nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC.Cancer Lett.1995;93(1):17-48.
    [12]Huang D.P.,Ho J.H.,Saw D.,et al.Carcinoma of the nasal and paranasal regions in rats fed Cantonese salted marine fish.IARC Sci Publ.1978(20):315-328.
    [13]Yu M.C.,Huang T.B.,Henderson B.E.Diet and nasopharyngeal careinoma:a ease-control study in Guangzhou,China.Int J Cancer.1989;43(6):1077-1082.
    [14]Raab-Traub N.Epstein-Barr virus in the pathogenesis of NPC.Semin Cancer Biol.2002;12(6):431-441.
    [15]Tao Q.,Young L.S.,Woodman C.B.,et al.Epstein-Barr virus(EBV)and its associated human cancers--genetics,epigenetics,pathobiology and novel therapeutics.Front Biosci.2006:11:2672-2713.
    [16]Hui A.B.,Lo K.W.,Leung S.F.,et al.Detection of recurrent chromosomal gains and losses in primary nasopharyngeal careinoma by cornparative genomic hybridisation.Int J Cancer.1999;82(4):498-503.
    [17]Lo K.W.,Teo P.M.,Hui A.B.,et al.High resolution allelotype of microdissected primary nasopharyngeal carcinoma.Cancer Res.2000;60(13):3348-3353.
    [18]Lo K.W.,Cheung S.T.,Leung S.F,et al.Hypermethylation of the p16 gene in nasopharyngeal carcinoma.Cancer Res.1996;56(12):2721-2725.
    [19]Lo K.W.,Kwong J.,Hui A.B.,et al.High frequency of promoter hypermethylation of RASSF1A in nasopharyngeal carcinoma.Cancer Res.2001;61(10):3877-3881.
    [20]Kwong J.,Lo K.W.,To K.F.,et al.Promoter hypermethylation of multiple genes in nasopharyngeal carcinoma.Clin Cancer Res.2002;8(1):131-137.
    [21]Lo K.W.,Huang D.P.Genetic and epigenetic changes in nasopharyngeal carcinoma.Semin Cancer Biol.2002;12(6):451-462.
    [22]Hui A.B.,Lo K.W.,Kwong J.,et al.Epigenelic inactivation of TSLC1 gene in nasopharyngeal carcinoma.Mol Carcinog.2003;38(4):170-178.
    [23]Lu Q.L.,Elia G.,Lucas S.,et al.Bcl-2 proto-oncogene expression in Epstein-Barr-virus-associated nasopharyngeal carcinoma.Int J Cancer.1993;53(1):29-35.
    [24]Lai J.P.,Tong C.L.,Hong C.,et al.Association between high initial tissue levels of cyclin d1 and recurrence of nasopharyngeal carcinoma.Laryngoscope.2002;112(2):402-408.
    [25]Qian C.N.,Guo X.,Cao B.,et al.Met protein expression level correlates with survival in patients with late-stage nasopharyngeal carcinoma.Cancer Res.2002;62(2):589-596.
    [26]Porter M.J.,Field J.K.,Leung S.F.,et al.The detection of the c-myc and ras oncogens in nasopharyngeal carcinoma by immunohistochemistry.Acta Otolmyngol.1994;114(1):105-109.
    [27]Crook T.,Nicholls J.M.,Brooks L.,et al.High level expression of deltaN-p63:a mechanism for the inactivation of p53 in undifferentiated nasopharyngeal carcinoma (NPC)? Oncogene.2000;19(30):3439-3444.
    [28]Jayasurya A.,Bay B.H.,Yap W.M.,et al.Correlation of metallothionein expression with apoptosis in nasopharyngeal carcinoma.Br J Cancer.2000;82(6):1198-1203.
    [29]Wang X.,Xu K.,Ling M.T.,et al.Evidence of increased Id-1 expression and its role in cell proliferation in nasopharyngeal carcinoma cells.Mol Carcinog.2002;35(1):42-49.
    [30]Thornburg N.J.,Pathmanathan R.,Raab-Traub N.Activation of nuclear factor-kappaB p50 homodimer/Bcl-3 complexes in nasopharyngeal carcinoma.Cancer Res.2003;63(23):8293-8301.
    [31]Hui E.P,Chan A.T.,Pezzella F.,et al.Coexpression of hypoxia-inducible factors lalpha and 2alpha,carbonic anhydrase IX,and vascular endomelial growth factor in nasopharyngeal carcinoma and relationship to survival.Clin Cancer Res.2002;8(8):2595-2604.
    [32]Lu J.,Chua H.H.,Chen S.Y,et al.Regulation of matrix metalloproteinase-1 by Epstein-Barr virus proteins.Cancer Res.2003;63(1):256-262.
    [33]冯雪萍,陈主初,肖志强等。NM23.H1、DJ1和TIM1在低分化鼻咽鳞癌组织和CNE2细胞株中共同表达[J]。生物化学与生物物理进展,2005,32(4),338-346.
    [34]Cheng A.L.,Huang W.G.,Chen Z.C.,et al.Identification of novel nasopharyngeal carcinoma biomarkers by laser ca]pture microdissection and proteomic analysis.Clin Cancer Res.2008;14(2):435-445.
    [35]Yan G.,Li L.,Tao Y,et al.Identification of novel phosphoproteins in signaling pathways triggered by latent membrane protein 1 using functional proteomics technology.Pmteomics.2006;6(6):1810-1821.
    [36]胡巍,肖志强,陈主初等。NPC细胞中p53相互作用蛋白质的分离和鉴定[J]。生物化学与生物物理进展,2004,31(7),628-634
    [37]Sun Y.,Yi H.,Zhang P.F.,et al.Identification of differential proteins in nasopharyngeal carcinoma cells with p53 silence by proteome analysis.FEBS Lett.2007;581(1):131-139.
    [38]Lo A.K.,Huang D.P.,Lo K.W.,et al.Phenotypic alterations induced by the Hong Kong-prevalent Epstein-Barr virus-encoded LMP 1 variant(2117-LMP1) in nasopharyngeal epithelial cells.Int J CanceL 2004;109(6):919-925.
    [39]Wei M.X.,de Turenne-Tessier M.,Decaussin G,et al.Establishment of a monkey kidney epithelial cell line with the BARF 1 open reading frame from Epstein-Barr virus.Oncogene.1997;14(25):3073-3081.
    [40]Chan A.S.,To K.F.,Lo K.W.,et al.High frequency of chromosome 3p deletion in histologically normal nasopharyngeal epithelia from southern Chinese.Cancer Res.2000;60(19):5365-5370.
    [41]Chan A.S.,To K.F.,Lo K.W.,et al.Frequent chromosome 9p losses in histologically normal nasopharyngeal epithelia from southem Chinese.Int J Cancer.2002;102(3):300-303.
    [42]Jones HB.On a new substance occurring in the urine of a patient with mollities ossium.Phil Trans R Soc Lond,1848,138:55-62.
    [43]潘建基,林色南,宗井凤。鼻咽癌相关肿瘤标记物研究现状[J]。中国癌症杂志,2008,18(3),655-660
    [44]Zeng Y.Seroepidemiological studies on nasopharyngeal carcinoma in China.Adv Cancer Res.1985:44:121-138.
    [45]Chien Y.C.,Chen J.Y,Liu M.Y,et al.Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in TaiwaJlese men.N Engl J Med.2001;345(26):1877-1882.
    [46]Lo Y.M.,Chan L.Y,Chan A.T.,et al.Quantitative and temporal correlation between circulating cell-free Epstein-Bart virus DNA and tumor recurrence in nasopharyngeal carcinoma.Cancer Res.1999;59(21):5452-5455.
    [47]Lo Y.M.,Chan L.Y,Lo K.W.,et al.Quantitative analysis of cell-free Epstein-Bart virus DNA in plasma of patients with nasopharyngeal carcinoma.Cancer Res.1999;59(6):1188-1191.
    [48]Lo Y.M.,Chan A.T.,Chan L.Y,et al.Moleculaur prognostication of nasopharyngeal carcinoma by quantitative analysis of circulating Epstein-Bart virus DNA.Cancer Res.2000;60(24):6878-6881.
    [49]Chan A.T.,Lo YM.,Zee B.,et al.Plasma Epstein-Barr virus DNA and residual disease after radiotherapy for undifferentiated nasopharyngeal carcinoma.J Natl Cancer Inst.2002;94(21):1614-1619.
    [50]Chang J.T.,Chen L.C.,Wei S.Y,et al.Increase diagnostic efficacy by combined use of fingerprint markers in mass spectrometry--plasma peptidomes from nasopharyngeal cancer patients for example.Clin Biochem.2006;39(12):1144-1151.
    [51]Ho D.W.,Yang Z.F,Wong B.Y,et al.Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry serum prptein profiling to identify nasopharyngeal carcinoma.Cancer.2006;107(1):99-107.
    [52] Nicholson J.K., Lindon J.C., Holmes E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica.1999;29(11):1181-1189.
    [53] Fiehn O., Kopka J., Dormann P., et al. Metabolite profiling for plant functional genomics. Nat Biotechnol. 2000;18(11):1157-1161.
    [54] Nicholson J.K., Wilson I.D. Opinion: understanding 'global' systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov.2003;2(8):668-676.
    [55] Ideker T., Thorsson V, Ranish J.A., et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science.2001;292(5518):929-934.
    [56] Taylor J., King R.D., Altmann T., et al. Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics.2002;18 Suppl 2:S241-248.
    [57] Fiehn O. Metabolomics-the link between genotypes and phenotypes. Plant Mol Biol.2002;48(1-2):155-171.
    [58] Shulaev V. Metabolomics technology and bioinformatics. Brief Bioinform.2006;7(2):128-139.
    [59] Fiehn O., Kopka J., Trethewey R.N., et al. Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal Chem. 2000;72(15):3573-3580.
    [60] Florian C.L., Preece N.E., Bhakoo K.K., et al. Cell type-specific fingerprinting of meningioma and meningeal cells by proton nuclear magnetic resonance spectroscopy.Cancer Res. 1995;55(2):420-427.
    [61] Jarvis R.M., Goodacre R. Genetic algorithm optimization for pre-processing and variable selection of spectroscopic data. Bioinformatics. 2005;21(7):860-868.
    [62] Jonsson P., Gullberg J., Nordstrom A., et al. A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS. Anal Chem.2004;76(6):1738-1745.
    [63] Kell D.B. Metabolomics and machine learning: explanatory analysis of complex metabolome data using genetic programming to produce simple, robust rules. Mol Biol Rep. 2002;29(1-2):237-241.
    [64] Raamsdonk L.M., Teusink B., Broadhurst D., et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations.Nat Biotechnol.2001;19(1):45-50.
    [65]Scholz M.,Gatzek S.,Sterling A.,et al.Metabolite fingerprinting:detecting biological features by independent component analysis.Bioinformatics.2004;20(15):2447-2454.
    [66]卢红梅,梁逸曾。代谢组学分析技术及数据处理技术[J]。分析测试学报,2008,27(3),325-332
    [67]许国旺,路鑫,杨胜利。代谢组学研究进展[J]。中国医学科学院学报,2007,29(6):701-711
    [68]Robertson D.G,Reily M.D.,Baker J.D.Metabonomics in pharmaceutical discovery and development.J Proteome Res.2007;6(2):526-539.
    [69]Keun H.C.Metabonomic modeling of drug toxicity.Pharmacol Ther.2006;109(1-2):92-106.
    [70]Kell D.B.Systems biology,metabolic modelling and metabolomics in drug discovery and development.Drug Discov Today.2006;11(23-24):1085-1092.
    [71]Lindon J.C.,Holmes E.,Nicholson J.K.Metabonomics and its role in drug development and disease diagnosis.Expert Rev Mol Diagn.2004;4(2):189-199.
    [72]Craig A.,Sidaway J.,Holmes E.,et al.Systems toxicology:integrated genomic,proteomic and metabonomic analysis of methapyrilene induced hepatotoxicity in the rat.J Proteome Res.2006;5(7):1586-1601.
    [73]Waters N.J.,Holmes E.,Waterfield C.J.,et al.NMR and pattern recognition studies on liver extracts and intact livers from rats treated with alpha-naphthylisothiocyanate.Biochem Pharmacol.2002;64(1):67-77.
    [74]Keun H.C,Ebbels T.M.,Bollard M.E.,et al.Geometric trajectory analysis of metabolic responses to toxicity can define treatment specific profiles.Chem Res Toxicol.2004;17(5):579-587.
    [75]Roessner U.,Wagner C,Kopka J.,et al.Technical advance:simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry.Plant J.2000;23(1):131-142.
    [76]Roessner U.,Willmitzer L.,Fernie A.R.High-resolution metabolic phenotyping of genetically and environmentally diverse potato tuber systems.Identification of phenocopies.Plant Physiol.2001;127(3):749-764.
    [77]Roessner U.,Luedemann A.,Brust D.,et al.Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell. 2001;13(1):11-29.
    [78] Bundy J.G., Willey T.L., Castell R.S., et al. Discrimination of pathogenic clinical isolates and laboratory strains of Bacillus cereus by NMR-based metabolomic profiling. FEMS Microbiol Lett. 2005;242(1):127-136.
    [79] Buchholz A., Hurlebaus J., Wandrey C, et al. Metabolomics: quantification of intracellular metabolite dynamics. Biomol Eng. 2002;19(1):5-15.
    [80] Dauner M., Bailey J.E., Sauer U. Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. Biotechnol Bioeng. 2001 ;76(2): 144-156.
    [81] Gao P., Shi C, Tian J., et al. Investigation on response of the metabolites in tricarboxylic acid cycle of Escherichi coli and Pseudomonas aeruginosa to antibiotic perturbation by capillary electrophoresis. J Pharm Biomed Anal. 2007;44(1):180-187.
    [82] Oresic M., Vidal-Puig A., Hanninen V. Metabolomic approaches to phenotype characterization and applications to complex diseases. Expert Rev Mol Diagn.2006;6(4):575-585.
    [83] Bowser R., Cudkowicz M., Kaddurah-Daouk R. Biomarkers for amyotrophic lateral sclerosis. Expert Rev Mol Diagn. 2006;6(3):387-398.
    [84] Griffin J.L. Understanding mouse models of disease through metabolomics. Curr Opin Chem Biol. 2006;10(4):309-315.
    [85] Schnackenberg L.K., Beger R.D. Monitoring the health to disease continuum with global metabolic profiling and systems biology. Pharmacogenomics. 2006;7(7):1077-1086.
    [86] Kuhara T. Gas chromatographic-mass spectrometric urinary metabolome analysis to study mutations of inborn errors of metabolism. Mass Spectrom Rev.2005;24(6):814-827.
    [87] Fava F., Lovegrove J.A., Gitau R., et al. The gut microbiota and lipid metabolism: implications for human health and coronary heart disease. Curr Med Chem.2006;13(25):3005-3021.
    [88] Yi L., He J., Liang Y, et al. Simultaneously quantitative measurement of comprehensive profiles of esterified and non-esterified fatty acid in plasma of type 2 diabetic patients. Chem Phys Lipids. 2007;150(2):204-216.
    [89] Yuan K., Kong H., Guan Y., et al. A GC-based metabonomics investigation of type 2 diabetes by organic acids metabolic profile. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;850(1-2):236-240.
    [90] Aleynik S.I., Leo M.A., Aleynik M.K., et al. Increased circulating products of lipid peroxidation in patients with alcoholic liver disease. Alcohol Clin Exp Res.1998;22(1):192-196.
    [91] Mao Y., Huang X., Yu K., et al. Metabonomic analysis of hepatitis B virus-induced liver failure: identification of potential diagnostic biomarkers by fuzzy support vector machine. J Zhejiang Univ Sci B. 2008;9(6):474-481.
    [92] Yan S.K., Wei B.J., Lin Z.Y, et al. A metabonomic approach to the diagnosis of oral squamous cell carcinoma, oral lichen planus and oral leukoplakia. Oral Oncol.2008;44(5):477-483.
    [93] Yao J.K., Reddy R.D. Metabolic investigation in psychiatric disorders. Mol Neurobiol. 2005;31(1-3):193-203.
    [94] Lindon J.C., Holmes E., Bollard M.E., et al. Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers. 2004;9(1):1-31.
    [95] Kind T., Tolstikov V, Fiehn O., et al. A comprehensive urinary metabolomic approach for identifying kidney cancerr. Anal Biochem. 2007;363(2):185-195.
    [96] Griffin J.L. Metabonomics: NMR spectroscopy and pattern recognition analysis of body fluids and tissues for characterisation of xenobiotic toxicity and disease diagnosis. Curr Opin Chem Biol. 2003;7(5):648-654.
    [97] Yi L.Z., He J., Liang Y.Z., et al. Plasma fatty acid metabolic profiling and biomarkers of type 2 diabetes mellitus based on GC/MS and PLS-LDA. FEBS Lett.2006;580(30):6837-6845.
    [98] Brindle J.T., Antti H., Holmes E., et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat Med. 2002;8(12):1439-1444.
    [99] Lenz E.M., Wilson I.D. Analytical strategies in metabonomics. J Proteome Res.2007;6(2):443-458.
    [100] Gates S.C., Sweeley C.C., Krivit W., et al. Automated metabolic profiling of organic acids in human urine. II. Analysis of urine samples from "healthy" adults, sick children, and children with neuroblastoma. Clin Chem. 1978;24(10):1680-1689.
    [101] Gates S.C., Dendramis N., Sweeley C.C. Automated metabolic profiling of organic acids in human urine. I. Description of methods. Clin Chem.1978;24(10):1674-1679.
    [102] Gates S.C., Sweeley C.C. Quantitative metabolic profiling based on gas chromatography. Clin Chem. 1978;24(10):1663-1673.
    [103]Sriuranpong V,Mutirangura A.,Gillespie J.W.,et al.Global gene expression profile of nasopharyngeal carcinoma by laser capture microdissection and complementary DNA microarrays.Clin Cancer Res.2004;10(15):4944-4958.
    [104]Pak M.W.,To K.F.,Leung S.F.,et al.Prognostic significance of argyrophilic nucleolar organizer regions in nasopharyngeal carcinoma.Eur Arch Otorhinolaryngol.2000;257(9):517-520.
    [105]Pak M.W.,To K.F.,Chen M.H.,et al.Morphometric analysis of argyrophilic nucleolar organizer regions(AgNORs) in nasopharyngeal carcinoma.Head Neck.2000;22(8):760-764.
    [106]Shao J.Y.,Wang H.Y.,Huang X.M.,et al.Genome-wide allelotype analysis of sporadic primary nasopharyngeal carcinoma from southern China,Int J Oncol.2000;17(6):1267-1275.
    [107]Xie L.,Xu L.,He Z.,et al.Identification of differentially expressed genes in nasopharyngeal carcinoma by means of the Atlas human cancer cDNA expression array.J Cancer Res Clin Oncol.2000;126(7):400-406.
    [108]Liao Q.,Zhao L.,Chen X.,et al.Serum proteome analysis for profiling protein markers associated with carcinogenesis and lymph node metastasis in nasopharyngeal carcinoma.Clin Exp Metastasis.2008;25(4):465-476.
    [109]Cho W.C.,Yip T.T.,Yip C,et al.Identification of serum amyloid a protein as a potentially useful biomarker to monitor relapse of nasopharyngeal cancer by serum proteomic profiling.Clin Cancer Res.2004;10(1 Pt 1):43-52.
    [110]Tan C,Li J.,Wang J.,et al.Proteomic analysis of differential protein expression in human nasopharyngeal carcinoma cells induced by NAG7 transfection.Proteomics.2002;2(3):306-312.
    [111]Zhou M.,Peng C,Nie X.M.,et al.[Expression of BRD7-interacting proteins,BRD2 and BRD3,in nasopharyngeal carcinoma tissues].Ai Zheng.2003;22(2):123-127.
    [112]Eliopoulos A.G.,Davies C.,Blake S.S.,et al.The oncogenic protein kinase Tp1-2/Cot contributes to Epstein-Barr virus-encoded latent infection membrane protein 1-induced NF-kappaB signaling downstream of TRAF2.J Virol.2002;76(9):4567-4579.
    [113]杨小玲。气相色谱衍生试剂的研究进展。中国科技信息,2005,4(7):14-15
    [114]Birkemeyer C.,Kolasa A.,Kopka J.Comprehensive chemical derivatization for gas chromatography-mass spectrometry-based multi-targeted profiling of the major phytohormones. J Chromatogr A. 2003;993(1-2):89-102.
    [115] Schmelz E.A., Engelberth J., Alborn H.T., et al. Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proc Natl AcadSci U S A.2003;100(18):10552-10557.
    [116] Halket J.M., Waterman D., Przyborowska A.M., et al. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot.2005;56(410):219-243.
    [117] Idborg H., Zamani L., Edlund P.O., et al. Metabolic fingerprinting of rat urine by LC/MS Part 2. Data pretreatment methods for handling of complex data. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;828(1-2):14-20.
    [118] Potts B.C., Deese A.J., Stevens G.J., et al. NMR of biofluids and pattern recognition: assessing the impact of NMR parameters on the principal component analysis of urine from rat and mouse. J Pharm Biomed Anal. 2001;26(3):463-476.
    [119] Holmes E., Antti H. Chemometric contributions to the evolution of metabonomics: mathematical solutions to characterising and interpreting complex biological NMR spectra. Analyst. 2002;127(12):1549-1557.
    [120] Gavaghan C.L., Wilson I.D., Nicholson J.K. Physiological variation in metabolic phenotyping and functional genomic studies: use of orthogonal signal correction and PLS-DA. FEBS Lett. 2002;530(1-3):191-196.
    [121] Beckwith-Hall B.M., Brindle J.T., Barton R.H., et al. Application of orthogonal signal correction to minimise the effects of physical and biological variation in high resolution 1H NMR spectra of biofluids. Analyst. 2002;127(10):1283-1288.
    [122] Townsend D., Frize M. Complimentary artificial neural network approaches for prediction of events in the neonatal intensive care unit. Conf Proc IEEE Eng Med Biol Soc. 2008; 1:4605-4608.
    [123] Lai K.C., Chiang H.C., Chen W.C., et al. Artificial neural network-based study can predict gastric cancer staging. Hepatogastroenterology. 2008;55(86-87):1859-1863.
    [124] Devillers J. Artificial neural network modeling in environmental toxicology.Methods Mol Biol. 2008;458:61-79.
    [125] Wold H. Estimation of principal components and related models by iterative least squares. In: Krishnaiah P R, eds. Multiuariate analysis. New York: Academic Press, 1966. 391-420.
    [126] Jong de S. SIMPLS: an alternative approach squares regression. Chemometrics and Intelligent Laboratory Systems, 1993, 18 (3): 251-263.
    [127] Brown C W, Lynch P F, Obremski R J, et al. Matrix representations and criteria for selecting analytical wavelengths for multicomponent spectroscopic analysis. Analytical Chemistry, 1982, 54(9): 1472-1479.
    [128] Kisner H.J., Brown C.W., Kavarnos GJ. Multiple analytical frequencies and standards for the least-squares spectrometric analysis of serum lipids. Anal Chem.1983;55(11):1703-1707.
    [129] Yi L.Z., Yuan D.L., Liang Y.Z., et al. Quality control and discrimination of pericarpium citri reticulatae and pericarpium citri reticulatae viride based on high-performance liquid chromatographic fingerprints and multivariate statistical analysis. Anal Chim Acta. 2007;588(2):207-215.
    [130] Kisner H.J., Brown C.W., Kavarnos G.J. Multiple analytical frequencies and standards for the least-squares spectrometric analysis of serum lipids. Anal Chem. 1983;55(11):1703-1707.
    [131] Ye, J., Janardan, R., Li, Q., & Park, H. (2006). Feature reduction via generalized uncorrelated linear discriminant analysis. IEEE Transactions on Knowledge and Data Engineering, 18, 1312- 1322.
    [132] Yuan D.L., Liang Y.Z., Yi L.Z., et al. Kvalheim. Uncorrelated linear discriminant analysis (ULDA): A powerful tool for exploration of metabolomics data, Chemometrics and Intelligent Laboratory Systems 2008 93:70-79.
    [133] Yi L.Z., Yuan D.L., Che Z.H., et al. Plasma fatty acid metabolic profile coupled with uncorrelated linear discriminant analysis to diagnose and biomarker screening of type 2 diabetes and type 2 diabetic coronary heart diseases. Metabolomics.2008(4):30-38.
    [134] Yi L.Z., Yuan D.L., Liang Y.Z., et al. Quality control and discrimination of pericarpium citri reticulatae and pericarpium citri reticulatae viride based on high-performance liquid chromatographic fingerprints and multivariate statistical analysis. Anal Chim Acta. 2007;588(2):207-215.
    [135] Semenza G.L. HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J Bioenerg Biomembr. 2007;39(3):231-234.
    [136] Lu H., Forbes R.A., Verma A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem.2002;277(26):23111 -23115.
    [137] Minchenko A., Leshchinsky I., Opentanova I., et al. Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J Biol Chem.2002;277(8):6183-6187.
    [138] Blum R., Jacob-Hirsch J., Amariglio N., et al. Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1 alpha, causing glycolysis shutdown and cell death. Cancer Res. 2005;65(3):999-1006.
    [139] Elstrom R.L., Bauer D.E., Buzzai M, et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 2004;64(11):3892-3899.
    [140] Gottschalk S., Anderson N., Hainz C, et al. Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells. Clin Cancer Res. 2004;10(19):6661-6668.
    [141] Coy J.F., Dressier D., Wilde J., et al. Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer. Clin Lab. 2005;51(5-6):257-273.
    [142] Selak M.A., Armour S.M., MacKenzie E.D., et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005;7(1):77-85.
    [143] Tretter L., Adam-Vizi V. Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress. Philos Trans R Soc Lond B Biol Sci. 2005;360(1464):2335-2345.
    [144] Wu M., Neilson A., Swift A.L., et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol.2007;292(1):C125-136.
    [145] Kroemer G. Mitochondria in cancer. Oncogene. 2006;25(34):4630-4632.
    [146] Frezza C., Gottlieb E. Mitochondria in cancer: not just innocent bystanders.Semin Cancer Biol. 2009;19(1):4-11.
    [147] Ferguson E.C., Rathmell J.C. New roles for pyruvate kinase M2: working out the Warburg effect. Trends Biochem Sci. 2008;33(8):359-362.
    [148] Chen Z., Lu W., Garcia-Prieto C., et al. The Warburg effect and its cancer therapeutic implications. J Bioenerg Biomembr. 2007;39(3):267-274.
    [149] Maher J.C., Krishan A., Lampidis T.J. Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic vs aerobic conditions. Cancer Chemother Pharmacol. 2004;53(2):116-122.
    [150]Maschek G,Savaraj N.,Priebe W.,et al.2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo.Cancer Res.2004;64(1):31-34.
    [151]Pan J.G,Mak T.W.Metabolic targeting as an anticancer strategy:dawn of a new era? Sci STKE.2007;2007(381):pe14.
    [152]Lemasters J.J.,Holmuhamedov E.Voltage-dependent anion channel(VDAC) as mitochondrial governator--thinking outside the box.Biochim Biophys Acta.2006;1762(2):181-190.
    [153]Mathupala S.P.,Ko Y.H.,Pedersen PL.Hexokinase-2 bound to mitochondria:cancer's stygian link to the "Warburg Effect" and a pivotal target for effective therapy.Semin Cancer Biol.2009;19(1):17-24.
    [154]Pedersen P.L.Warburg,me and Hexokinase 2:Multiple discoveries of key molecular events underlying one of cancers' most common phenotypes,the "Warburg Effect",i.e.,elevated glycolysis in the presence of oxygen.J Bioenerg Biomembr.2007;39(3):211-222.
    [155]Xu R.H.,Pelicano H.,Zhou Y.,et al.Inhibition of glycolysis in cancer cells:a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia.Cancer Res.2005;65(2):613-621.
    [156]Gogvadze V,Orrenius S.,Zhivotovsky B.Mitochondria as targets for cancer chemotherapy.Semin Cancer Biol.2009;19(1):57-66.
    [157]Michelakis E.D.,Webster L.,Mackey J.R.Dichloroacetate(DCA) as a potential metabolic-targeting therapy for cancer.Br J Cancer.2008;99(7):989-994.
    [158]Brizel D.M.,Schroeder T.,Scher R.L.,et al.Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer.Int J Radiat Oncol Biol Phys.2001;51(2):349-353.
    [159]Stern R.,Shuster S.,Neudecker B.A.,et al.Lactate stimulates fibroblast expression of hyaluronan and CD44:the Warburg effect revisited.Exp Cell Res.2002;276(1):24-31.
    [160]Albers M.J.,Bok R.,Chen A.P.,et al.Hyperpolarized 13C lactate,pyruvate,and alanine:noninvasive biomarkers for prostate cancer detection and grading.Cancer Res.2008;68(20):8607-8615.
    [161]Cheng L.L.,Chang I.W.,Smith B.L.,et al.Evaluating human breast ductal carcinomas with high-resolution magic-angle spinning proton magnetic resonance spectroscopy.J Magn Reson.1998;135(1):194-202.
    [162] Nishijima T., Nishina M., Fujiwara K. Measurement of lactate levels in serum and bile using proton nuclear magnetic resonance in patients with hepatobiliary diseases: its utility in detection of malignancies. Jpn J Clin Oncol. 1997;27(1):13-17.
    [1] V.P. Makinen, P. Soininen, C. Forsblom, et al. Diagnosing diabetic nephropathy by 1H NMR metabonomics of serum. MAGMA 19 (2006) 281-296.
    [2] M. van Doorn, J. Vogels, A. Tas, et al. Evaluation of metabolite profiles as biomarkers for the pharmacological effects of thiazolidinediones in Type 2 diabetes mellitus patients and healthy volunteers. Br J Clin Pharmacol 63 (2007) 562-574.
    [3] D.I. Ellis, R. Goodacre, Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst 131 (2006) 875-885.
    [4] O. Fiehn, J. Kopka, R.N. Trethewey, L. Willmitzer, Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal Chem 72 (2000)3573-3580.
    [5] M.R. Mashego, K. Rumbold, M. De Mey, et al. Microbial metabolomics: past, present and future methodologies. Biotechnol Lett 29 (2007) 1-16.
    [6] M.R. Viant, E.S. Rosenblum, R.S. Tieerdema, NMR-based metabolomics: a powerful approach for characterizing the effects of environmental stressors on organism health. Environ Sci Technol 37 (2003) 4982-4989.
    [7] K.S. Solanky, N.J. Bailey, B.M. Beckwith-Hall, et al. Application of biofluid 1H nuclear magnetic resonance-based metabonomic techniques for the analysis of the biochemical effects of dietary isoflavones on human plasma profile. Anal Biochem 323 (2003) 197-204.
    [8] N.J. Serkova, J.L. Spratlin, S.G. Eckhardt, NMR-based metabolomics: translational application and treatment of cancer. Curr Opin Mol Ther 9 (2007)572-585.
    [9] J.L. Griffin, R.A. Kauppinen, A metabolomics perspective of human brain tumours. Febs J 274 (2007) 1132-1139.
    [10] S.C. Brown, G. Kruppa, J.L. Dasseux, Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrom Rev 24 (2005) 223-231.
    [11] O. Fiehn, Metabolomics~the link between genotypes and phenotypes. Plant Mol Biol 48 (2002) 155-171.
    [12] E. Holmes, A.W. Nicholls, J.C. Lindon, et al. Chemometric models for toxicity classification based on NMR spectra of biofluids. Chem Res Toxicol 13 (2000)471-478.
    [13]J.C.Lindon,E.Holmes,M.E.Bollard,et al.Metabonomics technologies and their applications in physiological monitoring,drug safety assessment and disease diagnosis.Biomarkers 9(2004) 1-31.
    [14]G.H.Neild,P.J.Foxall,J.C.Lindon,et al.Uroscopy in the 21st century:high-field NMR spectroscopy.Nephrol Dial Transplant 12(1997) 404-417.
    [15]G.Baverel,A.Conjard,M.F.Chauvin,et al.Carbon 13 NMR spectroscopy:a powerful tool for studying renal metabolism.Biochimie 85(2003) 863-871.
    [16]S.J.Sumner,D.B.Stedman,S.Y.Cheng,et al.Dose effects on the excretion of urinary metabolites of 2-[1,2,methoxy-13C]methoxyethanol in rats and mice.Toxicol Appl Pharmacol 134(1995) 139-147.
    [17]S.C.Sumner,L.Selvaraj,S.K.Nauhaus,T.R.Fennell,Urinary metabolites from F344 rats and B6C3F1 mice coadministered acrylamide and acrylonitrile for 1 or 5days.Chem Res Toxicol 10(1997) 1152-1160.
    [18]R.J.Newman,P.J.Bore,L.Chan,et al.Nuclear magnetic resonance studies of forearm muscle in Duchenne dystrophy.Br Med J(Clin Res Ed) 284(1982)1072-1074.
    [19]G.K.Radda,P.J.Bore,D.G.Gadian,et al.31P NMR examination of two patients with NADH-CoQ reductase deficiency.Nature 295(1982) 608-609.
    [20]B.D.Ross,GK.Radda,D.G Gadian,et al.Preliminary observations on the metabolic responses to exercise in humans,using 31-phosphorus nuclear magnetic resonance.Ciba Found Symp 87(1982) 145-152.
    [21]G.K.Radda,D.G Gadian,B.D.Ross,Energy metabolism and cellular pH in normal and pathological conditions.A new look through 31phosphorus nuclear magnetic resonance.Ciba Found Symp 87(1982) 36-57.
    [22]K.F.Petersen,S.Dufour,G.I.Shulman,Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2diabetic parents.PLoS Med 2(2005)e233.
    [23]S.F.Solga,A.Horska,S.Hemker,et al.Hepatic fat and adenosine triphosphate measurement in overweight and obese adults using 1H and 31P magnetic resonance spectroscopy.Liver Int 28(2008) 675-681.
    [24]颜贤忠,赵剑宇,彭双清,廖明阳。代谢组学在后基因组时代的作用。波谱学杂志,(2004)21:263-271。
    [25]G.G.Harrigan,R.H.LaPlante,G.N.Cosma,et al.Application of high-throughput Fourier-transform infrared spectroscopy in toxicology studies:contribution to a study on the development of an animal model for idiosyncratic toxicity. Toxicol Lett 146(2004) 197-205.
    [26] A. Aharoni, C.H. Ric de Vos, H.A. Verhoeven, et al. Nontargeted metabolome analysis by use of Fourier Transform Ion Cyclotron Mass Spectrometry. OMICS 6 (2002)217-234.
    [27] S. O'Hagan, W.B. Dunn, M. Brown, et al. Closed-loop, multiobjective optimization of analytical instrumentation: gas chromatography/time-of-flight mass spectrometry of the metabolomes of human serum and of yeast fermentations. Anal Chem 77 (2005) 290-303.
    [28] H.J. Major, R. Williams, A.J. Wilson, I.D. Wilson, A metabonomic analysis of plasma from Zucker rat strains using gas chromatography/mass spectrometry and pattern recognition. Rapid Commun Mass Spectrom 20 (2006) 3295-3302.
    [29] L. Yi, J. He, Y. Liang, et al. Simultaneously quantitative measurement of comprehensive profiles of esterified and non-esterified fatty acid in plasma of type 2 diabetic patients. Chem Phys Lipids 150 (2007) 204-216.
    [30] K. Yuan, H. Kong, Y. Guan, et al. A GC-based metabonomics investigation of type 2 diabetes by organic acids metabolic profile. J Chromatogr B Analyt Technol Biomed Life Sci 850 (2007) 236-240.
    [31] S.I. Aleynik, M.A. Leo, M.K. Aleynik, C.S. Lieber, Increased circulating products of lipid peroxidation in patients with alcoholic liver disease. Alcohol Clin Exp Res 22 (1998) 192-196.
    [32] Y. Mao, X. Huang, K. Yu, et al. Metabonomic analysis of hepatitis B virus-induced liver failure: identification of potential diagnostic biomarkers by fuzzy support vector machine. J Zhejiang Univ Sci B 9 (2008) 474-481.
    [33] B. Feng, S. Wu, S. Lv, et al. Metabolic profiling analysis of a D-galactosamine/lipopolysaccharide-induced mouse model of fulminant hepatic failure. J Proteome Res 6 (2007) 2161-2167.
    [34] R.A. Shellie, W. Welthagen, J. Zrostlikova, et al. Statistical methods for comparing comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry results: metabolomic analysis of mouse tissue extracts. J Chromatogr A 1086(2005)83-90.
    [35] I.D. Wilson, R. Plumb, J. Granger, et al. HPLC-MS-based methods for the study of metabonomics. J Chromatogr B Analyt Technol Biomed Life Sci 817 (2005) 67-76.
    [36] H. Idborg, L. Zamani, P.O. Edlund, et al. Metabolic fingerprinting of rat urine by LC/MS Part 1. Analysis by hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 828 (2005) 9-13.
    [37] R.S. Plumb, C.L. Stumpf, M.V. Gorenstein, et al. Metabonomics: the use of electrospray mass spectrometry coupled to reversed-phase liquid chromatography shows potential for the screening of rat urine in drug development. Rapid Commun Mass Spectrom 16 (2002) 1991-1996.
    [38] E.M. Lenz, J. Bright, R. Knight, et al. A metabonomic investigation of the biochemical effects of mercuric chloride in the rat using 1H NMR and HPLC-TOF/MS: time dependent changes in the urinary profile of endogenous metabolites as a result of nephrotoxicity. Analyst 129 (2004) 535-541.
    [39] E.M. Lenz, J. Bright, R. Knight, et al. Cyclosporin A-induced changes in endogenous metabolites in rat urine: a metabonomic investigation using high field 1H NMR spectroscopy, HPLC-TOF/MS and chemometrics. J Pharm Biomed Anal 35(2004) 599-608.
    [40] E.M. Lenz, J. Bright, R. Knight, et al. Metabonomics with 1H-NMR spectroscopy and liquid chromatography-mass spectrometry applied to the investigation of metabolic changes caused by gentamicin-induced nephrotoxicity in the rat. Biomarkers 10 (2005) 173-187.
    [41] R.E. Williams, H. Major, E.A. Lock, et al. D-Serine-induced nephrotoxicity: a HPLC-TOF/MS-based metabonomics approach. Toxicology 207 (2005) 179-190.
    [42] A. Lafaye, C. Junot, B. Ramounet-Le Gall, et al. Metabolite profiling in rat urine by liquid chromatography/electrospray ion trap mass spectrometry. Application to the study of heavy metal toxicity. Rapid Commun Mass Spectrom 17 (2003) 2541-2549.
    [43] M.S. Sabatine, E. Liu, D.A. Morrow, et al. Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation 112 (2005) 3868-3875.
    [44] C. Wang, H. Kong, Y. Guan, et al. Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis. Anal Chem 77 (2005) 4108-4116.
    [45] J. Yang, X. Zhao, X. Liu, et al. High performance liquid chromatography-mass spectrometry for metabonomics: potential biomarkers for acute deterioration of liver function in chronic hepatitis B. J Proteome Res 5 (2006) 554-561.
    [46] V.V. Tolstikov, A. Lommen, K. Nakanishi, et al. Monolithic silica-based capillary reversed-phase liquid chromatography/electrospray mass spectrometry for plant metabolomics. Anal Chem 75 (2003) 6737-6740.
    [47] I.D. Wilson, J.K. Nicholson, J. Castro-Perez, et al. High resolution "ultra performance" liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. J Proteome Res 4 (2005) 591-598.
    [48] R.S. Plumb, J.H. Granger, C.L. Stumpf, et al. A rapid screening approach to metabonomics using UPLC and oa-TOF mass spectrometry: application to age, gender and diurnal variation in normal/Zucker obese rats and black, white and nude mice. Analyst 130 (2005) 844-849.
    [49] R. Williams, E.M. Lenz, A.J. Wilson, et al. A multi-analytical platform approach to the metabonomic analysis of plasma from normal and Zucker (fa/fa) obese rats. Mol Biosyst 2 (2006) 174-183.
    [50] R.S. Plumb, K.A. Johnson, P. Rainville, et al. The detection of phenotypic differences in the metabolic plasma profile of three strains of Zucker rats at 20 weeks of age using ultra-performance liquid chromatography/orthogonal acceleration time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 20 (2006)2800-2806.
    [51] R.S. Plumb, P. Rainville, B.W. Smith, et al. Generation of ultrahigh peak capacity LC separations via elevated temperatures and high linear mobile-phase velocities. Anal Chem 78 (2006) 7278-7283.
    [52] C. Barbas, M. Vallejo, A. Garcia, et al. Capillary electrophoresis as a metabolomic tool in antioxidant therapy studies. J Pharm Biomed Anal 47 (2008)388-398.
    [53] M. Vallejo, S. Angulo, D. Garcia-Martinez, et al. New perspective of diabetes response to an antioxidant treatment through metabolic fingerprinting of urine by capillary electrophoresis. J Chromatogr A 1187 (2008) 261-214.
    [54] C. von Zur Muhlen, E. Schiffer, P. Zuerbig, et al. Evaluation of Urine Proteome Pattern Analysis for Its Potential To Reflect Coronary Artery Atherosclerosis in Symptomatic Patients. J Proteome Res 8 (2009) 335-345.
    [55] T. Soga, Y. Ohashi, Y. Ueno, et al. Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res 2 (2003) 488-494.
    [56] W.D. Smith, CE/MS for quantitative metabolome analysis. J Proteome Res 2(2003)463.
    [57]T.Soga,R.Baran,M.Suematsu,et al.Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutachione consumption.J Biol Chem 281(2006)16768-16776.
    [1]E.E.Vokes,D.N.Liebowitz,R.R.Weichselbaum,Nasopharyngeal carcinoma.Lancet 350(1997)1087-1091.
    [2]J.E.Marks,J.L.Phillips,H.R.Menck,The National Cancer Data Base report on the relationship of race and national origin to the histology of nasopharyngeal carcinoma.Cancer 83(1998)582-588.
    [3]W.I.Wei,J.S.Sham,Nasopharyngeal carcinoma.Lancet 365(2005)2041-2054.
    [4]Jones HB.On a new substance occurring in the urine of a patient with mollities ossium.Phil Trans R Soc Lond,1848,138:55-62.
    [5]潘建基,林色南,宗井凤。NPC相关肿瘤标志物研究现状[J]。中国癌症杂志,2008,18(3),655-660。
    [6]K.W.Lo,K.F.To,D.P.Huang,Focus on nasopharyngeal carcinoma.Cancer Cell 5(2004)423-428.
    [7]L.S.Young,A.B.Rickinson,Epstein-Barr virus:40 years on.Nat Rev Cancer 4(2004)757-768.
    [8]W.H.Jia,B.J.Feng,Z.L.Xu,et al.Familial risk and clustering of nasopharyngeal carcinoma in Guangdong,China.Cancer 101(2004)363-369.
    [9]Y.X.Zeng,W.H.Jia,Familial nasopharyngeal carcinoma.Semin Cancer Biol 12(2002)443-450.
    [10]S.S.Mirvish,Role of N-nitroso compounds(NOC) and N-nitrosation in etiology of gastric,esophageal,nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC.Cancer Lett 93(1995) 17-48.
    [11]D.P.Huang,J.H.Ho,D.Saw,T.B.Teoh,Carcinoma of the nasal and paranasal regions in rats fed Cantonese salted marine fish.IARC Sci Publ(1978) 315-328.
    [12]M.C.Yu,T.B.Huang,B.E.Henderson,Diet and nasopharyngeal carcinoma:a case-control study in Guangzhou,China.Int J Cancer 43(1989)1077-1082.
    [13]M.C.Yu,J.M.Yuan,Epidemiology of nasopharyngeal carcinoma.Semin Cancer Biol 12(2002)421-429.
    [14]N.Raab-Traub,Epstein-Barr virus in the pathogenesis of NPC.Semin Cancer Biol 12(2002)431-441.
    [15]Q.Tao,L.S.Young,C.B.Woodman,P.G.Murray,Epstein-Barr virus(EBV) and its associated human cancers--genetics,epigenetics,pathobiology and novel therapeutics.Front Biosci 11(2006)2672-2713.
    [16] S.J. Lu, N.E. Day, L. Degos, et al., Linkage of a nasopharyngeal carcinoma susceptibility locus to the HLA region. Nature 346 (1990) 470-471.
    [17] A. Hildesheim, R.J. Apple, CJ. Chen, et al. Association of HLA class I and Ⅱ alleles and extended haplotypes with nasopharyngeal carcinoma in Taiwan. J Natl Cancer Inst 94 (2002) 1780-1789.
    [18] B.J. Feng, W. Huang, Y.Y. Shugart, et al. Genome-wide scan for familial nasopharyngeal carcinoma reveals evidence of linkage to chromosome 4. Nat Genet31 (2002)395-399.
    [19] W. Xiong, Z.Y. Zeng, J.H. Xia, et al. A susceptibility locus at chromosome 3p21 linked to familial nasopharyngeal carcinoma. Cancer Res 64 (2004) 1972-1974.
    [20] D. Tiwawech, P. Srivatanakul, A. Karalak, T. Ishida, Cytochrome P450 2A6 polymorphism in nasopharyngeal carcinoma. Cancer Lett 241 (2006) 135-141.
    [21] J.H. Jiang, Z. Li, G. Su, et al. [Study on genetic polymorphisms of CYP2F1 gene in Guangdong population of China]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 23 (2006) 383-387.
    [22] A. Hildesheim, L.M. Anderson, C.J. Chen, et al. CYP2E1 genetic polymorphisms and risk of nasopharyngeal carcinoma in Taiwan. J Natl Cancer Inst 89(1997)1207-1212.
    [23] D. Tiwawech, P. Srivatanakul, A. Karalak, T. Ishida, Glutathione S-transferase M1 gene polymorphism in Thai nasopharyngeal carcinoma. Asian.Pac J Cancer Prev 6 (2005) 270-275.
    [24] E.Y. Cho, A. Hildesheim, CJ. Chen, et al. Nasopharyngeal carcinoma and genetic polymorphisms of DNA repair enzymes XRCC1 and hOGGl. Cancer Epidemiol Biomarkers Prev 12 (2003) 1100-1104.
    [25] W.C. Cho, Nasopharyngeal carcinoma: molecular biomarker discovery and progress. Mol Cancer 6 (2007) 1.
    [26] B. Brennan, Nasopharyngeal carcinoma. Orphanet J Rare Dis 1 (2006) 23.
    [27] L. Shih-Hsin Wu, Construction of evolutionary tree models for nasopharyngeal carcinoma using comparative genomic hybridization data. Cancer Genet Cytogenet168(2006)105-108.
    [28] Z.Y. Zeng, J. Qian, W. Xiong, et al. [Expression and location of UBAP1 protein associated with nasopharyngeal carcinoma]. Zhong Nan Da Xue Xue Bao Yi Xue Ban 30(2005)621-624.
    [29] S.Q. Zhang, H. Peng, L.Y. Song, X.M. Li, H.Y. Jiang, K.T. Yao, T. Zhao,[Detection of KIAA1173 gene expression in nasopharyngeal carcinoma tissues and cell lines on tissue microarray]. Ai Zheng 24 (2005) 1322-1326.
    [30] T.S. Wong, D.L. Kwong, J. Sham, et al. Elevation of plasma osteopontin level in patients with undifferentiated nasopharyngeal carcinoma. Eur J Surg Oncol 31 (2005)555-558.
    [31] S.Q. Fan, J. Ma, J. Zhou, et al. Differential expression of Epstein-Barr virus-encoded RNA and several tumor-related genes in various types of nasopharyngeal epithelial lesions and nasopharyngeal carcinoma using tissue microarray analysis. Hum Pathol 37 (2006) 593-605.
    [32] A.K. Lo, K.W. Lo, S.W. Tsao, et al. Epstein-Barr virus infection alters cellular signal cascades in human nasopharyngeal epithelial cells. Neoplasia 8 (2006)173-180.
    [33] B.A. Mainou, N. Raab-Traub, LMP1 strain variants: biological and molecular properties. J Virol 80 (2006) 6458-6468.
    [34] G. Yan, L. Li, Y. Tao, et al. Identification of novel phosphoproteins in signaling pathways triggered by latent membrane protein 1 using functional proteomics technology. Proteomics 6 (2006) 1810-1821.
    [35] H.S. Kim, J.S. Kim, J.T. Park, et al. The association between CD99 and LMP-1 expression in nasopharyngeal carcinoma. Exp Oncol 28 (2006) 40-43.
    [36] S. Sengupta, J.A. den Boon, I.H. Chen, et al. Hildesheim, B. Sugden, P. Ahlquist,Genome-wide expression profiling reveals EBV-associated inhibition of MHC class I expression in nasopharyngeal carcinoma. Cancer Res 66 (2006) 7999-8006.
    [37] K.E. Abou-Elhamd, T.N. Habib, The flow cytometric analysis of premalignant and malignant lesions in head and neck squamous cell carcinoma. Oral Oncol 43(2007) 366-372.
    [38] B.C. Wong, K.C. Chan, A.T. Chan, et al. Reduced plasma RNA integrity in nasopharyngeal carcinoma patients. Clin Cancer Res 12 (2006) 2512-2516.
    [39] Y. Xie, G. Huang, Z. Zhang, et al. [Application of EB virus latent membrane protein 1 in nasopharyngeal swab in diagnosis of nasopharyngeal carcinoma]. Lin Chuang Er Bi Yan Hou Ke Za Zhi 20 (2006) 499-501.
    [40] S.P. Hao, N.M. Tsang, K.P. Chang, S.H. Ueng, Molecular diagnosis of nasopharyngeal carcinoma: detecting LMP-1 and EBNA by nasopharyngeal swab. Otolaryngol Head Neck Surg 131 (2004) 651-654.
    [41] D. Sun, Z. Zhang, N. Van do, et al. Aberrant methylation of CDH13 gene in nasopharyngeal carcinoma could serve as a potential diagnostic biomarker. Oral Oncol 43 (2007) 82-87.
    [42] C.C. Wu, K.Y. Chien, N.M. Tsang, et al. Cancer cell-secreted proteomes as a basis for searching potential tumor markers: nasopharyngeal carcinoma as a model. Proteomics 5 (2005) 3173-3182.
    [43] J. Fachiroh, D.K. Paramita, B. Hariwiyanto, et al. Single-assay combination of Epstein-Barr Virus (EBV) EBNA1- and viral capsid antigen-p18-derived synthetic peptides for measuring anti-EBV immunoglobulin G (IgG) and IgA antibody levels in sera from nasopharyngeal carcinoma patients: options for field screening. J Clin Microbiol 44 (2006) 1459-1467.
    [44] D.W. Ho, Z.F. Yang, B.Y. Wong, et al. Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry serum protein profiling to identify nasopharyngeal carcinoma. Cancer 107 (2006) 99-107.
    [45] C. Guo, Z.G. Pan, D.J. Li, et al. The expression of p63 is associated with the differential stage in nasopharyngeal carcinoma and EBV infection. J Transl Med 4 (2006) 23.
    [46] L.N. Jiang, L.C. Dai, J.F. He, et al. [Significance of detection of serum sialic acid and Epstein-Barr virus VCA-IgA in diagnosis and monitoring radiotherapy effectiveness in nasopharyngeal carcinoma patients]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 20 (2006) 30-32.
    [47] S.J. Stevens, S.A. Verkuijlen, B. Hariwiyanto, et al. Noninvasive diagnosis of nasopharyngeal carcinoma: nasopharyngeal brushings reveal high Epstein-Barr virus DNA load and carcinoma-specific viral BARF1 mRNA. Int J Cancer 119 (2006)608-614.
    [48] B. Baujat, H. Audry, J. Bourhis, et al. Chemotherapy in locally advanced nasopharyngeal carcinoma: an individual patient data meta-analysis of eight randomized trials and 1753 patients. Int J Radiat Oncol Biol Phys 64 (2006) 47-56.
    [49] A.W. Lee, S.C. Law, W. Foo, et al. Nasopharyngeal carcinoma: local control by megavoltage irradiation. Br J Radiol 66 (1993) 528-536.
    [50] G. Sanguineti, F.B. Geara, A.S. Garden, et al. Carcinoma of the nasopharynx treated by radiotherapy alone: determinants of local and regional control. Int J Radiat Oncol Biol Phys 37 (1997) 985-996.
    [51] H.L. Lung, D.K. Bangarusamy, D. Xie, et al. THY1 is a candidate tumour suppressor gene with decreased expression in metastatic nasopharyngeal carcinoma. Oncogene 24 (2005) 6525-6532.
    [52] W.L. Yau, H.L. Lung, E.R. Zabarovsky, et al. Functional studies of the chromosome 3p21.3 candidate tumor suppressor gene BLU/ZMYND10 in nasopharyngeal carcinoma. Int J Cancer 119 (2006) 2821-2826.
    [53] D. Peng, C.P. Ren, H.M. Yi, et al. Genetic and epigenetic alterations of DLC-1, a candidate tumor suppressor gene, in nasopharyngeal carcinoma. Acta Biochim Biophys Sin (Shanghai) 38 (2006) 349-355.
    [54] J. Ying, G. Srivastava, W.S. Hsieh, et al. The stress-responsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in multiple tumors. Clin Cancer Res 11 (2005)6442-6449.
    [55] M. Zhou, H. Liu, X. Xu, et al. Identification of nuclear localization signal that governs nuclear import of BRD7 and its essential roles in inhibiting cell cycle progression. J Cell Biochem 98 (2006) 920-930.
    [56] H.W. Cheung, A.C. Chun, Q. Wang, et al. Inactivation of human MAD2B in nasopharyngeal carcinoma cells leads to chemosensitization to DNA-damaging agents. Cancer Res 66 (2006) 4357-4367.
    [57] Y.C. Lin, L. You, Z. Xu, et al. Wnt signaling activation and WIF-1 silencing in nasopharyngeal cancer cell lines. Biochem Biophys Res Commun 341 (2006)635-640.
    [58] H. Yang, R. Zhao, M.H. Lee, 14-3-3sigma, a p53 regulator, suppresses tumor growth of nasopharyngeal carcinoma. Mol Cancer Ther 5 (2006) 253-260.
    [59] N. He, W. Kong, [The role of EPR-1 in proliferation and apoptosis in nasopharyngeal carcinoma]. Lin Chuang Er Bi Yan Hou Ke Za Zhi 19 (2005)782-784.
    [60] W.J. Kong, S. Zhang, C.K. Guo, et al. Effect of methylation-associated silencing of the death-associated protein kinase gene on nasopharyngeal carcinoma. Anticancer Drugs 17 (2006) 251-259.
    [61] J. Lacy, R. Loomis, S. Grill, et al. Systemic Bcl-2 antisense oligodeoxynucleotide in combination with cisplatin cures EBV+ nasopharyngeal carcinoma xenografts in SCID mice. Int J Cancer 119 (2006) 309-316.
    [62] C.W. Tsang, X. Lin, N.H. Gudgeon, et al. CD4+ T-cell responses to Epstein-Barr virus nuclear antigen EBNA1 in Chinese populations are highly focused on novel C-terminal domain-derived epitopes. J Virol 80 (2006) 8263-8266.
    [63] J.X. Li, K.Y. Zhou, K.R. Cai, et al. [Knockdown of bcl-xL expression with RNA interference induces nasopharyngeal carcinoma cells apoptosis]. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 40 (2005) 347-351.
    [64] D.S. Weng, Z.R. Wu, S. Wang, Y.Q. Ding, [Effect of silencing epidermal growth factor receptor expression by RNA interference on the growth of nasopharyngeal carcinoma cell 5-8F]. Nan Fang Yi Ke Da Xue Xue Bao 26 (2006) 71-74.
    [65] W. Shi, C. Bastianutto, A. Li, et al. Multiple dysregulated pathways in nasopharyngeal carcinoma revealed by gene expression profiling. Int J Cancer 119(2006) 2467-2475.
    [66] G. Li, X.P. Li, Y. Peng, et al. [Effective inhibition of EB virus-encoded latent membrane protein-1 by siRNA in EB virus (+) nasopharyngeal carcinoma cell].Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 40 (2005) 406-410.
    [67] X. Li, X. Liu, C.Y. Li, et al. Recombinant adeno-associated virus mediated RNA interference inhibits metastasis of nasopharyngeal cancer cells in vivo and in vitro by suppression of Epstein-Barr virus encoded LMP-1. Int J Oncol 29 (2006) 595-603.
    [68] C.A. Perez, V.R. Devineni, V. Marcial-Vega, et al. Carcinoma of the nasopharynx: factors affecting prognosis. Int J Radiat Oncol Biol Phys 23 (1992)271-280.
    [69] F.B. Geara, G. Sanguineti, S.L. Tucker, et al. Carcinoma of the nasopharynx treated by radiotherapy alone: determinants of distant metastasis and survival. Radiother Oncol 43 (1997) 53-61.
    [70] X. Shi, X. Yuan, D. Tao, et al. Analysis of DNA ploidy, cell cycle and Ki67 antigen in nasopharyngeal carcinoma by flow cytometry. J Huazhong Univ Sci Technolog Med Sci 25 (2005) 198-201.
    [71] G.Q. Zhao, Y. Xu, Q. Wang, [Significance of serum vascular endothelial growth factor test before radiotherapy in patients with nasopharyngeal carcinoma]. Zhong Xi Yi Jie He Xue Bao 3 (2005) 274-277.
    [72] H.Q. Mai, Z.Y. Zeng, C.Q. Zhang, et al. Elevated plasma big ET-1 is associated with distant failure in patients with advanced-stage nasopharyngeal carcinoma. Cancer 106 (2006) 1548-1553.
    [73]S.R.Doustjalali,R.Yusof G.K.Govindasamy,et al.Patients with nasopharyngeal carcinoma demonstrate enhanced serum and tissue ceruloplasmin expression.J Med Invest 53(2006)20-28.
    [74]W.C.Cho,T.T.Yip,C.Yip,et al.Identification of serum amyloid a protein as a potentially useful biomarker to monitor relapse of nasopharyngeal cancer by serum proteomic profiling.Clin Cancer Res 10(2004)43-52.
    [75]庞伟,罗立平。NPC患者血清sIL-2和TNF-α的检测及其临床意义[J]。河南肿瘤学杂志,2001,14(3),209-210。
    [76]J.W.Bailet,R.J.Mark,E.Abemayor,et al.Nasopharyngeal carcinoma:treatment results with primary radiation therapy.Laryngoscope 102(1992) 965-972.
    [77]A.Fandi,M.Altun,N.Azli,et al.Nasopharyngeal cancer:epidemiology,staging,and treatment.Semin Oncol 21(1994)382-397.
    [78]P.M.Teo,A.T.Chan,W.Y.Lee,et al.Enhancement of local control in locally advanced node-positive nasopharyngeal carcinoma by adjunctive chemotherapy.Int J Radiat Oncol Biol Phys 43(1999)261-271.
    [79]J.S.Cooper,C.Scott,V.Marcial,et al.The relationship of nasopharyngeal carcinomas and second independent malignancies based on the Radiation Therapy Oncology Group experience.Cancer 67(1991)1673-1677.
    [80]T.Horikawa,Y.Kaizaki,H.Kato,et al.Expression of interleukin-8 receptor A predicts poor outcome in patients with nasopharyngeal carcinoma.Laryngoscope 115(2005)62-67.
    [81]L.Mo,G.Kuang,Y.Luo,R.Yang,[Relationship between the expression of estrogen and progestrogen receptors in distant metastasis of nasopharyngeal carcinoma].Lin Chuang Er Bi Yan Hou Ke Za Zhi 20(2006)494-495.
    [82]S.S.Wang,Z.Z.Guan,Y.Q.Xiang,et al.[Significance of EGFR and p-ERK expression in nasopharyngeal carcinoma].Zhonghua Zhong Liu Za Zhi 28(2006)28-31.
    [83]J.Xu,J.Menezes,U.Prasad,A.Ahmad,Elevated serum levels of transforming growth factor betal in Epstein-Barr virus-associated nasopharyngeal carcinoma patients.Int J Cancer 84(1999)396-399.
    [84]J.C.Lin,K.Y.Chen,W.Y.Wang,et al.Detection of Epstein-Barr virus DNA in the peripheral-blood cells of patients with nasopharyngeal carcinoma:relationship to distant metastasis and survival.J Clin Oncol 19(2001)2607-2615.
    [85]K.C.Chan,Y.M.Lo,Clinical applications of plasma Epstein-Barr virus DNA analysis and protocols for the quantitative analysis of the size of circulating Epstein-Barr virus DNA.Methods Mol Biol 336(2006) 111-121.
    [86]J.Y.Shao,Y.Zhang,Y.H.Li,et al.Comparison of Epstein-Barr virus DNA level in plasma,peripheral blood cell and tumor tissue in nasopharyngeal carcinoma.Anticancer Res 24(2004)4059-4066.
    [87]W.Jiang,Y.Liao,[The dynamic study between EBV-DNA with nasopharyngeal carcinoma].Lin Chuang Er Bi Yan Hou Ke Za Zhi 19(2005)920-922.
    [88]X.Hou,L.Zhang,C.Zhao,et al.[Prognostic impact of plasma Epstein-Barr virus DNA concentration on distant metastasis in nasopharyngeal carcinoma].Ai Zheng 25(2006)785-792.
    [89]P.Lou,W.Chen,T.Sheen,et al.Expression of E-cadherin/catenin complex in nasopharyngeal carcinoma:correlation with clinicopathological parameters.Oncol Rep 6(1999)1065-1071.
    [90]S.M.Krishna,S.James,P.Balaram,Expression of VEGF as prognosticator in primary nasopharyngeal cancer and its relation to EBV status.Virus Res 115(2006)85-90.
    [91]D.Sha,Y.J.He,[Expression and clinical significance of VEGF and its receptors Flt-1 and KDR in nasopharyngeal carcinoma].Ai Zheng 25(2006)229-234.
    [92]W.Z.Jiang,Y.P.Liao,S.P.Zhao,H.J.Wu,[Expression clinical significance of nm23-H1 and vessel endothelium growth factor protein in nasopharyngeal carcinoma].Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 41(2006)200-204.
    [93]Y.Xiang,H.Yao,S.Wang,et al.Prognostic value of Survivin and Livin in nasopharyngeal carcinoma.Laryngoscope 116(2006)126-130.
    [94]L.B.Song,M.S.Zeng,W.T.Liao,et al.Bmi-1 is a novel molecular marker of nasopharyngeal carcinoma progression and immortalizes primary human nasopharyngeal epithelial cells.Cancer Res 66(2006)6225-6232.
    [95]G.Bar-Sela,V.Kaplan-Cohen,N.Ilan,et al.Heparanase expression in nasopharyngeal carcinoma inversely correlates with patient survival.Histopathology 49(2006)188-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700