米邦塔仙人掌多糖提取鉴定及对缺血性脑损伤的保护作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
米邦塔仙人掌多糖提取鉴定及对缺血性脑损伤的保护作用研究
     目的
     本研究拟通过提取、分离、纯化获得米邦塔仙人掌多糖并进行相应的含量及组分鉴定;同时建立整体脑缺血复灌模型和离体原代培养神经元氧糖剥夺(oxygen-glucose deprivation, OGD)模型,分别从整体和离体水平,观察米邦塔仙人掌多糖对脑缺血诱发的学习记忆能力损害及缺血性脑损伤的保护作用,并从认知相关基因的表达以及对原代培养神经元细胞内氧自由基浓度的变化、钙离子浓度的影响、细胞培养外液中兴奋性氨基酸的含量变化等方面进行系统的药效学及作用机制方面的研究,综合探讨米邦塔仙人掌多糖对缺血性脑卒中保护的作用效果及机制,阐明对缺血性脑损伤保护作用及可能的作用靶点,为开发米邦塔仙人掌多糖的药用价值提供可靠的科学依据,为今后的临床研究提供可靠的实验依据;对于充分利用米邦塔仙人掌的丰富资源,促进米邦塔仙人掌的产业发展,将会产生巨大的社会和经济效益。
     方法和结果
     第一部分米邦塔仙人掌多糖提取分离及组分鉴定
     将米邦塔仙人掌切碎,干燥后,通过水溶醇沉的方法得到粗多糖,然后将粗多糖过DEAE-纤维素分离柱,根据苯酚-硫酸法接取纯化多糖成分及检测多糖的纯度。经气相色谱-质谱联用(GC-MS)法分析米邦塔仙人掌多糖的单糖成分及相应的含量,通过凝胶渗透色谱(GPC)法分析米邦塔仙人掌多糖片段的分子量大小。
     结果显示:提取纯化的米邦塔仙人掌多糖纯度达到84%,主要单糖成分及含量分别是:甘露糖(6.37%),鼠李糖(14.94%),木糖(1.99%),阿拉伯糖(24.07%),半乳糖(38.25%),核糖(2.63%)及葡萄糖(11.48%),米邦塔仙人掌多糖的GPC谱图主要显示有两个多糖片段,且Mn分别为5.40×105和2270。
     第二部分米邦塔仙人掌多糖对原代培养神经元氧糖剥夺所致的损伤模型的保护作用及机制研究
     离体缺血细胞模型采用原代培养大鼠脑皮质、海马神经元氧糖剥夺损伤模型(OGD)。并通过物理缺氧损伤及化学缺氧损伤两种OGD损伤方式检测米邦塔仙人掌多糖的细胞毒性影响;同时通过检测细胞形态,MTT代谢率和乳酸脱氢酶(Lactate dehydrogenase, LDH)活性综合评价米邦塔仙人掌多糖的神经细胞保护作用;采用高效液相色谱(High performance liquid chromatography, HPLC)荧光检测技术测定培养皮层神经元细胞外液中谷氨酸(Glumatic, Glu)的含量;进一步通过检测神经元细胞胞内活性氧(ROS)及钙离子浓度(Intracellular calcium concentrations, [Ca2+]ⅰ)的变化来探讨MAPs的神经保护作用机制。
     结果显示:MTT和LDH检测发现,米邦塔仙人掌多糖无细胞毒性,且无论原代培养神经元细胞是通过物理OGD损伤还是化学OGD损伤,MAPs均可减轻OGD引起的神经元损伤,根据荧光标记检测实验方法发现OGD会引起胞内ROS及钙离子浓度升高,HPLC检测发现OGD会引起的胞外氨基酸浓度的增高,但给予MAPs处理后均可逆转细胞外液的Glu、细胞内基础氧自由基和钙离子浓度的升高。
     第三部分米邦塔仙人掌多糖对小鼠/大鼠脑缺血再灌注损伤的保护作用及机制研究
     采用局灶性脑缺血-复灌损伤(Middle cerebral artery occlusion, MCAO)或双侧颈总动脉结扎-复灌损伤(Permanent occlusion of the bilateral CCA,2VO)所致的脑缺血再灌注模型分析药物的保护及作用机制的研究。实验动物随机分为假手术组、缺血模型组和MAPs治疗组。MCAO模型:术前48 h,24 h,12 h及术后10 min各组分别给予生理盐水和MAPs治疗,运用TTC染色观察脑梗死体积;运用神经行为学评分分析小鼠的脑缺血后神经行为学的改变。2VO模型:术前48 h,24 h,12h及术后10 min各组分别给予生理盐水和相应药物治疗,同时每天给予药物治疗一次,持续20天。运用Morris水迷宫行为学方法检测小鼠空间学习记忆能力;运用事物记忆行为学方法检测小鼠对新事物认知能力;运用HE染色观察组织形态学改变;运用qRT-PCR、Western blot技术分析各实验组之间的NMDAR2B、NMDAR1、BDNF mRNA和BDNF蛋白的表达水平。
     结果显示:神经行为学评分发现模型组小鼠有明显的神经行为学障碍,脑梗死体积明显增加,Morris水迷宫检测模型组小鼠学习记忆能力受损,与假手术组比较逃避潜伏期延长、空间辨别能力下降;组织学观察模型组小鼠皮层组织结构异常;结扎双侧颈总动脉导致弥漫性前脑缺血损伤的模型组皮层部位NMDAR2B以及BDNF的mRNA和BDNF蛋白表达减少。给予米邦塔仙人掌多糖治疗后能改善缺血引起的神经行为障碍,减少相应脑区梗死面积,改善脑缺血所致的学习记忆障碍,减少神经元丢失,并增加NMDAR2B、NMDAR1和BDNF的表达。
     结论
     提取纯化的米邦塔仙人掌多糖的主要单糖成分及含量分别是:甘露糖(6.37%),鼠李糖(14.94%),木糖(1.99%),阿拉伯糖(24.07%),半乳糖(38.25%),核糖(2.63%)及葡萄糖(11.48%),且米邦塔仙人掌多糖经GPC法分析后得出主要有两个多糖片段组成,Mn分别为5.40×105和2270。米邦塔仙人掌多糖可显著改善脑缺血所致的学习记忆能力损害及相关神经行为学改变,同时可以改善OGD引起的神经元损伤,其抗损伤的机制可能涉及以下几方面:减轻自由基损伤,增加认知相关基因NMDAR2B和脑源性神经生长因子BDNF的表达,抑制谷氨酸的兴奋毒性和神经元胞内活性氧的浓度及防止细胞内钙超载现象发生。
Opuntia Milpa Alta Polysaccharides Extraction and Structure identification and Protection Activity on Cerebral Ischemia
     AIM
     To extract and isolate polysaccharides from Opuntia Milpa Alta (MAPs) and analysis the polysaccharides composition, further to investigate the effects and mechanisms of MAPs in vivo and in vitro model of cerebral ischemic injury demonstrated that the polysaccharides had potent neuroprotective. We tried to explore the protective effects of MAPs on cerebral ischemia in vivo with ischemia induced by cerebral hypoperfusion after the bilateral common carotid artery (2VO) and middle cerebral artery occlusion (MCAO). In vitro, rat cortical and hippocampal neurons have suffered from oxygen-glucose deprivation (OGD). To analysis the mechanisms of its action, we have systematically investigated the effect of MAPs on the expression of NMDAR2B, NMDAR1 and BDNF, the content of important neurotransmitter amino acid, the concentration of reactive oxygen species and intracellular calcium.
     METHODS AND RESULTS
     PartⅠMAPs extraction and structure identification
     Opuntia Milpa Alta has been cut up and drying. We extracted polysaccharides from Opuntia Milpa Alta through water extraction and alcohol precipitation method and used DEAE-cellulose-52 column to purification the polysaccharides fragment. The contents of polysaccharides were determined by Phenol sulfuric Acid Method. MAPs composition was analyzed using Gas Chromatography-Mass Spectrometer (GC-MS) method. And the Molecular weight size through the Gel Permeation Chromatography (GPC) detection.
     Results:MAPs are extracted by our separation method contained and sugar to 84%. Sugar composition analysis revealed that MAPs consisted primarily of Mannose (6.37%), Rhamnose (14.94%), Xylose (1.99%), Arabinose (24.07%), Galactose (38.25%), Ribose (2.63%), Glucose (11.48%). The GPC analysis for Molecular weight MAPs were 5.40×105 and 2270.
     PartⅡProtective effects of MAPs on cerebral ischemia in vitro
     Cultured rat cortical and hippocampal neurons suffered from oxygen-glucose deprivation (OGD) was served as an in vitro ischemia model. Primary cultures of neurons were exposed to 4 h OGD. MAPs were added 12 h before OGD initiated and maintained during OGD period. The effect of MAPs on cell activity was observed. Thiazoyl blue tetrazolium bromide (MTT) method and lactate dehydrogenase (LDH) release were detected to determined cell activity.2',7'-dichlorodihydrofluorescin diacetate (DCFH-DA) staining was used to observe ROS in cortical neurons. Concentrations of extracellular amino acid (Glu), intracellular and calcium ([Ca2+]ⅰ) were detected by high performance liquid chromatography (HPLC) and fluorescent Ca2+ sensitive probe fura 2 acetoxylmethyl ester (Fura 2/AM) respectively in cortical neurons.
     Results:The extracted of MAPs could significantly inhibit the decrease of cell activity in cortical and hippocampal neurons induced by OGD. MAPs could decrease LDH level in cultures of cortical neurons suffered from OGD. At the same time, DCFH-DA staining showed that ROS in injured neurons was decreased after administration of MAPs. MAPs (0.5μg/mL 5μg/mL 50μg/mL effectively depressed of intracellular calcium ([Ca2+]ⅰ) and decrease the extracellular glutamate (Glu) level induced by OGD.
     PartⅢProtective effects of MAPs on cerebral ischemia in vivo
     Chronic cerebral hypoperfusion in rats or mice was performed by permanent occlusion of the bilateral common carotid artery (2VO) and middle cerebral artery occlusion (MCAO). The MCAO model:Using mouse model of middle cerebral artery occlusion (MCAO) 2 h-reperfusion 24 h. Male mice were divided into three groups: sham-operated group, ischemic group, MAPs (200 mg/kg) treated group. In vivo cerebral infarct area was measured by tetrazolium staining, and neurological functional deficits were assessed at 4 and 24 h after reperfusion respectively. The 2VO model:Male mice were divided into five groups:sham-operated group, ischemic group, MAPs (100 mg/kg,200 mg/kg and 400 mg/kg) treated group. Male rats were divided into three groups:sham-operated group, ischemic group, MAPs (200 mg/kg) treated group. After ischemic impairment by 2VO, MAPs were administrated in treated groups and saline in sham-operated and ischemic groups. Morris water maze and Novel Object Recognition test were used to measure spatial learning and memory performance and animal behavior. Morphological change was examined by hematoxylin-eosin (HE) staining. Expressions of NMDAR1, NMDAR2B and BDNF were measured by real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) and expression of BDNF was measured by western blot analyses.
     Results:Chronic cerebral hypoperfusion resulted neurological functional deficits and increase cerebral infarct area, depress the cognitive ability, in spatial learning and memory impairments shown by longer escape latency and shorter time spent in the target quadrant. These behavioral dysfunctions were delayed degeneration of neurons, decreases in NMDAR2B and BDNF mRNA and BDNF protein levels. Intraperitoneally administration of MAPs (200 mg/kg) significantly reduced cerebral infarct area, and attenuated neurological functional deficits. Administration of MAPs markedly improved the spatial learning and memory dysfunction and spatial memory function, attenuated neuronal damage and enhanced the expression of NMDAR2B and BDNF.
     CONCLUSIONS
     MAPs are extracted by our separation method contained and sugar to 84%. Sugar composition analysis revealed that MAPs consisted primarily of Mannose (6.37%), Rhamnose (14.94%), Xylose (1.99%), Arabinose (24.07%), Galactose (38.25%), Ribose (2.63%), Glucose (11.48%). The GPC analysis for Molecular weight MAPs were 5.40×105 and 2270. In the pharmacological research, results show that MAPs have a significant neuroprotective effects in vivo and in vitro model of cerebral ischemic injury. The neuroprotective effects is partly due to its functions that are as follows:enhancement of NMDAR2B and BDNF expression; prevention of intracellular inhibition of excessive glutamate release, calcium overload and interrupt the cascade of events leading to neuronal injury and death in ischemia.
引文
1. Hu C, Li J, Yang D, Pan Y, Wan H (2010) A neuroprotective polysaccharide from Hyriopsis cumingii. J Nat Prod 73:1489-1493.
    2. Luo D, Zhang Q, Wang H, Cui Y, Sun Z, et al. (2009) Fucoidan protects against dopaminergic neuron death in vivo and in vitro. Eur J Pharmacol 617:33-40.
    3. Li SY, Yang D, Yeung CM, Yu WY, Chang RC, et al. (2011) Lycium barbarum polysaccharides reduce neuronal damage, blood-retinal barrier disruption and oxidative stress in retinal ischemia/reperfusion injury. PLoS One 6:el6380.
    4. Ho YS, Yu MS, Yang XF, So KF, Yuen WH, et al. (2010) Neuroprotective effects of polysaccharides from wolfberry, the fruits of Lycium barbarum, against homocysteine-induced toxicity in rat cortical neurons. J Alzheimers Dis 19: 813-827.
    5. Zhou ZY, Tang YP, Xiang J, Wua P, Jin HM, et al. (2010) Neuroprotective effects of water-soluble Ganoderma lucidum polysaccharides on cerebral ischemic injury in rats. J Ethnopharmacol 131:154-164.
    6. Zhao HB, Lin SQ, Liu JH, Lin ZB (2004) Polysaccharide extract isolated from ganoderma lucidum protects rat cerebral cortical neurons from hypoxia/reoxygenation injury. J Pharmacol Sci 95:294-298.
    7. Loro JF, del Rio I, Perez-Santana L (1999) Preliminary studies of analgesic and anti-inflammatory properties of Opuntia dillenii aqueous extract. J Ethnopharmacol 67:213-218.
    8. Trombetta D, Puglia C, Perri D, Licata A, Pergolizzi S, et al. (2006) Effect of polysaccharides from Opuntia ficus-indica (L.) cladodes on the healing of dermal wounds in the rat. Phytomedicine 13:352-358.
    9. Alarcon-Aguilar FJ, Valdes-Arzate A, Xolalpa-Molina S, Banderas-Dorantes T, Jimenez-Estrada M, et al. (2003) Hypoglycemic activity of two polysaccharides isolated from Opuntia ficus-indica and O. streptacantha. Proc West Pharmacol Soc 46:139-142.
    10. Ji YB, Ji CF, Zou X, Gao SY (2005) [Study on the effects of two kinds of cactus polysaccharide on erythrocyte immune function of S180 mice]. Zhongguo Zhong Yao Za Zhi 30:690-693.
    11. Galati EM, Monforte MT, Miceli N, Mondello MR, Taviano MF, et al. (2007) Opuntia ficus indica (L.) Mill. mucilages show cytoprotective effect on gastric mucosa in rat. Phytother Res 21:344-346.
    12. Wolfram RM, Kritz H, Efthimiou Y, Stomatopoulos J, Sinzinger H (2002) Effect of prickly pear (Opuntia robusta) on glucose- and lipid-metabolism in non-diabetics with hyperlipidemia--a pilot study. Wien Klin Wochenschr 114: 840-846.
    13. Huang X, Li Q, Li H, Guo L (2009) Neuroprotective and antioxidative effect of cactus polysaccharides in vivo and in vitro. Cell Mol Neurobiol 29:1211-1221.
    14. Huang X, Li Q, Zhang Y, Lu Q, Guo L, et al. (2008) Neuroprotective effects of cactus polysaccharide on oxygen and glucose deprivation induced damage in rat brain slices. Cell Mol Neurobiol 28:559-568.
    15. White BC, Sullivan JM, DeGracia DJ, O'Neil BJ, Neumar RW, et al. (2000) Brain ischemia and reperfusion:molecular mechanisms of neuronal injury. J Neurol Sci 179:1-33.
    16. Chong ZZ, Li F, Maiese K (2005) Oxidative stress in the brain:novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol 75: 207-246.
    17. Jeon D, Chu K, Jung KH, Kim M, Yoon BW, et al. (2008) Na(+)/Ca(2+) exchanger 2 is neuroprotective by exporting Ca(2+) during a transient focal cerebral ischemia in the mouse. Cell Calcium 43:482-491.
    18. Nakamura T, Lipton SA (2010) Preventing Ca2+-mediated nitrosative stress in neurodegenerative diseases:possible pharmacological strategies. Cell Calcium 47: 190-197.
    19. Murer MG, Yan Q, Raisman-Vozari R (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease. Prog Neurobiol 63:71-124.
    20. Schabitz WR, Berger C, Kollmar R, Seitz M, Tanay E, et al. (2004) Effect of brain-derived neurotrophic factor treatment and forced arm use on functional motor recovery after small cortical ischemia. Stroke 35:992-997.
    21. Rodriguez-Kern A, Gegelashvili M, Schousboe A, Zhang J, Sung L, et al. (2003) Beta-amyloid and brain-derived neurotrophic factor, BDNF, up-regulate the expression of glutamate transporter GLT-1/EAAT2 via different signaling pathways utilizing transcription factor NF-kappaB. Neurochem Int 43:363-370.
    1. Loro JF, del Rio I, Perez-Santana L (1999) Preliminary studies of analgesic and anti-inflammatory properties of Opuntia dillenii aqueous extract. J Ethnopharmacol 67:213-218.
    2. Trombetta D, Puglia C, Perri D, Licata A, Pergolizzi S, et al. (2006) Effect of polysaccharides from Opuntia ficus-indica (L.) cladodes on the healing of dermal wounds in the rat. Phytomedicine 13:352-358.
    3. Alarcon-Aguilar FJ, Valdes-Arzate A, Xolalpa-Molina S, Banderas-Dorantes T, Jimenez-Estrada M, et al. (2003) Hypoglycemic activity of two polysaccharides isolated from Opuntia ficus-indica and O. streptacantha. Proc West Pharmacol Soc 46:139-142.
    4. Wolfram RM, Kritz H, Efthimiou Y, Stomatopoulos J, Sinzinger H (2002) Effect of prickly pear (Opuntia robusta) on glucose- and lipid-metabolism in non-diabetics with hyperlipidemia--a pilot study. Wien Klin Wochenschr 114: 840-846.
    5. Ji YB, Ji CF, Zou X, Gao S Y (2005) [Study on the effects of two kinds of cactus polysaccharide on erythrocyte immune function of S180 mice]. Zhongguo Zhong Yao Za Zhi 30:690-693.
    6. Galati EM, Monforte MT, Miceli N, Mondello MR, Taviano MF, et al. (2007) Opuntia ficus indica (L.) Mill. mucilages show cytoprotective effect on gastric mucosa in rat. Phytother Res 21:344-346.
    7. Huang X, Li Q, Li H, Guo L (2009) Neuroprotective and antioxidative effect of cactus polysaccharides in vivo and in vitro. Cell Mol Neurobiol 29:1211-1221.
    8. Huang X, Li Q, Zhang Y, Lu Q, Guo L, et al. (2008) Neuroprotective effects of cactus polysaccharide on oxygen and glucose deprivation induced damage in rat brain slices. Cell Mol Neurobiol 28:559-568.
    9. Schepetkin IA, Xie G, Kirpotina LN, Klein RA, Jutila MA, et al. (2008) Macrophage immunomodulatory activity of polysaccharides isolated from Opuntia polyacantha. Int Immunopharmacol 8:1455-1466.
    1. Zhang WH, Wang X, Narayanan M, Zhang Y, Huo C, et al. (2003) Fundamental role of the Rip2/caspase-1 pathway in hypoxia and ischemia-induced neuronal cell death. Proc Natl Acad Sci U S A 100:16012-16017.
    2. Wang XQ, Yao RQ, Liu X, Huang JJ, Qi DS, et al. (2011) Quercetin protects oligodendrocyte precursor cells from oxygen/glucose deprivation injury in vitro via the activation of the PI3K/Akt signaling pathway. Brain Res Bull 86: 277-284.
    3. 郑敏,郭莲军,宗贤刚,et al.(2006)大鼠皮质及海马神经元体外缺氧缺糖模型建立.中国老年学杂志26(3):333-335.
    4. Malagelada C, Xifro X, Badiola N, Sabria J, Rodriguez-Alvarez J (2004) Histamine H2-receptor antagonist ranitidine protects against neural death induced by oxygen-glucose deprivation. Stroke 35:2396-2401.
    5. Lobner D (2000) Comparison of the LDH and MTT assays for quantifying cell death:validity for neuronal apoptosis? J Neurosci Methods 96:147-152.
    6.许蜀闽,王培勇,马红英(2005)连二亚硫酸钠在建立培养细胞的无氧环境中的应用.第三军医大学学报27(2):359-360.
    7. Wu Y, Yang Z (2003) Protective effects of MCI-186 on ischemic injury in PC 12 cells induced by sodium cyanide and sodium dithionite. Chinese Journal of New Drugs 12(10):825-828.
    8. Tang BB, Yang G., Xia L, et al (2006) Effects of GM1 on Heme Oxygenase-1 Expression in PC 12 Cells During Oxygen Glucose Deprivation and the Role of Phosphatidylinositol 3-kinase/Akt Pathway in the Course. Medical Journal of Wuhan Universtiy 27(5):580-584.
    9. Huang L, Li Q, Li H, He Z, Cheng Z, et al. (2009) Inhibition of intracellular Ca2+ release by a Rho-kinase inhibitor for the treatment of ischemic damage in primary cultured rat hippocampal neurons. Eur J Pharmacol 602:238-244.
    1. Lin HH, Li WW, Lee YC, Chu ST (2007) Apoptosis induced by uterine 24p3 protein in endometrial carcinoma cell line. Toxicology 234:203-215.
    2. Watanabe H, Takahashi R, Zhang XX, Kakizawa H, Hayashi H, et al. (1996) Inhibition of agonist-induced Ca2+ entry in endothelial cells by myosin light-chain kinase inhibitor. Biochem Biophys Res Commun 225:777-784.
    3. Ouyang C, Guo L, Lu Q, Xu X, Wang H (2007) Enhanced activity of GAB A receptors inhibits glutamate release induced by focal cerebral ischemia in rat striatum. Neurosci Lett 420:174-178.
    4. Beal MF (2001) Experimental models of Parkinson's disease. Nat Rev Neurosci 2: 325-334.
    5. White BC, Sullivan JM, DeGracia DJ, O'Neil BJ, Neumar RW, et al. (2000) Brain ischemia and reperfusion:molecular mechanisms of neuronal injury. J Neurol Sci 179:1-33.
    6. Reymann KG, Frey JU (2007) The late maintenance of hippocampal LTP: requirements, phases,'synaptic tagging','late-associativity' and implications. Neuropharmacology 52:24-40.
    7. Akopian A, Szikra T, Cristofanilli M, Krizaj D (2006) Glutamate-induced Ca2+ influx in third-order neurons of salamander retina is regulated by the actin cytoskeleton. Neuroscience 138:17-24.
    8. Morley P, MacPherson P, Whitfield JF, Harris EW, McBurney MW (1995) Glutamate receptor-mediated calcium surges in neurons derived from P19 cells. J Neurochem 65:1093-1099.
    1. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84-91.
    2. Zhao LR, Spellman S, Kim J, Duan WM, McCarthy JB, et al. (2005) Synthetic fibronectin peptide exerts neuroprotective effects on transient focal brain ischemia in rats. Brain Res 1054:1-8.
    3. Sydserff SG, Green AR, Cross AJ (1996) The effect of oedema and tissue swelling on the measurement of neuroprotection; a study using chlormethiazole and permanent middle cerebral artery occlusion in rats. Neurodegeneration 5:81-85.
    4. Chopp M, Li Y, Jiang N, Zhang RL, Prostak J (1996) Antibodies against adhesion molecules reduce apoptosis after transient middle cerebral artery occlusion in rat brain. J Cereb Blood Flow Metab 16:578-584.
    5. Ni JW, Matsumoto K, Watanabe H (1995) Tetramethylpyrazine improves spatial cognitive impairment induced by permanent occlusion of bilateral common carotid arteries or scopolamine in rats. Jpn J Pharmacol 67:137-141.
    6. Cheng Z, He W, Zhou X, Lv Q, Xu X, et al. (2011) Cordycepin protects against cerebral ischemia/reperfusion injury in vivo and in vitro. Eur J Pharmacol 664: 20-28.
    7. Vorhees CV, Williams MT (2006) Morris water maze:procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848-858.
    8. Qian Wang, Shengming Yin, Shenglong Li, Hong Xu, Deqin Yu etc (2011)The effects of social isolation on the spatial and nonspatial cognitive ability in mice. Clin J Behav Med & Brain Sci 20(9).
    9. Sarti C, Pantoni L, Bartolini L, Inzitari D (2002) Cognitive impairment and chronic cerebral hypoperfusion:what can be learned from experimental models. J Neurol Sci 203-204:263-266.
    10. Ginsberg MD, Busto R (1989) Rodent models of cerebral ischemia. Stroke 20: 1627-1642.
    11. Ni J, Ohta H, Matsumoto K, Watanabe H (1994) Progressive cognitive impairment following chronic cerebral hypoperfusion induced by permanent occlusion of bilateral carotid arteries in rats. Brain Res 653:231-236.
    12. Wang LM, Han YF, Tang XC (2000) Huperzine A improves cognitive deficits caused by chronic cerebral hypoperfusion in rats. Eur J Pharmacol 398:65-72.
    13. Murer MG, Yan Q, Raisman-Vozari R (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease. Prog Neurobiol 63:71-124.
    14. Dechant G, Neumann H (2002) Neurotrophins. Adv Exp Med Biol 513:303-334.
    15. Pezet S, Malcangio M (2004) Brain-derived neurotrophic factor as a drug target for CNS disorders. Expert Opin Ther Targets 8:391-399.
    16. Gomazkov OA (2005) [Neurotrophic and growth factors of the brain:regulatory specificity and therapeutic potential]. Usp Fiziol Nauk 36:22-40.
    1. Chong ZZ, Li F, Maiese K (2005) Oxidative stress in the brain:novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol 75: 207-246.
    2. White BC, Sullivan JM, DeGracia DJ, O'Neil BJ, Neumar RW, et al. (2000) Brain ischemia and reperfusion:molecular mechanisms of neuronal injury. J Neurol Sci 179:1-33.
    3. Murer MQ Yan Q, Raisman-Vozari R (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease. Prog Neurobiol 63:71-124.
    4. Pezet S, Malcangio M (2004) Brain-derived neurotrophic factor as a drug target for CNS disorders. Expert Opin Ther Targets 8:391-399.
    5. Gomazkov OA (2005) [Neurotrophic and growth factors of the brain:regulatory specificity and therapeutic potential]. Usp Fiziol Nauk 36:22-40.
    6. Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, et al. (1999) Genetic enhancement of learning and memory in mice. Nature 401:63-69.
    7. Loftis JM, Janowsky A (2003) The N-methyl-D-aspartate receptor subunit NR2B: localization, functional properties, regulation, and clinical implications. Pharmacol Ther 97:55-85.
    8. Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, et al. (1992) Heteromeric NMDA receptors:molecular and functional distinction of subtypes. Science 256: 1217-1221.
    9. Bartlett TE, Bannister NJ, Collett VJ, Dargan SL, Massey PV, et al. (2007) Differential roles of NR2A and NR2B-containing NMDA receptors in LTP and LTD in the CA1 region of two-week old rat hippocampus. Neuropharmacology 52: 60-70.
    10. Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31-108.
    11. Jiang X, Zhu D, Okagaki P, Lipsky R, Wu X, et al. (2003) N-methyl-D-aspartate and TrkB receptor activation in cerebellar granule cells:an in vitro model of preconditioning to stimulate intrinsic survival pathways in neurons. Ann N Y Acad Sci 993:134-145; discussion 159-160.
    12. Marini AM, Rabin SJ, Lipsky RH, Mocchetti Ⅰ (1998) Activity-dependent release of brain-derived neurotrophic factor underlies the neuroprotective effect of N-methyl-D-aspartate. J Biol Chem 273:29394-29399.
    13. Lin SY, Wu K, Levine ES, Mount HT, Suen PC, et al. (1998) BDNF acutely increases tyrosine phosphorylation of the NMDA receptor subunit 2B in cortical and hippocampal postsynaptic densities. Brain Res Mol Brain Res 55:20-27.
    14. Caldeira MV, Melo CV, Pereira DB, Carvalho RF, Carvalho AL, et al. (2007) BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Mol Cell Neurosci 35:208-219.
    15. Carvalho AL, Caldeira MV, Santos SD, Duarte CB (2008) Role of the brain-derived neurotrophic factor at glutamatergic synapses. Br J Pharmacol 153 Suppl 1:S310-324.
    16. Klau M, Hartmann M, Erdmann KS, Heumann R, Lessmann V (2001) Reduced number of functional glutamatergic synapses in hippocampal neurons overexpressing full-length TrkB receptors. J Neurosci Res 66:327-336.
    1. Zheng J, Yang B, Yu Y, Chen Q, Huang T, et al. (2012) Ganoderma Lucidum Polysaccharides Exert Anti-hyperglycemic Effect on Streptozotocin-induced Diabetic Rats through Affecting beta-cells. Comb Chem High Throughput Screen.
    2. Chen X, Bai X, Liu Y, Tian L, Zhou J, et al. (2009) Anti-diabetic effects of water extract and crude polysaccharides from tuberous root of Liriope spicata var. prolifera in mice. J Ethnopharmacol 122:205-209.
    3. Minari MC, Rincao VP, Soares SA, Ricardo NM, Nozawa C, et al. (2011) Antiviral properties of polysaccharides from Agaricus brasiliensis in the replication of bovine herpesvirus 1.Acta Virol 55:255-259.
    4. Qiao D, Luo J, Ke C, Sun Y, Ye H, et al. (2010) Immunostimulatory activity of the polysaccharides from Hyriopsis cumingii. Int J Biol Macromol 47:676-680.
    5. Ryu DS, Kim SH, Lee DS (2009) Anti-proliferative effect of polysaccharides from Salicornia herbacea on induction of G2/M arrest and apoptosis in human colon cancer cells. J Microbiol Biotechnol 19:1482-1489.
    6. Northcote DH (1964) Polysaccharides. Annu Rev Biochem 33:51-74.
    7. Pomin VH (2012) Structure-function relationship of anticoagulant and antithrombotic well-defined sulfated polysaccharides from marine invertebrates. Adv Food Nutr Res 65:195-209.
    8. Li WJ, Nie SP, Xie MY, Yu Q, Chen Y, et al. (2011) Ganoderma atrum polysaccharide attenuates oxidative stress induced by d-galactose in mouse brain. Life Sci 88:713-718.
    9. Hu C, Li J, Yang D, Pan Y, Wan H (2010) A neuroprotective polysaccharide from Hyriopsis cumingii. J Nat Prod 73:1489-1493.
    10. Luo D, Zhang Q, Wang H, Cui Y, Sun Z, et al. (2009) Fucoidan protects against dopaminergic neuron death in vivo and in vitro. Eur J Pharmacol 617:33-40.
    11. Li SY, Yang D, Yeung CM, Yu WY, Chang RC, et al. (2011) Lycium barbarum polysaccharides reduce neuronal damage, blood-retinal barrier disruption and oxidative stress in retinal ischemia/reperfusion injury. PLoS One 6:e16380.
    12. Ho YS, Yu MS, Yang XF, So KF, Yuen WH, et al. (2010) Neuroprotective effects of polysaccharides from wolfberry, the fruits of Lycium barbarum, against homocysteine-induced toxicity in rat cortical neurons. J Alzheimers Dis 19: 813-827.
    13. Chen Y, Zhao B, Huang X, Zhan J, Zhao Y, et al. (2011) Purification and neuroprotective effects of polysaccharides from Opuntia Milpa Alta in cultured cortical neurons. Int J Biol Macromol 49:681-687.
    14. Huang X, Li Q, Li H, Guo L (2009) Neuroprotective and antioxidative effect of cactus polysaccharides in vivo and in vitro. Cell Mol Neurobiol 29:1211-1221.
    15. Wei X, Mao F, Cai X, Wang Y (2011) Composition and bioactivity of polysaccharides from tea seeds obtained by water extraction. Int J Biol Macromol 49:587-590.
    16. Hsieh YS, Chien C, Liao SK, Liao SF, Hung WT, et al. (2008) Structure and bioactivity of the polysaccharides in medicinal plant Dendrobium huoshanense. Bioorg Med Chem 16:6054-6068.
    17. Zhou ZY, Tang YP, Xiang J, Wua P, Jin HM, et al. (2010) Neuroprotective effects of water-soluble Ganoderma lucidum polysaccharides on cerebral ischemic injury in rats. J Ethnopharmacol 131:154-164.
    18. Yu MS, Lai SW, Lin KF, Fang JN, Yuen WH, et al. (2004) Characterization of polysaccharides from the flowers of Nerium indicum and their neuroprotective effects. Int J Mol Med 14:917-924.
    19. Chan HC, Chang RC, Koon-Ching Ip A, Chiu K, Yuen WH, et al. (2007) Neuroprotective effects of Lycium barbarum Lynn on protecting retinal ganglion cells in an ocular hypertension model of glaucoma. Exp Neurol 203:269-273.
    20. Chan WK, Cheung CC, Law HK, Lau YL, Chan GC (2008) Ganoderma lucidum polysaccharides can induce human monocytic leukemia cells into dendritic cells with immuno-stimulatory function. J Hematol Oncol 1:9.
    21. Laurienzo P (2010) Marine polysaccharides in pharmaceutical applications:an overview. Mar Drugs 8:2435-2465.
    22. Zhou S, Yang Y, Gu X, Ding F (2008) Chitooligosaccharides protect cultured hippocampal neurons against glutamate-induced neurotoxicity. Neurosci Lett 444: 270-274.
    23. Harish Prashanth KV, Dharmesh SM, Jagannatha Rao KS, Tharanathan RN (2007) Free radical-induced chitosan depolymerized products protect calf thymus DNA from oxidative damage. Carbohydr Res 342:190-195.
    24. Mendis E, Kim MM, Rajapakse N, Kim SK (2007) An in vitro cellular analysis of the radical scavenging efficacy of chitooligosaccharides. Life Sci 80:2118-2127.
    25. Kim MS, Sung MJ, Seo SB, Yoo SJ, Lim WK, et al. (2002) Water-soluble chitosan inhibits the production of pro-inflammatory cytokine in human astrocytoma cells activated by amyloid beta peptide and interleukin-1 beta. Neurosci Lett 321:105-109.
    26. Eom TK, Ryu B, Lee JK, Byun HG, Park SJ, et al. (2012) beta-secretase inhibitory activity of phenolic acid conjugated chitooligosaccharides. J Enzyme Inhib Med Chem.
    27. Je JY, Kim SK (2005) Water-soluble chitosan derivatives as a BACE1 inhibitor. Bioorg Med Chem 13:6551-6555.
    28. Yu MS, Leung SK, Lai SW, Che CM, Zee SY, et al. (2005) Neuroprotective effects of anti-aging oriental medicine Lycium barbarum against beta-amyloid peptide neurotoxicity. Exp Gerontol 40:716-727.
    29. Ho YS, Yu MS, Lai CS, So KF, Yuen WH, et al. (2007) Characterizing the neuroprotective effects of alkaline extract of Lycium barbarum on beta-amyloid peptide neurotoxicity. Brain Res 1158:123-134.
    30. Ho YS, Poon DC, Chan TF, Chang RC (2012) From small to big molecules:how do we prevent and delay the progression of age-related neurodegeneration? Curr Pharm Des 18:15-26.
    31. Kim SY, Lee EJ, Kim HP, Kim YC, Moon A (1999) A novel cerebroside from lycii fructus preserves the hepatic glutathione redox system in primary cultures of rat hepatocytes. Biol Pharm Bull 22:873-875.
    32. Li XM, Ma YL, Liu XJ (2007) Effect of the Lycium barbarum polysaccharides on age-related oxidative stress in aged mice. J Ethnopharmacol 111:504-511.
    33. Niu AJ, Wu JM, Yu DH, Wang R (2008) Protective effect of Lycium barbarum polysaccharides on oxidative damage in skeletal muscle of exhaustive exercise rats. Int J Biol Macromol 42:447-449.
    34. Ho YS, Yu MS, Yik SY, So KF, Yuen WH, et al. (2009) Polysaccharides from wolfberry antagonizes glutamate excitotoxicity in rat cortical neurons. Cell Mol Neurobiol 29:1233-1244.
    35. Yu MS, Lai CS, Ho YS, Zee SY, So KF, et al. (2007) Characterization of the effects of anti-aging medicine Fructus lycii on beta-amyloid peptide neurotoxicity. Int J Mol Med 20:261-268.
    36. Yu MS, Ho YS, So KF, Yuen WH, Chang RC (2006) Cytoprotective effects of Lycium barbarum against reducing stress on endoplasmic reticulum. Int J Mol Med 17:1157-1161.
    37. Flicker L (2010) Modifiable lifestyle risk factors for Alzheimer's disease. J Alzheimers Dis 20:803-811.
    38. Beeri MS, Schmeidler J, Silverman JM, Gandy S, Wysocki M, et al. (2008) Insulin in combination with other diabetes medication is associated with less Alzheimer neuropathology. Neurology 71:750-757.
    39. Kivipelto M, Helkala EL, Laakso MP, Hanninen T, Hallikainen M, et al. (2001) Midlife vascular risk factors and Alzheimer's disease in later life:longitudinal, population based study. BMJ 322:1447-1451.
    40. Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B (2009) Parkinson's disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am J Epidemiol 169:919-926.
    41. Guo L, Duggan J, Cordeiro MF (2010) Alzheimer's disease and retinal neurodegeneration. Curr Alzheimer Res 7:3-14.
    42. Deleidi M, Isacson O (2012) Viral and inflammatory triggers of neurodegenerative diseases. Sci Transl Med 4:121psl23.
    43. Penaranda M, Falco V, Payeras A, Jordano Q, Curran A, et al. (2007) Effectiveness of polysaccharide pneumococcal vaccine in HIV-infected patients: a case-control study. Clin Infect Dis 45:e82-87.
    44. Wang CR, Ng TB, Li L, Fang JC, Jiang Y, et al. (2011) Isolation of a polysaccharide with antiproliferative, hypoglycemic, antioxidant and HIV-1 reverse transcriptase inhibitory activities from the fruiting bodies of the abalone mushroom Pleurotus abalonus. J Pharm Pharmacol 63:825-832.
    45. Ohta Y, Lee JB, Hayashi K, Fujita A, Park DK, et al. (2007) In vivo anti-influenza virus activity of an immunomodulatory acidic polysaccharide isolated from Cordyceps militaris grown on germinated soybeans. J Agric Food Chem 55: 10194-10199.
    46. Chen MZ, Xie HG, Yang LW, Liao ZH, Yu J (2010) In vitro anti-influenza virus activities of sulfated polysaccharide fractions from Gracilaria lemaneiformis. Virol Sin 25:341-351.
    47. Harden EA, Falshaw R, Carnachan SM, Kern ER, Prichard MN (2009) Virucidal activity of polysaccharide extracts from four algal species against herpes simplex virus. Antiviral Res 83:282-289.
    48. Ghaemi A, Soleimanjahi H, Gill P, Arefian E, Soudi S, et al. (2009) Echinacea purpurea polysaccharide reduces the latency rate in herpes simplex virus type-1 infections. Intervirology 52:29-34.
    49. Ueno R, Kuno S (1987) Anti-HIV synergism between dextran sulphate and zidovudine. Lancet 2:796-797.
    50. Marzolo MP, Bu G (2009) Lipoprotein receptors and cholesterol in APP trafficking and proteolytic processing, implications for Alzheimer's disease. Semin Cell Dev Biol 20:191-200.
    51. Huang X, Tang J, Zhou Q, Lu H, Wu Y, et al. (2010) Polysaccharide from fuzi (FPS) prevents hypercholesterolemia in rats. Lipids Health Dis 9:9.
    52. Gong CX, Liu F, Grundke-Iqbal I, Iqbal K (2005) Post-translational modifications of tau protein in Alzheimer's disease. J Neural Transm 112:813-838.
    53. Thong FS, Dugani CB, Klip A (2005) Turning signals on and off:GLUT4 traffic in the insulin-signaling highway. Physiology (Bethesda) 20:271-284.
    54. Nelson TJ, Alkon DL (2005) Insulin and cholesterol pathways in neuronal function, memory and neurodegeneration. Biochem Soc Trans 33:1033-1036.
    55. Donahue JE, Flaherty SL, Johanson CE, Duncan JA,3rd, Silverberg GD, et al. (2006) RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease. Acta Neuropathol 112:405-415.
    56. Hannan JM, Ali L, Rokeya B, Khaleque J, Akhter M, et al. (2007) Soluble dietary fibre fraction of Trigonella foenum-graecum (fenugreek) seed improves glucose homeostasis in animal models of type 1 and type 2 diabetes by delaying carbohydrate digestion and absorption, and enhancing insulin action. Br J Nutr 97: 514-521.
    57. Kondo Y, Nakatani A, Hayashi K, Ito M (2000) Low molecular weight chitosan prevents the progression of low dose streptozotocin-induced slowly progressive diabetes mellitus in mice. Biol Pharm Bull 23:1458-1464.
    58. Li SP, Zhang GH, Zeng Q, Huang ZG, Wang YT, et al. (2006) Hypoglycemic activity of polysaccharide, with antioxidation, isolated from cultured Cordyceps mycelia. Phytomedicine 13:428-433.
    59. Chiu K, Zhou Y, Yeung SC, Lok CK, Chan OO, et al. (2010) Up-regulation of crystallins is involved in the neuroprotective effect of wolfberry on survival of retinal ganglion cells in rat ocular hypertension model. J Cell Biochem 110: 311-320.
    60. Engelhart MJ, Geerlings MI, Ruitenberg A, van Swieten JC, Hofman A, et al. (2002) Dietary intake of antioxidants and risk of Alzheimer disease. JAMA 287: 3223-3229.
    61. Leveugle B, Ding W, Laurence F, Dehouck MP, Scanameo A, et al. (1998) Heparin oligosaccharides that pass the blood-brain barrier inhibit beta-amyloid precursor protein secretion and heparin binding to beta-amyloid peptide. J Neurochem 70:736-744.
    62. Yoshino S, Watanabe S, Imano M, Suga T, Nakazawa S, et al. (2010) Improvement of QOL and prognosis by treatment of superfine dispersed lentinan in patients with advanced gastric cancer. Hepatogastroenterology 57:172-177.
    63. Hazama S, Watanabe S, Ohashi M, Yagi M, Suzuki M, et al. (2009) Efficacy of orally administered superfine dispersed lentinan (beta-1,3-glucan) for the treatment of advanced colorectal cancer. Anticancer Res 29:2611-2617.
    64.沈业寿,郑立军,王正亮,顾利平.(2007)Experimental Study on Anti-tumor Effects of Intracellular Polysaccharide from Phellinus Linteus.癌变·畸变·突变:19(4).
    65.党双锁,程延安,贾晓黎,陈明霞,刘恩岐(2009)大黄素和黄芪多糖对实验性肝损伤大鼠肝脏超微结构的影响.西安交通大学学报:30(4).
    66.包根书,史大中.(2003)铁筷子多糖联合阿苯达唑抑制小鼠细粒棘球蚴生长包根书Journal of tropical medicine:3(3).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700