基于中医整体观念治法治则下的端锚酶和端粒酶反义寡核苷酸联合作用对肺癌细胞端粒的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤,这种由于多种环境因素长期共同作用所产生的多基因疾病,在现代医学注重对单基因、单靶点的对抗性治疗下难以取得良好的效果。然而中医讲究整体、注重变化、注重平衡、辨证施治等基础理论的挖掘,不但可以解决诸如恶性肿瘤等复杂多基因疾病的问题,而且可以促进现代医学向更高境界发展。
     中医整体观念的治法治则为解决肿瘤分子生物学端粒抗癌靶点的难题提供了良好的思路。
     端粒是真核生物细胞染色体末端的特殊核酸蛋白结构,能保护染色体末端,以维持染色体结构的稳定。端粒长度的复制性缩短是通过端粒酶的逆转录合成来修复的,而端粒长度的维持对于肿瘤细胞保持无限增殖的永生化倾向至关重要。因此,通过抑制端粒酶来控制肿瘤是近年来国内外学者关注的热点之一。然而,理论推理的逻辑性和实验室工作的初步结果并没有给临床带来满意的效果。因为从整体的角度,除了端粒酶之外,还有众多的端粒相关蛋白因子参与端粒的调控;从平衡的角度,单独的端粒酶抑制是一种不完全的抑制。
     从理论上看,端粒结合蛋白1(TRF1)通过抑制端粒酶与端粒相互作用而对端粒长度起负向调节作用;而端锚酶能使TRF1发生ADP核糖基化而抑制其与端粒重复片段结合,是端粒长度的正向调节因子。端锚酶、端粒酶同时与TRF1相联系,两者的联合则有可能成为肿瘤基因治疗的一个靶点。
     为此,我们首先构建端锚酶反义寡核苷酸和反义端粒酶催化亚单位寡核苷酸,以其相应的正义寡核苷酸为对照,采用脂质体法将其导入端粒酶阳性的人肺腺癌细胞A549,观察反义寡核苷酸对A549细胞端粒动力学的影响、与Bcl-2凋亡基因家族的相互联系及反义寡核苷酸作用下A549细胞形态、功能的改变,探讨端锚酶、端粒酶联合作为肿瘤基因治疗的可能性和机理,为日后肿瘤基因治疗提供可靠的实验室数据和充足的理论准备。
     目的
     1.观察端锚酶、端粒酶两种反义寡核苷酸联合作用对端粒酶催化亚单位(hTERT)mRNA转录、端粒酶及端锚酶蛋白质表达水平的影响;探讨两种反义寡核苷酸作用对细胞端粒长度的影响。
     2.探讨两种反义寡核苷酸与Bcl-2凋亡基因家族相互作用的联系,收集其基因学证据。
     3.观察两种反义寡核苷酸持续作用下A549细胞形态学的改变,细胞传代与端粒缩短之间的相互关系,细胞氚摄取率及X-Gal转染率等功能学改变,探讨其肿瘤基因治疗的潜在价值。
     方法与结果
     1.运用逆转录-聚合酶链反应(RT-PCR)对A549细胞端粒酶催化亚单位(hTERT)mRNA表达进行检测。结果发现:端粒酶催化亚单位反义寡核苷酸(ashTERT)下调hTERT mRNA的转录;而端锚酶正、反义寡核苷酸(sTANKS、asTANKS)不影响其转录;端粒酶催化亚单位及端锚酶反义寡核苷酸联合(ashTERT+asTANKS)时hTERT mRNA的转录水平无额外的变化。
     2.采用多聚合酶链-酶联免疫吸附实验(PCR-ELISA)定量分析端粒酶活性。结果显示:ashTERT明显抑制端粒酶活性;asTANKS、sTANKS作用下端粒酶活性无明显变化;asTANKS与ashTERT联合作用下端粒酶活性亦无明显额外变化。
     3.采用Western Blot法检测端锚酶活性显示:asTANKS明显抑制端锚酶活性;ashTERT、shTERT作用下端锚酶活性无明显变化;ashTERT与asTANKS联合作用下端锚酶活性亦无明显额外变化。
     4.通过定量荧光原位杂交法(Q-FISH)上流式细胞仪检测A549细胞端粒长度。结果显示:与sTANKS、shTERT比较,asTANKS、ashTERT均可导致细胞端粒长度的明显缩短;而asTANKS+ashTERT的联合作用使细胞端粒长度的缩短更为明显,两者有协同作用。
     5.以RT-PCR法分析反义寡核苷酸作用下A549细胞mcl-1、Bcl-2和Bax基因的转录水平发现:ashTERT不影响上述三种基因的转录水平;asTANKS除上调mcl-1基因的转录外,对Bcl-2和Bax基因无影响;并且asTANKS的此种作用不因ashTERT的联合而发生改变。
     6.Western Blot法检测Mcl-1、Bcl-2及Bax蛋白活性显示:ashTERT对Mcl-1总蛋白活性无影响,但可使蛋白短拼接体的(Mcl-1s)含量下降;ashTERT对Bcl-2、Bax蛋白的表达无影响。asTANKS上调Mcl-1蛋白的表达,并且上调Mcl-1s的比例;对Bcl-2、Bax蛋白的表达无影响。asTANKS+ashTERT的联合作用可逆转Mcl-1s含量的下降,促进Mcl-1s、Mcl-1总蛋白活性的上调。
     7.普通光学显微镜及荧光显微镜观察,经asTANKS、ashTERT作用的细胞在形态学上渐出现细胞衰老的征象,并且在后期的传代试验中细胞凋亡的比例渐增;而asTANKS+ashTERT联合作用时细胞衰老和凋亡的特征更明显。
     8.细胞传代实验的结果显示:经asTANKS、ashTERT处理后的细胞传代时间明显延迟,细胞增殖周期明显缩短;而asTANKS+ashTERT联合作用时细胞增殖周期的缩短更为明显,两者有协同作用。
     9.经asTANKS、ashTERT处理后的细胞氚摄取率随细胞传代的进行逐渐下降,并且asTANKS+ashTERT联合作用组细胞氚摄取率降低更为明显,作为sTANKS、shTERT对照组的细胞氚摄取率无明显改变。
     10.经asTANKS、ashTERT处理后的细胞细胞X-Gal转染率随细胞传代的进行逐渐升高,并且asTANKS+ashTERT联合作用组细胞X-Gal转染率升高更为明显,作为sTANKS、shTERT对照组的细胞X-Gal转染率无明显改变。
     结论
     1.基于中医学整体平衡观念的治法治则对于解决恶性肿瘤端粒抗癌靶点的难题具有明显的指导意义。
     2.端锚酶反义寡核苷酸通路是完全有别于端粒酶的端粒抑制途径,其缩短细胞端粒长度的作用发挥有赖于减少自身端锚酶的活性。
     3.端锚酶和端粒酶反义寡核苷酸在加速细胞端粒长度的缩短、促进肿瘤细胞衰老、凋亡方面具有协同作用。
     4.端锚酶和端粒酶反义寡核苷酸协同作用的机理可能与mcl-1基因在转录及转录后水平的上调有关。
     总之,在中医学整体平衡观念的治法治则的指导下,端锚酶和端粒酶催化亚单位两种反义寡核苷酸协同作用限制A549恶性肿瘤细胞无限增殖的能力、加速其衰老、凋亡的研究,是肿瘤基因学治疗的新思路,有可能成为抗肿瘤基因治疗的新靶点。
Human diseases is related to gene directly or indirectly.Gene treatment,based on changing gene structure,can be used to mono-gene diseases,but nearly all multi-gene diseases,such as tumor result from regulation imbalance of multiple functional genes,namely that of genome and gene network of every layer.So "regulating gene function,not changing gene structure is main strategy to disease no matter now and future."
     Traditional Chinese Medicine,which core is equilibrium and integration concept(Yin-Yang theory and Zang-Fu theory),believe that disease result from the balance of integration of function.Functional regulation as a whole is just priority of traditional Chinese medicine.It has been proved by experiences of TCM of thousands years.There are many the same features between TCM and modem medicine,with the equilibrium concept and the concept of viewing situation as a whole corresponding to system biology,harmonization between human and nature corresponding to Environment Genomic Project,treat principle based on system and individualization(treat aiming at the pathogenesis ascertained by differentiating and analyzing the clinical presentation)corresponding to pharmaco-genetics,regulate treatment(strengthening vital Qi,eliminating pathogen,monarch,minister,assistant and guide)corresponding to multi-aim and medicine effect in coordination.
     TCM and Western medicine will reached integration gradually,and the priority of functional regulation as a whole will get more development.
     At present,there is an examples for telomere to regulate gene function as a whole.
     BACKGROUND:
     Telomeres,which contain repeated TTAGGG sequences,are large nucleoprotein complexes that protect the ends of chromosomes against degradation and fusion.The end-replication problem results in progressive shortening of telomeres leading to genome instability,and telomerase provides a means to replace telomere repeats which are lost during replication as a result of the inability of DNA polymerase to replicate to the end of a linear chromosome.Therefore,telomerase activity not only maintains the telomeres of proliferating cells but is implicated in the process of cellular immortalization and oncogenesis.In recent years,inhibition of telomerase used to be discussed as a promising approach for treating a variety of malignant tumors,but failed in clinic. The key is,in addition to telomerase,many other factors play a role in telomere maintenance including tankyrase.Tankyrase,which poly(ADP-ribosyl)ate telomere repeated-binding factor1 and releases it from telomere,allows access of telomerase to telomere and enhances telomere elongated.Conversely,it was possible that combination of both enzyme inhibitors can increase the risk of critically shortened telomere and promote the following crisis and death of cancer cells.
     OBJECTIVE:
     This study is to determine the effect and mechanism of antisense tankyrase oligonucleotide (asTANKS)combined antisense human telomerase reverse transcriptase oligonucleotide (ashTERT)on telomere in human lung adenocarcinoma A549 cells:
     1.To investigate the role of hTERT mRNA expression,telomerase activity,tankyrase activity and telomere length in t A549 cells teeated by asTANKS and/or ashTERT.
     2.To determine the association between expression of mcl-1,Bcl-2,Bax and action with asTANKS and/or ashTERT and obtain the mechanism.
     3.To observe the alteration in morphous and function for A549 cells and explore potential target of telomere-based molecular cancer therapeutics.
     METHODS AND RESULTS:
     1.The expression of hTERT mRNA by RT-PCR was markedly repressed by ashTERT and alteration was observed for neither asTANKS nor sTANKS.
     2.PCR-ELISA showed that telomerase activities in A549 cells were strongly suppressed by ashTERT,but not by asTANKS.
     3.By Western blot,asTANKS significantly inhibited tankyrase activity,while ashTERT not as well.
     4.Telomere length measured by Q-FISH,became significantly decreased with the treatment of ashTERT or asTANKS and the efficacy was more remarkable with the combination of them.
     5.Compared with the circumstance that neither asTANKS nor ashTERT was correlated with the regulation in Bcl-2 or Box,mcl-1 mRNA levels increased dramatically in the presence of asTANKS and no alteration with ashTERT.
     6.Both total Mcl-1 protein levels and the content of Mcl-1s were upregulated by asTANKS, while the content of Mcl-1s was downgraded by ashTERT,although total Mcl-1 protein levels had no change.However,addition of asTANKS reversed downregulation of Mcl-1s induced by ashTERT and result in elevation of them.Consistent with expression of mRNA in mcl-1,Bcl-2,either asTANKS or ashTERT was unassociateds with Bcl-2 or Bax levels.
     7.Cells was prone to senescence in morphous with asTANKS or ashTERT as passage time was delayed well and the trend combinated between asTANKS and ashTERT was more significant.
     8.Cells came more rapidly to an end and population double times was shortened more quickly with the combination of asTANKS and ashTERT,although the same effect was observed with single factor.
     9.Uptake rate in[~3H]-TdR trend to suppression under continuous treatment with ashTERT or asTANKS and combinated effect was more markedly.
     10.Transfection efficiency in X-Gal was enhanced gradually with ashTERT or asTANKS and increase combinated with them was more significant.
     CONCLUSION:
     1.Distinguished from telomerase,tankyrase is an unique negative-regulated route for telomere maintenance,in which antisense oligos diminishs poly(ADP-ribosyl)ation of TRF1,prevents it from release in telomeres,and trun down access of telomerase to telomeres and unconcerned with hTERT mRNA and protein levels as well.
     2.The combination between ashTERT and asTANKS can enhance the efficacy of telomere shortening induced by single factor,facilitate cancer cell senescence and hasten earlier tumor cellular crisis.
     3.The synergistic mechanism of them was concerned with ranscriptic and post-ranscriptic regulation in mcl-1.Concomitant with tankyrase activity downragulation,asTANKS might reverse potential resistance induced by ashTERT.
     In a word,pharmacological targeting of tankyrase enhances telomere shortening by means of a telomerase inhibitor and results in earlier cellular crisis.This study provides insight into strategies for telomere-based molecular cancer therapeutics by means of the iatreusis of integration concept in TCM.
引文
1. Moyzis RK, Buckingham JM, Cram LS, et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A, 1988, 85(18): 6622-6626.
    
    2. Makarov VL, Hirose Y, Langmore JP. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell, 1997, 88(5): 657-666.
    
    3. Lange T, Shiue L, Myers RM, et al. Structure and variability of human chromosome ends. Mol Cell Biol, 1990, 10(2): 518-527.
    
    4. Olovnikov AM. Principle of marginotomy in template synthesis of polynucleotides. Dokl Akad Nauk SSSR, 1991; 201(6): 1496-1499.
    
    5. Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell, 1985, 43(2Pt1): 405-413.
    
    6. Huffman KE, Levene SD, Tesmer VM, et al. Telomere shortening is proportional to the size of the G-rich telomeric 3'-overhang. J Biol Chem, 2000, 275(26): 19719-19722.
    
    7. Hanahan D, Weinberg RA.The hallmarks of cancer. Cell, 2000, 100(1): 57-70.
    
    8. Shay JW, Wright WE, Werbin H. Defining the molecular mechanisms of human cellimmortalization. Biochim Biophys Acta, 1991, 1072(1): 1-7.
    
    9. Hahn WC, Counter CM, Lundberg AS, et al.Creation of human tumour cells with defined genetic elements. Nature, 1999, 400(6743): 464-468.
    
    10. Wright WE, Shay JW. Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nat Med, 2000, 6 (8): 849-851.
    
    11. Hiyama E, Yokoyama T, Tatsumoto N, et al. Telomerase activity in gastric cancer. Cancer Res, 1995, 55(15): 3258-3262.
    
    12. Lin Y, Miyamoto H, Fujinami K, et al. Telomerase activity in human bladder cancer. Clin Cancer Res, 1996, 2(6): 929-932.
    
    13. Lin Y, Uemura H, Fujinami K, et al. Telomerase activity in primary prostate cancer. J Urol, 1997, 157(3): 1161-1165.
    
    14. Chadeneau C, Hay K, Hirte HW, et al. Telomerase activity associated with acquisition of malignancy in human colorectal cancer.Cancer Res,1995,55(12):2533-2536.
    15.Kojima H,Yokosuka O,Imazeki F,et al.TeIomerase activity and telomere length in hepatocellular carcinoma and chronic liver disease.Gastroenterology,1997,112(2):493-500.
    16.Broccoli D,Smogorzewska A,Chong L,et al.Human telomeres contain two distinct Myb-related proteins,TRF1 and TRF2.Nat Genet,1997,17(2):231-235.
    17.van Steensel B,de Lange T.Control of telomere length by the human telomeric protein TRF1.Nature,1997,385(6618):740-743.
    18.Smogorzewska A,van Steensel B,Bianchi A,et al.Control of human telomere length by TRF1 and TRF2.Mol Cell Biol,2000,20(5):1659-1668.
    19.Griffith JD,Comeau L,Rosenfield S,et al.Mammalian telomeres end in a large duplex loop.Cell,1995,97(4):503-514.
    20.Smith S,Giriat I,Schmitt A,et al.Tankyrase,a poly(ADP-ribose)polymerase at human telomeres.Science,1998,282(5393):1484-1487.
    21.Smith S,de Lange T.Tankyrase promotes telomere elongation in human ceils.Curt Biol,2000,10(20):1299-1302.
    22.章尧,赵燕,陆昌杰,等.三氧化二砷对HL-60细胞凋及其端粒酶hTERT-mRNA表达影响的实验室研究.中国药理学通报,2003,19(2):206-209.
    23.朱慧明,吴铁,崔燎,等.半边旗多糖对人肺腺癌细胞株SPCA-1凋亡和端粒酶的影响.中国新医药,2003,2(11):6-10.
    24.许爱华,陈华圣,阵钢,等.银杏外种皮多糖对SGC-7901细胞p53基因的表达及端粒酶活性的影响.中国药理学通报,2003,9(10):1174-11794.
    25.梁永虹,侯华新,黎丹戎,等.板蓝根二酮B体外抗癌活性研究.中草药,2000,31(7):531-537.
    26.戴思来,赵健雄,朱玉珍,等.扶正抑瘤汤对肿瘤细胞周期及端粒酶影响的实验研究.中国中西医结合杂志,2001,21(10):760-764.
    27.唐发清,吴尚辉,文忠,等.益气解毒片对鼻咽癌细胞裸鼠移植瘤细胞端粒酶抑制作用的实验研究.中国中医药科技,1999,6(4):218-221.
    28.张葫,文剑明,李文魁,等.远志抽提抽DX-1对神经母细胞瘤分化的诱导作用.中国神经精神疾病杂志,2001,27(4):279-282.
    29.张莉萍,蒋纪恺,谭荣安,等.苦参碱时K562细胞株端粒酶活性和细胞周期的影响.中华肿瘤杂志,1998,20(5):328-331.
    30.张学德.木蟾汤对食道鳞癌端粒酶活性的实验与临床研究.中华实用中西医杂志,2004,17(9):1364-1367.
    31.陈泽雄,陈雯,彭俊生,等.中药复方抗癌方抑制人结肠癌细胞株端粒酶活性.中国胃肠外科杂志,1999,2(2):117-119.
    32.曾虹,吴顺杰,李达,等.白血丹对急性白血病端粒酶活性的影响.河北中医,2003,25(9):647-649.
    33.王旭光,陈根殷,方琦,等.大蒜素对HL-60细胞端粒酶活性的影响.贵州医药,2004,28(4):303-306.
    34.齐振华,谭柏林,彭旭阳,等.乳香提取物对HL60细胞端粒酶活性影响的研究.湖南中医学院学报,2000,20(3):29-33.
    35.王展翔,许勇钢,廖军鲜,等.三氧化二砷诱导HL-60细胞凋亡的实验研究.中国中西医结合杂志,2000,20(7):5 36-537.
    36.盂志强,于尔辛,宋明志,等.健脾理气中药对肝癌端粒酶活性的影响.中国中医基础医学杂志,2000,6(1):23-26.
    37.Mandam,KumarR.Bc1-2 modulates telomerase activity.J Biol Chem,1997,272(22):14183-14187.
    38.Maxwell SA,Capp B,Acosta SA.Telomerase activity unimmortal izedendo the lial-cells undergoing p53 mediated apoptosis.Biochem Biophys Res Commun,1997,241(3):642-645.
    39.Mceachern MJ,Blackburn EH.Runaway telomere elongation caused by telomerase RNA gene mutation.Nature,1995,345:403-405.
    40.Seimiya H.The telomeric PARP,tankyrases,as targets for cancer therapy.Br J Cancer,2006,94(3):341-345.
    41.赵念玺,陆士新.细胞衰老与肿瘤.癌症,2004,23(10):1225-1230.
    42.Kelland LR.Overcoming the immortality of tumour cells by telomere and telomerase based cancer therapeutics—current status and future prospects.Eur J Cancer,2005,41(7):971-979(Review).
    43.Zhu L,Smith S,Lange T,et al.Chromosomal mapping of the tankyrase gene in human and mouse.Genomics,1999,57(2):320-322.
    44.Lingner J,Hughes TR,Shevchenko A,Reverse transcriptase motifs in the catalytic subunit of telomerase.Science.1997,276(5312):561-567.
    45.何冬梅,张洹.端粒酶基因反义核酸下调HL-60细胞端粒酶活性的研究.癌症,2002,21(10):1070-1074.
    46.Kapoor V,Telford WG.Telomere Length Measurement by Fluorescence tn Situ Hybridization and Flow Cytometry,in:Clifton NJ.Methods Mol Biol,2~(nd)edition,USA:Humana Press,2004:385-398.
    47.Ruler N,Dragowska W,Thornbury G et al.Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry.Nat Biotechnol,1998,16(1):43-47.
    48.Hao LY,Armanios M,Strong MA,et al.Short telomeres,even in the presence of telomerase,limit tissue renewal capacity.Cell,2005,123(6):1121-1131.
    49.Baird DM,Kipling D.The extent and significance of telomere loss with age.Ann N Y Acad Sci,2004,1019:265-268(Review).
    50.Shay JW,Wright WE.Senescence and immortalization:role of telomeres and telomerase.Carcinogenesis,2005,26(5):867-874.
    51.Yaswen P,Stampfer MR.Molecular changes accompanying senescence and immortalization of cultured human mammary epithelial cells.Int J Biochem Cell Biol,2002,34(11):1382-1394.
    52.Stewart SA,Weinberg RA.Telomeres:cancer to human aging,Annu Rev Cell Dev Biol,2006,22:531-557(Review).
    53.Kelland LR.Overcoming the immortality of tumour cells by telomere and telomerase based cancer therapeutics—current status and future prospects,Eut J Cancer,2005,41(7):971-979(Review).
    54.杨克恭,陈松森,王亚栋.针对端粒酶的肿瘤治疗研究前景可能不容乐观.生命的化学,2003,23(1):62-64.
    55.Lance PF,Ying Z,Krisztina P,et al.Telomerase can inhibit the recombination-based pathway of telomere maintenance in human cells.J.Biol Chem,2001,276(34):32198 32203.
    56.Seimiya H,Muramatsu Y,Ohishi T,et ai.Tankyrasel as a target for telomere-directed molecular cancer therapeutics.Cancer Cell,2005,7(1): 25-37.
    
    57. Kozopas KM, Yang T , Buchan HL, et al. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc. Natl. Acad. Sci. U.S.A. 1993, 90 (8): 3516-3520.
    
    58. Akgul C, Turner PC, White MR, et al. Functional analysis of the human MCL-1 gene. Cell Mol Life Sci. 2000, 57(4): 684-691.
    
    59. Craig RW, Jabs EW, Zhou P, et al. Human and mouse chromosomal mapping of the myeloid cell leukemia-1 gene: MCL1 maps to human chromosome 1q21, a region that is frequently altered in preneoplastic and neoplastic disease. Genomics 1994, 23 (2): 457-463.
    
    60. Bae J, Donigian JR, Aaron JW. Tankyrase 1 interacts with Mcl-1 proteins and inhibits their regulation of apoptosis. J Biol Chem, 2003, 278(7): 5195-5204.
    
    61. Bae J, Leo CP, Hsu SY, Hsueh AJ. MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain, 2000, 275(33): 25255-25261.
    
    62. Bingle CD, Craig RW, Swales BM, et al. Exon skipping in Mcl-1 results in a bcl-2 homology domain 3 only gene product that promotes cell death. Biol Chem, 2000, 275(29): 22136-22146.
    
    63. Yeh TY, Sbodio JI, Nguyen MT, et al. Tankyrase-1 overexpression reduces genotoxin induced cell death by inhibiting PARP1, 2005, 276(1-2): 183-192.
    
    64. Adams KW, Cooper GM. Rapid turnover of Mcl-1 couples translation to cell survival and apoptosis. J Biol Chem, 2007, 282(9): 6192 6200.
    
    65. Finkel T, Serrano M, Blasco MA. The common biology of cancer and ageing. Nature, 2007, 448(7155): 767-774.
    
    66. Kelland L. Targeting the limitless replicative potential of cancer: the telomerase/telomere pathway. Clin Cancer Res, 2007, 13(17): 4960-4963.
    
    67. Tallen G, Soliman MA, Riabowol K. The cancer-aging interface and the significance of telomere dynamics in cancer therapy. Rejuvenation Res, 2007, 10(3): 387-395.
    
    68. Lieber M, Smith B, Szakal A, et al. A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer, 1976, 17(1): 62-70.
    
    69. Venkatesan RN, Price C. Telomerase expression in chickens: constitutive activity in somatic tissues and down-regulation in culture. PNAS, 1998, 95: 14763 14768.
    
    70. Swanberg SE, Delany ME. Differential expression of genes associated with telomere length homeostasis and oncogenesis in an avian model. Mech Ageing Dev, 2005, 126(3): 1060 1070.
    
    71. Coward PH, Wada G, Falk MS, et al. Controlling signaling with a specifically designed Gi-coupled receptor. PNAS, 1998, 95: 352-357.
    
    72. Itahana K, Campisi J, Dimri GP. Methods to detect biomarkers of cellular senescence: the senescence-associated beta-galactosidase assay. Methods Mol Biol, 2007, 371: 21-31
    
    73. Swanberg SE, Delany ME. Dynamics of telomere erosion in transformed and non-transformed avian cells in vitro. Cytogenet Genome Res, 2003, 102(1-4): 318-325
    
    74. Itahana K, Campisi J, Dimri GP. Mechanisms of cellular senescence in human and mouse cells. Biogerontology, 2004, 5(1): 1-10.
    
    75. Kiyono T. Molecular mechanisms of cellular senescence and immortalization of human cells. Expert Opin Ther Targets, 2007, 11(12): 1623-1637.
    
    76. Dimri GP, Testori A, Acosta M, Campisi J. Replicative senescence, aging and growth-regulatory transcription factors. Biol Signals, 1996, 5(3): 154-162.
    
    77. Dimri GP. What has senescence got to do with cancer. Cancer Cell, 2005, 7(6): 505-512.
    
    78. Parkinson EK, Minty F. Anticancer Therapy Targeting Telomeres and Telomerase : Current Status. Bio-Drugs, 2007, 21(6): 375-385.
    
    79. Dimri GP, Lee X, Basile G, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. PNAS, 1995, 92: 9363 9367.
    
    80. Campisi J, Dimri GP, Nehlin JO, et al. Coming of age in culture. Exp Gerontol, 1996, 31(1-2): 7-12.
    1.KitanoH.Systems Biology:A Brief Overview.Science,2002,295(44678):1662-1664.
    2.Newman JR,Weissman JS.Systems biology:many things from one.Nature,2006,444(7119):561-562.
    3.Jia W,Zhao LP,Chen Z.System s biomedicine -the convergence of western medicine and traditional chinese medicine.World Science and Technology-Modernization of Traditional Chinese Medicine and Materia Medica,2007,9(2):1-5.
    4.Hood L,James R,Heath,et al.Systems biology and new technologies enable predictive and preventative medicine.Science,2004,306(5696):640-643.
    5.陈竺.系统生物学—21世纪医学和生物学发展的核心驱动力.世界科学,2005.3:2-6.
    6.胡作为,周燕萍,沈自尹.从现代生物学的发展谈中医药从整体上调控基因功能的优势.中医药,22(1):91-93.
    7.刘资,杨宇飞,吕有勇,等.浅析肿瘤系统生物学与中医药学的关系.医学研究通讯,2005.34(5):63-65.
    8.Sehipper H,Turley EA,Baum M.Anew biological framework for cancer research.Lancet,1996.348(9035):1149-1151.
    9.Shipper H,Gob CR,Wang TE.Shifting the cancer paradigm:must we kill to cure.J Clin Oncol,1995.13(4):801-807.
    10.李后开,王一煌,贾伟,等。药物基因组学、药物代谢组学与辨证施治.世界科学技术-中药现代化,2007.9(2):120-126.
    11.方家椿.分子靶点和分子靶向抗肿瘤药研究进展.北京大学学报(医学版),2006.38(6):575-578.
    12.吴家睿.系统生物学面面观.科学,2002,54(6):22-24.
    13.沈自尹.再从证的研究探讨中西医的互补性.中国中西医结合杂志,1999,19(3):180-182.
    14.沈自尹.系统生物学和中医证的研究.中国中西医结合杂志,2005,25(3):255-258.
    15.郑振,沈自尹,黄辉.补肾活血复方调节老年鼠T细胞凋亡的对比研究.中国中西医结合杂志,1999.19(10):610-612.
    16.石锦萍,藏志和,辛志伟,等.基因表达谱芯片对乌三颗粒抗Lewis肺癌相关靶基因的分析研究.中国中西医结合杂志,2003,23(7):530-532.
    1.Collado M,Blasco MA,Serrano M.Cellular senescence in cancer and aging.Cell,2007,130(2):223-233.
    2.Neidle S,Parkinson G.Telomere maintenance as a target for anticancer drug discovery.Nature Rev,2002,1:382-392.
    3.Cech TR Beginning to understand the end of the chromosome.Cell,2004,116(2):273-279.
    4.Dahse R,Fiedler W,Ernst G.Telomeres and telomerase:biological and clinical importance.Clin Chem,1997,43(5):708-714.
    5.Shore D.Telomerase and telomere binding protein:controlling the endgame.TIBS,1997,22(7):233-235.
    6.Lundblad V,Wright WE.Telomeres and telomerase:a sample picture become complex.Cell,1996,87(3):396-375.
    7.Chong L,van Steensel B,Broccob D,et al.A human telomeric protein.Science,1995,270:1663-1667.
    8.de Lange T.T-loops and the origin of telomeres.Nat Rev Mol Cell Biol,2004 5(4):323-329.
    9.Wu KJ,Grandori C,Amacker M.Direct activation of TERT transcription by myc.Nature Genet,1999,21(2):220-224.
    10.van Steensel B,de Lange T.Control of telomere length by the human repeated telomeric protein TRF1.Nature,1997,385(6618):740-743.
    11.Greider CW,Blackburn EH.The telomere terminal transferase of Tetrahymena is a ribo- nucleoprotein enzyme with two kinds of primer specificity.Cell,1987,51(6):887-898.
    12. Mceacbem MJ, Blackburn EH. Runway telomere elongation caused by telomere RNA gene mutations. Nature, 1995, 376 (6539): 403-409.
    
    13. Boukamp P, Mirancea N. Telomeres rather than telomerase a key target for anti-cancer therapy. Exp Dermatol, 2007, 16(1): 71-79.
    
    14. Jong HS, Park YI,Kim S, et al. Up-regulation of human telomerase catalytic subunit during gastric carcinogenesis. Cancer, 1999, 86: 559-565.
    
    15. Meyerson M, Counter CM, Eaton EN, et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell, 1997, 90(4): 785-795.
    
    16. Goldkorn A, Blackburn EH. Assembly of mutant-template telomerase RNA into cataly- tically active telomerase ribo-nucleoprotein that can act on telomeres is required for apoptosis and cell cycle arrest in human cancer cells. Cancer Res, 2006, 66(11): 5763-5771.
    
    17. Fletcher TM, Cathers BE, Ravikumar KS, et al. Inhibition of human telomerase by 7-Deaza-2' -deoxyguanosine-5' -Triphosphate. Bioorg Chen, 2001, 29(1): 36-55.
    
    18. Kim YW, Hur SY, Kim TE. Protein kinase C modulates telomerase activity in human cervical cancer cells. Exp Mol Med, 2001, 33(3): 156-163.
    
    19. Seimiya H, Muramatsu Y, Ohishi T, et al. Tankyrasel as a target for telomere-directed molecular cancer therapeutics. Cancer Cell, 2005, 7(1): 25-37.
    
    20. Jennifer V, Grobelny, Michelle KE, et al. Effects of reconstitution of telomerase activity on telomere maintenance by alternative lengthening of telomere (ALT) pathway. Human Molecular Genetics, 2001, 10(18): 1953-1961.
    
    21. Parkinson EK, Minty F. Anticancer Therapy Targeting Telomeres and Telomerase: Current Status. Bio Drugs, 2007, 21(6): 375-385.
    22. Elmore LW, Holt SE. Telomerase inhibition as an adjuvant anticancer therapy: it is more than just a waiting game. Expert Opin Ther Targets, 2007, 11(4): 427-430.
    
    23. Smith S, Giriat I, Schmitt A, et al. Tankyrase, a poly (ADP-ribose) polymerase at human telomeres. Science, 1998, 282(5393): 1484-1487.
    
    24. Smith S, de Lange T. Tankyrase promotes telomere elongation in human cells. Curr Biol, 2000, 10(20): 1299-1302.
    
    25. Yeh TY, Sbodio JI, Nguyen MT, et al. Tankyrase-1 overexpression reduces genotoxin induced cell death by inhibiting PARP1, 2005, 276(1-2): 183-192.
    
    26. Kozopas KM, Yang T , Buchan HL, et al. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc. Natl. Acad. Sci. U.S.A. 1993, 90 (8): 3516-3520.
    
    27. Craig RW, Jabs EW, Zhou P, et al. Human and mouse chromosomal mapping of the myeloid cell leukemia-1 gene: MCL1 maps to human chromosome 1q21, a region that is frequently altered in preneoplastic and neoplastic disease. Genomics 1994, 23 (2): 457-463.
    
    28. Akgul C, Turner PC, White MR, et al. Functional analysis of the human MCL-1 gene. Cell Mol Life Sci. 2000, 57(4): 684-691.
    
    29. Bingle CD, Craig RW, Swales BM, et al. Exon skipping in Mcl-1 results in a bcl-2 homology domain 3 only gene product that promotes cell death. Biol Chem, 2000, 275(29): 22136-22146.
    
    30. Bae J, Leo CP, Hsu SY, Hsueh AJ. MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain, 2000, 275(33): 25255-25261.
    
    31. Bae J, Donigian JR, Aaron JW. Tankyrase 1 interacts with Mcl-1 proteins and inhibits their regulation of apoptosis. J Biol Chem, 2003, 278(7): 5195-5204.
    32. Adams KW, Cooper GM. Rapid turnover of Mcl-1 couples translation to cell survival and apoptosis. J Biol Chem, 2007, 282(9): 6192 6200.
    
    33. Artandi SE, Attardi LD. Pathways connecting telomeres and p53 in senescence, apoptosis, and cancer. Biochem Biophys Res Commun, 2005, 331(3): 881-990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700