FEN1基因的遗传学和表观遗传学调控及其与多种肿瘤发生发展的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:FEN1(Flap endonuclease 1)通过参与多种DNA代谢途径在维护基因组稳定性和防止细胞恶性转化过程中发挥重要作用。FEN1基因的遗传学和表观遗传学改变可能影响其表达水平,从而与宿主的肿瘤易感性和肿瘤进展相关。本研究筛查了汉族人群FEN1基因功能性遗传变异及其启动子甲基化状态的改变并探讨其与肿瘤发生发展的关系。
     方法:以全基因策略分析FEN1遗传变异;用一系列生物化学实验研究遗传变异对基因功能的影响。以彗星实验(Comet test)测定携带不同基因型焦炉作业工人白细胞DNA损伤修复程度。以重亚硫酸盐-DNA测序法分析FEN1启动子甲基化改变,实时定量PCR检测FEN1 mRNA表达量。以cDNA芯片和组织芯片技术检测FEN1在多种肿瘤标本中的表达情况。以病例-对照研究方法分析遗传变异与肿瘤易感性的关系,相关程度以多因素logistic回归计算的比值比(odds ratio,OR)及其95%可信区限(confidence interval,CI)表示。所有统计检验均为双侧检验。
     结果:DNA测序发现FEN1基因存在两个高度连锁的单核苷酸多态,即-69G/A和4150G/T多态。位于启动子区的-69A→G改变可能增加抑制性转录因子结合从而降低FEN1转录活性,而4150G→T改变增加FEN1表达。在焦炉作业工人中,携带FEN1-69G或4150G等位基因者DNA损伤程度显著高于携带-69A或4150T者。含1,013例肺癌和1,131例对照的病例-对照分析显示,-69GG或4150GG基因型单独或与吸烟有相乘的联合作用增加肺癌发病风险。与相应的正常组织相比,多种肿瘤中FEN1 mRNA的表达显著上调。在伴有不典型增生的良性乳腺疾病和各种乳腺癌组织中皆有FEN1表达,且其表达量随肿瘤的进展而逐渐升高。FEN1启动子含两个CpG岛。其中CpG岛2在肿瘤组织中的去甲基化可能是导致FEN1在多种肿瘤组织中表达增高的主要原因。
     结论:FEN1在肿瘤发生和发展的不同阶段通过相应的遗传学和表观遗传学改变分别与个体的肿瘤易感性和肿瘤进展相关。
Background & Aims: Flap endonuclease 1 (FEN1), involved in many DNA metabolic pathways, plays an essential role in maintaining genome integrity and cancer development. The genetic and epigenetic changes of FEN1 gene might contribute to differential FEN1 expression and, thus, be associated with individual susceptibility to cancer development and poor prognosis. This study sought to identify single nucleotide polymorphisms (SNPs) in the FEN1 gene and aberrant methylation of its promoter CpG islands and evaluated their effects on tumor development and progression.
     Methods: DNA samples from 30 individuals were sequenced to search for SNPs in FEN1, and the function of the SNPs was investigated by a series of biochemical assays. The association between the FEN1 genotypes and the In-transformed Olive tail moment (Olive TM) values were tested in coke-oven workers, and the association between the genotypes and lung cancer susceptibility were examined in a case-control panel consisting of 1,013 lung cancer patients and 1,131 controls. The odds ratios and their 95% confidence intervals were estimated by logistic regression. The promoter methylation was identified by sequencing of sodium bisulfite-treated DNA and mRNA levels were determined by quantitative real-time RT-PCR. FEN1 expression was detected in BD Clontech~(TM) Cancer Profiling Array I and a Cybrdi~(TM) Breast Carcinoma Progression Tissue Array.
     Results: Two SNPs (-69G/A and 4150G/T) were identified and the -69G and 4150G alleles were associated with reduced expression of FEN1 in vitro and in vivo. The higher In-transformed Olive TM values of coke-oven workers and significantly increased risks for developing lung cancer were associated with the FEN1 -69G or 4150G allele compared with the -69A or 4150T allele, respectively. A multiplicative joint effect between smoking and FEN1 polymorphisms in intensifying lung cancer risk was detected. FEN1 mRNA was overexpressed in multiple cancers compared with matched normal tissue. In breast cancer, FEN1 expression was inversively correlated with the degree of tumor differentiation. Moreover, we identified two CpG islands in the FEN1 promoter region and showed that hypomethylation of CpG island2 is important in regulating overexpression of the FEN1 gene in tumors.
     Conclusion: Functional SNPs in FEN1 are associated with susceptibility to DNA damage and lung cancer development, and elevated FEN 1 expression due to the aberrant promoter methylation may be associated with cancer progression.
引文
1.Fearon ER,Vogelstein B.A genetic model for colorectal tumorigenesis.Cell 1990;61:759-67.
    2.Frebourg T,Friend SH.Cancer risks from germline p53 mutations.J Clin Invest 1992;90:1637-41.
    3.AIberg A J,Lam AP,Helzlsouer KJ.Epidemiology,prevention,and early detection of breast cancer.Curr Opin Oncol 1999;11:435-41.
    4.Eccles DM,Pichert G.Familial non-BRCA1/BRCA2-associated breast cancer.Lancet Onco12005;6:705-11.
    5.Paraskeva C,Williams AC.Cell and molecular biology of gastrointestinal tract cancer.Curr Opin Oncol 1992;4:707-13.
    6.Spry M,Scott T,Pierce H,D'Orazio JA.DNA repair pathways and hereditary cancer susceptibility syndromes.Front Biosci 2007;12:4191-207.
    7.Peto J.Cancer epidemiology in the last century and the next decade.Nature.2001;411:390-5.
    8.Wynder EL,Hoffmann D.Tobacco and health:a societal challenge.N Engl J Med 1979;300:894-903.
    9.Parkin DM,Bray F,Ferlay J,Pisani P.Global cancer statistics,2002.CA Cancer J Clin 2005;55:74-108.
    10.Sarna L,Cooley ME,Danao L.The global epidemic of tobacco and cancer.Semin Oncol Nuts 2003;19:233-43.
    11.IARC.Monographs on the evaluation of carcinogenic risks to humans.Polycyclic aromatic compounds.IARC.Monographs on the evaluation of carcinogenic risks to humans.Part 1.Chemical,environmental and experimental data 1983;32.
    12.Collins FS,Brooks LD,Chakravarti A.A DNA polymorphism discovery resource for research on human genetic variation.Genome Res 1998;8:1229-31.
    13.International HapMap Consortium.A hapiotype map of the human genome.Nature 2005;437:1299-320.
    14.Chasman D,Adams RM.Predicting the functional consequences of non-synonymous single nucleotide polymorphisms: structure-based assessment of amino acid variation.J Mol Biol 2001 ;307:683-706.
    
    15. Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Shaw N, Lane CR, Lim EP, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, Warrington J,Lipshutz R, Daley GQ, Lander ES. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 1999;22:231-8.
    
    16. Nebert DW. Pharmacogenetics and pharmacogenomics: why is this relevant to the clinical geneticist? Clin Genet 1999;56:247-58.
    
    17. Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC, Bargonetti J, Bartel F,Taubert H, Wuerl P, Onel K, Yip L, Hwang SJ, Strong LC, Lozano G, Levine AJ. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 2004;119:591-602.
    
    18. Hong Y, Miao X, Zhang X, Ding F, Luo A, Guo Y, Tan W, Liu Z, Lin D. The role of P53 and MDM2 polymorphisms in the risk of esophageal squamous cell carcinoma.Cancer Res 2005;65:9582-7.
    
    19. Zhang X, Miao X, Guo Y, Tan W, Zhou Y, Sun T, Wang Y, Lin D. Genetic polymorphisms in cell cycle regulatory genes MDM2 and TP53 are associated with susceptibility to lung cancer. Hum Mutat 2006;27:110-7.
    
    20. Yang M, Guo Y, Zhang X, Miao X, Tan W, Sun T, Zhao D, Yu D, Liu J, Lin D.Interaction of P53 Arg72Pro and MDM2 T309G polymorphisms and their associations with risk of gastric cardia cancer. Carcinogenesis 2007;28:1996-2001.
    
    21. Bond GL, Hu W, Levine A. A single nucleotide polymorphism in the MDM2 gene:from a molecular and cellular explanation to clinical effect. Cancer Res 2005;65:5481-4.
    
    22. Bond GL, Levine AJ. A single nucleotide polymorphism in the p53 pathway interacts with gender, environmental stresses and tumor genetics to influence cancer in humans.Oncogene 2007;26:1317-23.
    
    23. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer 2004;4:143-53.
    24. Esteller M. Epigenetics in cancer. N Engl J Med 2008;358:l 148-59.
    
    25. Jones PA. DNA methylation and cancer. Cancer Res 1986;46:461-6.
    
    26. Laird PW, Jaenisch R. The role of DNA methylation in cancer genetic and epigenetics.Annu Rev Genet 1996;30:441-64.
    
    27. Fruhwald MC, Plass C. Global and gene-specific methylation patterns in cancer: aspects of tumor biology and clinical potential. Mol Genet Metab 2002;75:l-16.
    
    28. Kass SU, Landsberger N, Wolffe AP. DNA methylation directs a time-dependent repression of transcription initiation. Curr Biol 1997;7:157-65.
    
    29. Reik W, Walter J. Imprinting mechanisms in mammals. Curr Opin Genet Dev 1998;8:154-64.
    
    30. Riggs AD, Pfeifer GP. X-chromosome inactivation and cell memory. Trends Genet 1992;8:169-74.
    
    31. Scarano MI, Strazzullo M, Matarazzo MR, D'Esposito M. DNA methylation 40 years later: Its role in human health and disease. J Cell Physiol 2005;204:21-35.
    
    32. Momparler RL, Bovenzi V. DNA methylation and cancer. J Cell Physiol 2000; 183:145-54.
    
    33. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003;33 Suppl:245-54.
    
    34. Berger J, Daxenbichler G. DNA methylation of nuclear receptor genes—possible role in malignancy. J Steroid Biochem Mol Biol 2002;80:1-11.
    
    35. Esteller M. Relevance of DNA methylation in the management of cancer. Lancet Oncol 2003;4:351-8.
    
    36. Lieber MR. The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays 1997;19:233-40.
    
    37. Henneke G, Friedrich-Heineken E, Hubscher U. Flap endonuclease 1: a novel tumour suppresser protein. Trends Biochem Sci 2003;28:384-90.
    
    38. Shen B, Singh P, Liu R, Qiu J, Zheng L, Finger LD, Alas S. Multiple but dissectible functions of FEN-1 nucleases in nucleic acid processing, genome stability and diseases. Bioessays 2005;27:717-29.
    
    39. Harrington JJ, Lieber MR. The characterization of a mammalian DNA structure-specific endonuclease. EMBO J 1994; 13:1235-46.
    
    40. Harrington JJ, Lieber MR. Functional domains within FEN-1 and RAD2 define a family of structure-specific endonucleases: implications for nucleotide excision repair.Genes Dev 1994;8: 1344-55.
    
    41. Klungland A, Lindahl T. Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J 1997;16:3341-8.
    
    42. Liu Y, Kao HI, Bambara RA. Flap endonuclease 1: a central component of DNA metabolism. Annu Rev Biochem 2004;73:589-615.
    
    43. Parrish JZ, Yang C, Shen B, Xue D. CRN-1, a Caenorhabditis elegans FEN-1 homologue, cooperates with CPS-6/EndoG to promote apoptotic DNA degradation.EMBO J 2003;22:3451-60.
    
    44. Zheng L, Dai H, Zhou M, Li M, Singh P, Qiu J, Tsark W, Huang Q, Kernstine K,Zhang X, Lin D, Shen B. Fenl mutations result in autoimmunity, chronic inflammation and cancers. Nat Med 2007;13:812-9.
    
    45. Zheng L, Zhou M, Chai Q, Parrish J, Xue D, Patrick SM, Turchi JJ, Yannone SM,Chen D, Shen B. Novel function of the flap endonuclease 1 complex in processing stalled DNA replication forks. EMBO Rep 2005;6:83-9.
    
    46. Kucherlapati M, Yang K, Kuraguchi M, Zhao J, Lia M, Heyer J, Kane MF, Fan K,Russell R, Brown AM, Kneitz B, Edelmann W, Kolodner RD, Lipkin M, Kucherlapati R. Haploinsufficiency of Flap endonuclease (Fen1) leads to rapid tumor progression.Proc Natl Acad Sci U S A 2002;99:9924-9.
    
    47. Schmutte C, Fishel R. Genomic instability: first step to carcinogenesis. Anticancer Res 1999; 19:4665-96.
    
    48. Charames GS, Bapat B. Genomic instability and cancer. Curr Mol Med 2003;3:589-96.
    
    49. Raptis S, Bapat B. Genetic instability in human tumors. EXS 2006;96:303-20.
    
    50. Hakem R. DNA-damage repair; the good, the bad, and the ugly. EMBO J 2008;27:589-605.
    
    51. LaTulippe E, Satagopan J, Smith A, Scher H, Scardino P, Reuter V, Gerald WL. Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res 2002;62:4499-506.
    
    52. Kim JM, Sohn HY, Yoon SY, Oh JH, Yang JO, Kim JH, Song KS, Rho SM, Yoo HS,Kim YS, Kim JG, Kirm NS. Identification of gastric cancer-related genes using a cDNA microarray containing novel expressed sequence tags expressed in gastric cancer cells. Clin Cancer Res 2005;11:473-82.
    
    53. Krause A, Combaret V, Iacono I, Lacroix B, Compagnon C, Bergeron C,Valsesia-Wittmann S, Leissner P, Mougin B, Puisieux A. Genome-wide analysis of gene expression in neuroblastomas detected by mass screening. Cancer Lett 2005;225:111-20.
    
    54. Iacobuzio-Donahue CA, Maitra A, Olsen M, Lowe AW, van Heek NT, Rosty C,Walter K, Sato N, Parker A, Ashfaq R, Jaffee E, Ryu B, Jones J, Eshleman JR, Yeo CJ,Cameron JL, Kern SE, Hruban RH, Brown PO, Goggins M. Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am J Pathol 2003;162:1151-62.
    
    55. Sato M, Girard L, Sekine I, Sunaga N, Ramirez RD, Kamibayashi C, Minna JD.Increased expression and no mutation of the Flap endonuclease (FENl) gene in human lung cancer. Oncogene 2003;22:7243-6.
    
    56. Warbrick E, Coates PJ, Hall PA. Fen1 expression: a novel marker for cell proliferation.J Pathol 1998;186:319-24.
    
    57. Kim IS, Lee MY, Lee IH, Shin SL, Lee SY. Gene expression of flap endonuclease-1 during cell proliferation and differentiation. Biochim Biophys Acta 2000;1496:333-40.
    
    58. Otto CJ, Almqvist E, Hayden MR, Andrew SE. The "flap" endonuclease gene FENl is excluded as a candidate gene implicated in the CAG repeat expansion underlying Huntington disease. Clin Genet 2001;59:122-7.
    
    59. Tishkoff DX, Filosi N, Gaida GM, Kolodner RD. A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair.Cell 1997;88:253-63.
    
    60. Larsen E, Gran C, Saether BE, Seeberg E, Klungland A. Proliferation failure and gamma radiation sensitivity of Fenl null mutant mice at the blastocyst stage. Mol Cell Biol 2003;23:5346-53.
    
    61. Hasan S, Hassa PO, Imhof R, Hottiger MO. Transcription coactivator p300 binds PCNA and may have a role in DNA repair synthesis. Nature 2001;410:387-91.
    
    62. Chapados BR, Hosfield DJ, Han S, Qiu J, Yelent B, Shen B, Tainer JA. Structural basis for FEN-1 substrate specificity and PCNA-mediated activation in DNA replication and repair. Cell 2004;116:39-50.
    
    63. Guo Z, Chavez V, Singh P, Finger LD, Hang H, Hegde ML, Shen B. Comprehensive mapping of the C-terminus of flap endonuclease-1 reveals distinct interaction sites for five proteins that represent different DNA replication and repair pathways. J Mol Biol 2008;377:679-90.
    
    64. Pryor WA. Cigarette smoke radicals and the role of free radicals in chemical carcinogenicity. Environ Health Perspect 1997; 105 Suppl 4:875-82.
    
    65. Popp W, Vahrenholz C, Schell C, Grimmer G, Dettbarn G, Kraus R, Brauksiepe A,Schmeling B, Gutzeit T, von Billow J, Norpoth K. DNA single strand breakage, DNA adducts, and sister chromatid exchange in lymphocytes and phenanthrene and pyrene metabolites in urine of coke oven workers. Occup Environ Med 1997;54:176-83.
    
    66. Hakem R. DNA-damage repair; the good, the bad, and the ugly. EMBO J 2008;27:589-605.
    
    67. Wilson DM 3rd, Bohr VA. The mechanics of base excision repair, and its relationship to aging and disease. DNA Repair (Amst) 2007;6:544-59.
    
    68. Yang L, Parkin DM, Li L, Chen Y. Time trends in cancer mortality in China:1987-1999. Int J Cancer 2003;106:771 -83.
    
    69. Yang L, Parkin DM, Li LD, Chen YD, Bray F. Estimation and projection of the national profile of cancer mortality in China: 1991-2005. Br J Cancer 2004;90:2157-66.
    
    70. He J, Gu D, Wu X, Reynolds K, Duan X, Yao C, Wang J, Chen CS, Chen J, Wildman RP, Klag MJ, Whelton PK. Major causes of death among men and women in China. N Engl J Med 2005;353:1124-34.
    
    71. Lehmann U, Kreipe H. Real-time PCR analysis of DNA and RNA extracted from formalin-fixed and paraffin-embedded biopsies.Methods 2001;25:409-18.
    72.Brennan P.Gene-environment interaction and aetiology of cancer:what does it mean and how can we measure it? Carcinogenesis 2002;23:381-7.
    73.谭皓,李济超,杨晓波,白云,隆宗龒,杨杪,袁晶,邬堂春.焦炉作业与代谢综合征的相关性研究.环境与职业医学 2006;23:93-5.
    74.Emoto M,Miki M,Sarker AH,Nakamura T,Seki Y,Seki S,Ikeda S.Structure and transcription promoter activity of mouse flap endonuclease 1 gene:alternative splicing and bidirectional promoter.Gene 2005;357:47-54.
    75.Hagan JP,Croce CM.MicroRNAs in carcinogenesis.Cytogenet Genome Res 2007;118:252-9.
    76.Filipowicz W,Bhattacharyya SN,Sonenberg N.Mechanisms of post-transcriptional regulation by microRNAs:are the answers in sight? Nat Rev Genet 2008;9:102-14.
    77.Mayr C,Hemann MT,Bartel DP.Disrupting the pairing between let-7 and Hmga2enhances oncogenic transformation.Science 2007;315:1576-9.
    78.Brookes AJ.The essence of SNPs.Gene 1999;234:177-86.
    79.Hiraoka LR,Harrington JJ,Gerhard DS,Lieber MR,Hsieh CL.Sequence of human FEN-1,a structure-specific endonuclease,and chromosomal localization of the gene (FEN1) in mouse and human.Genomics 1995;25:220-5.
    80.Lain JS,Seligson DB,Yu H,Li A,Eeva M,Pantuck A J,Zeng G,Horvath S,Belldegrun AS.Flap endonuclease 1 is overexpressed in prostate cancer and is associated with a high Gleason score.BJU Int 2006;98:445-51.
    81.Chen KH,Yakes FM,Srivastava DK,Singhal RK,Sobol RW,Horton JK,Van Houten B,Wilson SH.Up-regulation of base excision repair correlates with enhanced protection against a DNA damaging agent in mouse cell lines.Nucleic Acids Res 1998;26:2001-7.
    82.Schultz-Norton JR,Walt KA,Ziegler YS,McLeod IX,Yates JR,Raetzman LT,Nardulli AM.The deoxyribonucleic acid repair protein flap endonuclease-1 modulates estrogen-responsive gene expression.Mol Endocrinol 2007;21:1569-80.
    83.Hartmann LC,Sellers TA,Frost MH,Lingle WL,Degnim AC,Ghosh K,Vierkant RA,Maloney SD,Pankratz VS,Hillman DW,Suman VJ,Johnson J,Blake C,Tlsty T, Vachon CM,Melton LJ 3rd,Visscher DW.Benign breast disease and the risk of breast cancer.N Engl J Med 2005;353:229-37.
    84.Santen RJ,Mansel R.Benign breast disorders.N Engl J Med 2005;353:275-85.
    85.Counts JL,Goodman JI.Hypomethylation of DNA:a possible epigenetic mechanism involved in tumor promotion.Prog Clin Biol Res 1995;391:81-101.
    86.Jaffe LF.Epigenetic theories of cancer initiation.Adv Cancer Res 2003;90:209-30.
    1. Collins FS, Brooks LD, Chakravarti A. A DNA polymorphism discovery resource for research on human genetic variation. Genome Res 1998;8:1229-31
    
    2. Brookes AJ. The essence of SNPs. Gene 1999;234:177-86.
    
    3. Chasman D, Adams RM. Predicting the functional consequences of non-synonymous single nucleotide polymorphisms: structure-based assessment of amino acid variation.J Mol Biol 2001;307:683-706.
    
    4. Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Shaw N, Lane CR, Lim EP, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, Warrington J,Lipshutz R, Daley GQ, Lander ES. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 1999;22:231-8.
    
    5. Nebert DW. Pharmacogenetics and pharmacogenomics: why is this relevant to the clinical geneticist? Clin Genet 1999;56:247-58.
    
    6. Wall JD, Pritchard JK. Haplotype blocks and linkage disequilibrium in the human genome. Nat Rev Genet 2003;4:587-97.
    
    7. Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES. High-resolution haplotype structure in the human genome. Nat Genet 2001;29:229-32.
    
    8. Dawson E, Abecasis GR, Bumpstead S, Chen Y, Hunt S, Beare DM, Pabial J, Dibling T, Tinsley E, Kirby S, Carter D, Papaspyridonos M, Livingstone S, Ganske R,Lohmussaar E, Zernant J, Tonisson N, Remm M, Magi R, Puurand T, Vilo J, Kurg A,Rice K, Deloukas P, Mott R, Metspalu A, Bentley DR, Cardon LR, Dunham I.. A first generation linkage disequilibrium map of human chromosome 22. Nature 2002;418:544-8.
    
    9. Pritchard JK, Cox NJ. The allelic architecture of human disease genes: common disease-common variant...or not? Hum Mol Genet 2002;l 1:2417-23.
    
    10. Zeggini E, Rayner W, Morris AP, Hattersley AT, Walker M, Hitman GA, Deloukas P,Cardon LR, McCarthy MI. An evaluation of HapMap sample size and tagging SNP performance in large-scale empirical and simulated data sets. Nat Genet 2005;37:1320-2.
    11. Keavney B. Genetic association studies in complex diseases. J Hum Hypertens 2000;14:361-7.
    
    12. Marchini J, Cardon LR, Phillips MS, Donnelly P. The effects of human population structure on large genetic association studies. Nat Genet 2004;36:512-7.
    
    13. Nicholas JS. Genetics of complex disease. Approches, problems, and solutions. Am J Respir Crit Care Med 1997; 156:103-9.
    
    14. Suzuki A, Yamada R, Chang X, Tokuhiro S, Sawada T, Suzuki M, Nagasaki M,Nakayama-Hamada M, Kawaida R, Ono M, Ohtsuki M, Furukawa H, Yoshino S,Yukioka M, Tohma S, Matsubara T, Wakitani S, Teshima R, Nishioka Y, Sekine A,Iida A, Takahashi A, Tsunoda T, Nakamura Y, Yamamoto K. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet 2003;34:395-402.
    
    15. Mullikin JC, Hunt SE, Cole CG, Mortimore BJ, Rice CM, Burton J, Matthews LH,Pavitt R, Plumb RW, Sims SK, Ainscough RM, Attwood J, Bailey JM, Barlow K,Bruskiewich RM, Butcher PN, Carter NP, Chen Y, Clee CM, Coggill PC, Davies J,Davies RM, Dawson E, Francis MD, Joy AA, Lamble RG, Langford CF, Macarthy J,Mall V, Moreland A, Overton-Larty EK, Ross MT, Smith LC, Steward CA, Sulston JE,Tinsley EJ, Turney KJ, Willey DL, Wilson GD, McMurray AA, Dunham I, Rogers J,Bentley DR. An SNP map of human chromosome 22. Nature 2000;407:516-20.
    
    16. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhart AH,Abraham C, Regueiro M, Griffiths A, Dassopoulos T, Bitton A, Yang H, Targan S,Datta LW, Kistner EO, Schumm LP, Lee AT, Gregersen PK, Barmada MM, Rotter JI,Nicolae DL, Cho JH. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006;314:1461-3.
    
    17. Wang WY, Barratt BJ, Clayton DG, Todd JA. Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 2005;6:109-18.
    
    18. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005;6:95-108.
    
    19. Fung HC, Scholz S, Matarin M, Simon-Sanchez J, Hernandez D, Britton A, Gibbs JR,Langefeld C, Stiegert ML, Schymick J, Okun MS, Mandel RJ, Fernandez HH, Foote KD,Rodriguez RL,Peckham E,De Vrieze FW,Gwinn-Hardy K,Hardy JA,Singleton A.Genome-wide genotyping in Parkinson's disease and neurologically normal controls:first stage analysis and public release of data.Lancet Neurol 2006;5:911-6.
    20.Johnson GC,Esposito L,Barratt B J,Smith AN,Heward J,Di Genova G,Ueda H,Cordell H J,Eaves IA,Dudbridge F,Twells RC,Payne F,Hughes W,Nutland S,Stevens H,Carr P,Tuomilehto-Wolf E,Tuomilehto J,Gough SC,Clayton DG,Todd JA.Haplotype tagging for the identification of common disease genes.Nat Genet 2001;29:233-7.
    21.Tishkoff SA,Pakstis A J,Ruano G,Kidd KK.The accuracy of statistical methods for estimation of haplotvpe frequencies:an example from the CD4 locus.Am J Hum Genet 2000;67:518-22.
    22.Sobrino B,Brion,M,Carracedo A.SNPs in forensic genetics:a review of SNP typing methodologies.Forensic Sci Int 2005;154:181-94.
    23.Engle L J,Simpson CL,Landers JE.Using high-throughput SNP technologies to study cancer.Oncogene 2006;25:1594-601.
    24.Park S J,Taton TA,Mirkin CA.Array-based electrical detection of DNA using nanoparticle probes.Science 2002;295:1503-6.
    25.Holland PM,Abramson RD,Watson R,Gelfand DH.Detection of specific polymerase chain reaction product by utilizing the 5' to 3' exonuclease activity of thermus aquaticus DNA polymerase.Proc Natl Acad Sci USA 1991;88:7276-80.
    26.Howell WM,Jobs M,Gyllensten U,Brookes AJ.Dynamic allele-specific hybridization.Nat Biotechnol 1999;17:87-8.
    27.Tyagi S,Kramer FR.Molecular beacons:probes that fluoresce upon hybridization.Nat Biotechnol 1996;14:303-8.
    28.Vogel F.Moderne probleme der Humangenetik.Ergeb Inn Med Kinderhilkd 1959;12:125.
    29.Grant S.Pharmacogenetics and pharmacogenomics:tailored drug therapy for the 21st century.Trends Pharmacol Sci 2001;22:3-4.
    30.SPear BB.Viewpoint-pharmacogenomics:today,tomorrow,and beyond.Drug Benefit Trends 1999;11:53-4.
    31. Evans W, Relling M. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999;286:487-91.
    
    32. Efferth T, Volm M. Pharmacogenetics for individualized cancer chemotherapy. Pharmacol Ther 2005;107:155-76.
    
    33. Erichsen HC, Chanock SJ. SNPs in cancer research treatment. Br J Cancer 2004;90:747-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700