腺病毒介导的人精脒/精胺N1乙酰基转移酶表达对胃癌抑制作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胃癌在全世界很多国家的发病率都很高。在日本,胃癌仍旧是男性最常见的肿瘤。我国也是世界上胃癌的高发国家,全世界约35%的胃癌病例发生在中国。目前,胃癌治疗仍以手术为主,术后根据不同的病理检查结果,辅以药物治疗。近年来随着早期胃癌发现率的提高,手术方法的改进和综合治疗的应用,胃癌的治愈率有所提高,但大多数报道的5年生存率仍徘徊于20%~30%。胃癌的治疗疗效,也并不十分令人满意。因此寻找一种新型非手术干预的治疗方法对于胃癌的预防和治疗具有非常重要意义。
     多胺是腐胺、精脒和精胺的统称,是一类广泛存在于生物体内的阳离子脂肪族化合物,这些阳离子电荷使得多胺可通过静电作用与细胞内的含有多聚阴离子的大分子化合物如DNA、RNA、蛋白质等发生反应,在正常细胞生长和分化过程中发挥着重要的作用。在迅速增殖的正常细胞以及肿瘤细胞中,多胺的含量明显升高。以多胺代谢通路为靶点,降低细胞内多胺水平,在肿瘤治疗研究中具有非常重要的意义。
     多胺合成途径有两个关键酶,即鸟氨酸脱羧酶(Ornithine decarboxylase,ODC)和S-腺苷甲硫氨酸脱羧酶(AdeMetDC)。它们一直是研究的重点。我们之前的研究表明,与相应的正常组织相比,在结肠癌组织中ODC和AdeMetDC的表达明显升高,而且通过抑制它们的表达可以下调多胺的合成,从而抑制肿瘤生长。
     精脒/精胺N1乙酰基转移酶(spermidine/spermine N'-acetyltransferase,SSAT),是多胺分解途径中的第一个限速酶。SSAT将乙酰-CoA上的乙酰基团转移到精脒和精胺的N1位置上。SSAT可以防止多胺在细胞内过高积聚,在保持细胞内多胺的平衡中起到重要作用。SSAT的活性可以被胞内的多胺水平高度诱导和调节,从而维持细胞内的多胺平衡。另外,SSAT可以被多种生长抑制剂及各种有毒刺激诱导产生。SSAT的蛋白水平和酶活性在正常和没有被诱导的细胞中是一般测不到的。而在多胺拟似物的诱导下,活性可以增加1000倍以上。Kristin Kee和Slavoljub Vujcic等人研究发现在SSAT水平上促进多胺降解能更有效的降低细胞内多胺水平。
     端粒酶是目前所发现的恶性肿瘤最广谱的分子标记,可以在90%的恶性肿瘤中被激活,而其在正常体细胞中一般为阴性表达。人端粒酶的主要成分有人端粒酶RNA(hTR)、人端粒酶相关蛋白(hTP)、人端粒酶逆转录酶(hTERT)。人类端粒酶是一种维持端粒长度的一种逆转录酶,hTERT的表达几乎只限制在肿瘤细胞中,并与端粒酶活性密切相关。而端粒酶的其他组分在正常肿瘤细胞中均表达。因此,我们选择胃癌为目标,以SSAT为靶点,利用hTERT启动子只在肿瘤细胞中表达,而在正常细胞中不表达的特点,构建了一种由hTERT启动子介导的、表达SSAT的重组腺病毒载体。我们利用该表达载体系统在体外研究了SSAT表达增高对胃癌细胞生长的抑制作用,并建立了裸鼠皮下胃癌移植瘤模型,在体内对SSAT表达增高抑制胃癌的作用进行了研究。
     第一部分腺病毒介导的SSAT表达抑制胃癌细胞增殖的体外研究
     实验目的:构建hTERT启动子介导的人SSAT表达的腺病毒载体,研究重组腺病毒Ad-SSAT对胃癌细胞多胺合成的作用,观察对细胞增殖的抑制作用。
     实验方法:
     1.采用RT-PCR方法克隆人SSAT mRNA翻译区的基因片断;将其插入pMD-18T载体中,经Nco I、XbaI酶切回收,插入到质粒PGL3-hTERT中,然后将重组的pGL3-hTERT-SSAT用Sal I和Hind III双酶切回收,插入穿梭质粒pAdTrack形成重组质粒pAdTrack-hTERT-SSAT。重组质粒经PmeI酶切线性化后,转入Adeasy-1细菌与pAdeasy-1质粒发生同源重组。将重组质粒pAdeasy-hTERT-SSAT,经PacI酶切后,转染293细胞包装成腺病毒颗粒。
     2.利用荧光显微镜和PCR的方法对重组腺病毒Ad-hTERT-SSAT进行鉴定。
     3.根据参考文献报道设计SSAT基因的siRNA片段,表达载体pGPU6/GFP/Neo-shSSAT的合成与构建由上海吉玛公司完成。
     4.采用MTS法测定不同MOI的腺病毒对胃癌MGC803和SGC7901细胞的基因转染效率,寻找不同细胞的最适感染滴度。
     5.采用Western印迹技术检测重组腺病毒以及RNA干扰载体pGPU6/GFP/Neo-shSSAT感染或转染胃癌细胞后SSAT蛋白表达情况,并利用高效液相(HPLC)法检测其对胃癌细胞中多胺含量的影响。
     6.采用MTS法检测重组腺病毒Ad-SSAT和RNA干扰载体pGPU6/GFP/Neo-shSSAT对胃癌MGC803和SGC7901细胞增殖的影响。并进一步运用克隆形成实验观察各组细胞克隆形成率。
     7.采用流式细胞术检测Ad-SSAT对MGC803和SGC7901细胞周期分布的影响。
     实验结果:
     1.成功扩增出SSATcDNA片断且测序正确,然后经TA克隆连接到质粒pGL3-hTERT和pAdTrack中,酶切及测序验证基因插入方向和序列都正确。在转入Adeasv-1细菌后获得多个阳性重组克隆。重组质粒pAdeasy-hTERT-SSAT转染293细胞进行包装扩增,荧光显微镜下可见绿色荧光蛋白在293细胞中表达,并且PCR证实基因组中含有目的基因。
     2.成功合成沉默SSAT的RNAi载体pGPU6/GFP/Neo-shSSAT。
     3.腺病毒对胃癌细胞MGC803和SGC7901的最适MOI分别是50和25。分别以该MOI的Ad-SSAT感染MGC803和SGC7901细胞可明显抑制其生长增殖,最大抑制率分别为65%和55%,但不会引起细胞毒性作用。
     4.Ad-SSAT感染MGC803和SGC7901细胞,可明显增强SSAT基因表达,两种细胞SSAT表达分别为对照组的265%和210%;而RNA干扰沉默SSAT表达可明显抑制两株细胞中SSAT的表达,其抑制率分别为85%和73%。HPLC结果显示,MGC803和SGC7901细胞感染Ad-SSAT后细胞内精胺和精脒含量明显降低,而RNAi沉默SSAT表达后细胞内精胺和精脒含量明显升高。
     5.细胞生长曲线显示Ad-SSAT感染MGC803和SGC7901细胞,可以明显抑制细胞的增殖,而RNAi沉默SSAT表达则使细胞增殖加快。细胞克隆形成实验进一步验证了这个观点。
     6.流式细胞DNA含量分析显示,Ad-SSAT可引起MGC803和SGC7901细胞周期山东大学博士学位论文S期阻滞,但并未引发凋亡。
     实验结论:
     成功构建SSAT腺病毒表达载体以及SSAT RNA干扰表达载体,为进一步研究SSAT作为胃癌的基因治疗和预防研究提供了必要的工具。Ad-SSAT可显著上调胃癌细胞中SSAT的表达,使细胞周期阻滞于S期,抑制细胞增殖,提示其有抑胃癌作用。
     第二部分腺病毒介导的SSAT表达引起胃癌细胞周期阻滞于S期的分子机理研究
     实验目的:观察Ad-SSAT对S期主要的细胞周期调节蛋白的调控作用,研究Ad-SSAT引起胃癌细胞周期阻滞于S期的分子机制。
     实验方法:
     1. Western blotting检测Ad-SSAT对细胞周期调节蛋白cyclin A和Cdk2蛋白水平的影响作用。
     2.半定量RT-PCR法检测Ad-SSAT对细胞内cyclin A和Cdk2的mRNA水平的影响作用。
     3.采用Western blotting和RT-PCR法检测Ad-SSAT对核转录因子E2F-1表达的影响。
     4.双荧光素酶活性测定检测Ad-SSAT对E2F启动子活性的影响。
     实验结果:
     1. Western blot结果显示,与对照组相比,Ad-SSAT感染分别使MGC803和SGC7901细胞中cyclin A蛋白表达下调80%和60%左右,但Cdk2蛋白的表达无明显变化。
     2.RT-PCR结果显示,Ad-SSAT处理组MGC803细胞cyclinA mRNA表达水平降低了80%, SGC7901细胞cyclinA mRNA表达水平降低了70%。而三组中的Cdk2mRNA没有明显变化。
     3. Western blotting和RT-PCR结果显示Ad-SSAT抑制核转录因子E2F-1的表达,E2F1蛋白表达下调70%和60%左右,E2F1的mRNA也分别有90%,60%的降低。
     4.双荧光素酶活性测定结果显示Ad-SSAT可抑制E2F启动子活性,使其活性下调60%以上。
     实验结论:
     Ad-SSAT抑制S期主要的细胞周期蛋白cyclin A的转录和翻译,同时抑制其上游核转录因子E2F-1的表达,并且抑制核转录因子E2F启动子的活性。提示Ad-SSAT可能是通过下调E2F启动子活性,抑制其基因表达,从而下调下游S期主要细胞周期蛋白cyclin A的表达,引起细胞周期阻滞,起到抑制细胞增殖的作用。
     第三部分Ad-SSAT对胃癌细胞生长抑制作用的体内研究
     实验目的:通过裸鼠皮下胃癌移植瘤试验,观察腺病毒Ad-SSAT介导的SSAT基因上调对胃癌的抑制作用。
     实验方法:
     1.移植瘤模型的建立:将SGC7901, SGC7901/GFP和SGC7901/Ad-SSAT细胞分别接种在4周龄的裸鼠皮下。
     2.移植瘤及裸鼠的监测:从注射后的第八天开始,每隔4天测量肿瘤大小,制备各组裸鼠肿瘤的生长曲线,并称取裸鼠体重,观察动物的一般状况。接种后33天处死裸鼠,称取肿瘤重量。
     实验结果:
     裸鼠皮下胃癌移植瘤模型显示SGC7901/Ad-SSAT组裸鼠的肿瘤出现较晚,生长速度明显低于对照组,致死裸鼠时SGC7901/Ad-SSAT组肿瘤的体积不足对照组的一半,肿瘤重量约为对照组肿瘤的40%。
     实验结论:
     Ad-SSAT能有效抑制裸鼠皮下胃癌细胞的生长,提示SSAT基因过表达可起到抑制肿瘤的作用。
Gastric cancer is the fourth most common cancer and the second leading cause of cancer-related death, with 700000 deaths annually. Now the first-line therapy is radical surgery with adjuvant chemotherapy. But overall 5 year survival rate for this disease is 20%~30%. Because of lacking targeting, these traditionary treatments may also damage the normal tissues and cells. Therefore, it is important to find a novel non-surgical targeting intervention for treating gastric cancer.
     Polyamines include spermidine, spermine and their diamine precursor, putrescine. Their positive charges enable polyamines to interact electrostatically with polyanionic macromolecules within the cell, such as DNA, RNA and proteins. They are critical for cell growth and differentiation.The level of polyamine is high in cancer cell and tissues, and rapid tumor growth has been associated with remarkable elevation of polyamine biosynthesis and accumulation. Therefore, polyamine pathway becomes an important target for preventing and treating cancer.
     The intracellular polyamine biosynthetic pathway is mainly regulated by the actions of two rate-limiting enzymes, Ornithine decarboxylase (ODC) and Sadenosylmethionine decarboxylase (AdoMetDC). Studies in our laboratory have demonstrated that ODC mRNA and ODC protein levels in colorectal cancer were higher than that were found in the surrounding normal tissues, the down regulation of ODC and AdoMetDC could inhibit colorectal cancer. Spermidine/spermine N1-acetyltransferase (SSAT) is the rate limiting step in polyamine catabolism,which is primarily responsible for regulation of intracellular polyamine concertrations in mammalian cells. SSAT catalyzes the transfers of the acetyl group from acetyl-CoA to the N1 positions of spermidine or spermine. SSAT is thought to prevent accumulation of higher polyamines from becoming toxic to the cell, and so maintains a balanced ration of intracellular polyamines according to cellular needs.SSAT activity is highly regulated and is induced rapidly in response to high intracellular levels of natural polyamine. Additionally, SSAT activity can be induced by a number of other stimuli, including hormones, physiological stimuli, drugs and toxic agents. In polyamine analogue-responsive cells, the super-induction of SSAT expression can result in a> 1000-fold increase in protein activity. Depletion of intracellular polyamine pools invariably inhibits cell growth. Although this is usually accomplished by inhibiting polyamine biosynthesis, Kristin Kee and Slavoljub Vujcicthis have found that this might be more effectively achieved by activating polyamine catabolism at the level of SSAT.
     Telomerase is an enzyme involved in the synthesis and maintenance of chromosome termini known as telomeres that conventional polymerases are unable to replicate fully. Telomerase activation is observed in approximately 90%of human cancers, irrespective of tumor type, while most normal tissues contain inactivated telomerase. Numerous studies have demonstrated that hTERT promoter expression is highly specific to cancer cells and tightly associated with telomerase activity, while the other subunits are constitutively expressed both in normal and cancer cells. Therefore, based on the specialty of hTERT promoter, we constructed an adenovirus which can express SSAT mediated by hTERT promoter, valued its inhibitory effects on gastric cancer. We also investigated the in vivo growth inhibitory effect using a SGC7901 xenograft model in nude mice.
     Part 1 Adenovirus vector-mediated upregulation of spermidine/spermine N1-acetyltransferase impairs human gastric cancer growth in vitro
     Objective:To construct a recombinant adenovirus that can expression human SSAT mediated by hTERT promoter, and study the inhibitory effects of Ad-SSAT on growth of SGC7901 and MGC803 cells. To construct the shRNA expression vector pGPU6/ GFP/Neo-shSSAT.
     Methods:
     1. Human SSAT cDNA was amplified by RT-PCR and was cloned into pGL3-hTERT plasmid. The pGL3-hTERT-SSAT construction was digested, and the small fragments were cloned into pAdTrack. Then the pAdTrack-hTERT-SSAT plasmids recombined with pAdEasy-1 vectors in AdEasy-1 cells. pAdeasy-hTERT-SSAT were linearized by Pac I, and transfected into the HEK293 to package. Green fluorescent protein expression and PCR technique was used to confirm the process.
     2. The siRNA duplex was designed to SSAT (NM_002970). The shRNA expression vector pGPU6/GFP/Neo-shSSAT was commercially obtained from GenePharma (Shanghai, China).
     3. MTS assay was used to analyze adenovirus-mediated gene transduction efficiency of different MOI in SGC7901 and MGC803 cells.
     4. The SSAT protein levels were determined by Western blot, and intracellular polyamine content was detected by reverse-phase high performance liquid chromatography.
     5. MTS assay and Colony-Forming assay were used to analyze the effect of the the growth of SGC7901 and MGC803 cells.
     6. Cell cycle progression was detected by flow cytometry analysis.
     Results:
     1. A 516bp cDNA was amplified by RT-PCR and the sequencing result showed it was the domain of SSAT gene. Several positive recombinant clones were identified after transformation of Adeasy-1 cells with linearized pAdTrack-hTERT-SSAT. Fluorescent microscope observation and PCR conformed that pAd-hTERT-SSAT (abbreviate as Ad-SSAT) could infect 293 cell and replicate in the cell.
     2. The shRNA expression vector pGPU6/GFP/Neo-shSSAT was successfully constructed.
     3. MTS assay results showed that Ad-SSAT could significantly inhibit the growth of SGC7901 and MGC803 about 65%and 55%, respectively, by 50MOI and 25MOI without cell toxicity.
     4. Western blot results showed that Ad-SSAT could increase the expression of SSAT about 265%and 210%, respectively, in SGC7901 and MGC803; pGPU6/ GFP/Neo-shSSAT could lower the expression of SSAT to 15%and 27% respectively. Spermidine and spermine were changed correspondingly.
     5. MTS assay and Colony-Forming assay results showed that Ad-SSAT could significantly inhibit the growth of SGC7901 and MGC803 cells.While silence of SSAT by pGPU6/GFP/Neo-shSSAT could accelerate the growth of gastric cells.
     6. Cell flow cytometry analysis showed that upregulated SSAT arrests gastric cancer cells in S phase.
     Conclusions:The recombinant adenovirus Ad-SSAT and shRNA expression vector pGPU6/GFP/Neo-shSSAT were successfully constructed. Ad-SSAT has significant inhibitory effects on gastric cancer cells and induces S arrest in SGC7901 and MGC803 cells.
     Part 2 Molecular mechanism of Adenovirus-mediated expression of SSAT expression induces S arrest
     Objective:To investigate underlying regulatory responses of Adenovirus-mediated expression of SSAT induces S arrest in MGC803and SGC7901 cells.
     Methods:
     1.The effect of Ad-SSAT on protein levels of cell cycle regulated proteins was measured by Western blotting analysis.
     2.The effect of Ad-SSAT on mRNA levels of cell cycle regulated proteins was measured by RT-PCR.
     3.The effect of Ad-SSAT on expression level of E2F-1 was measured by Western blotting and RT-PCR.
     4.Observe the effect of Ad-SSAT on E2F promoter activity.
     Results:
     1. Ad-SSAT could decrease protein expression of cyclin A about 80%and 60%in SGC7901 and MGC803 cells, but there were no obvious changes in Cdk2 protein level.
     2. The mRNA level of cyclin A decreased significantly in Ad-SSAT-treated cells, but no changes in Cdk2 mRNA level.
     3. Ad-hTERT-SSAT could decrease protein and mRNA expression level of nuclear factor E2F-1.
     4. The E2F promoter activity measured by luciferase reporter decreased about 80% and 60%by Ad-SSAT infection in SGC7901 and MGC803 cells.
     Conclusions:SSAT expression mediated by Ad-SSAT induces S arrest in MGC803 and SGC7901 cells and the arrest was associated with suppression of cyclin A expression and inhibition of nuclear factor E2F-1.
     Part 3 Adenovirus vector-mediated up-regulation of spermidine/spermine N1-acetyltransferase suppress the gastric tumor growth in vivo.
     Objective:To investigate the antitumorigenicity of Ad-SSAT in vivo.
     Methods:
     1. Tumor cells injection:SGC7901, SGC7901/GFP and SGC7901/Ad-SSAT cells were injected subcutaneously in 4 week-old nude mice for tumor implantation studies.
     2. Tumor growth observation:Tumor growth and animal weight were monitored every 4 days since the eighth day after injection. On day 33day after inoculation, all the mice were sacrificed, and the tumor masses were weighted.
     Results:
     1. Visible tumors in SGC7901 and SGC7901/GFP groups were detectable 8 days after implantation and grew rapidly in the next days, while the cell treated with Ad-SSAT cells remarkably delayed tumor growth.
     2. In tumors from SSAT-up-regulated groups, size and weight were significantly decreased by 68.3%.
     Conclusions:Up-regulation of SSAT has an in vivo growth-inhibitory effect.
引文
1. Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents:defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol.2006; 24(14):2137-50.
    2. Jemal A, Siegel R, Ward E et al. Cancer statistics,2007. CA Cancer J Clin.2007; 57(1):43-66.
    3. Kelley JR, Duggan JM. Gastric cancer epidemiology and risk factors. J Clin Epidemiol 2003; 56:1-9.
    4.孙秀娣,牧人,周有尚等.中国胃癌死亡率20年变化情况分析及其发展趋势预测.中华肿瘤杂志2002;24:101-105.
    5. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics,2002. CA Cancer J Clin 2005; 55 (2):74-108.
    6. Siewert JR, Bottcher K, Roder JD, Busch R, Hermanek P, Meyer HJ. Prognostic relevance of systematic lymph node dissection in gastric carcinoma. German Gastric Carcinoma Study Group. Br J Surg 1993; 80:1015-8.
    7. Breaux JR, Bringaze W, Chappuis C, Cohn I Jr. Adenocarcinoma of the stomach: a review of 35 years and 1,710 cases. World J Surg 1990; 14:580-6.
    8. Dicken BJ, Bigam DL, Cass C, Mackey JR, Joy AA, Hamilton SM. Gastric adenocarcinoma:review and considerations for future directions.Ann Surg 2005;241:27-39.
    9. Pegg AE, McCann PP. Polyamine metabolism and function. Am J Physiol,1982, 243(2):212-21.
    10. Russell DH. Ornithine decarboxylase as a biological and pharmacological tool. Pharmacology,1980,20(2):117-29.
    11. Xie X, Gillies RJ, Gerner EW. Characterization of a diamine exporter in Chinese hamster ovary cells and identification of specific polyamine substrates. J. Biol. Chem.1997,272:20484-20489.
    12. Wang Y. Properties of purified recombinant human polyamine oxidase, PAOh1/ SMO. Biochem. Biophys. Res. Commun.,2003,304 (2):605-611
    13. Williams K. (1997) Interactions of polyamines with ion channels. Biochem. J. 325:289-297
    14. Ruan H., Hill J. R., Fatemie-Nainie S. and Morris D. R. (1994) Cell-specific translational regulation of S-adenosylmethionine decarboxylase mRNA. Influence of the structure of the 5'transcript leader on regulation by the upstream open reading frame. J. Biol. Chem.269:17905-17910
    15. Tang J. X., Wong S., Tran P. T. and Janmey P. A. (1996) Counterion induced bundle formation of rodlike polyelectrolytes.Ber. Bunsenges Phys. Chem.100: 796-806
    16. Matthews, H. R. Polyamines, chromatin structure and transcription.BioEssays, 1993,15 (2):561-567
    17. Tabor, C. W. and Tabor, H. Polyamines. Annu. Rev. Biochem.,1983,53 (2) 749-790
    18. Xaio, L., Swank, R. A. and Matthews, H. R. Photoaffinity polyamines:sequence specific interactions with DNA. Nucleic Acid Res,1983,19 (2),3701-3708
    19. Basu, H. S., Wright, W. D., Deen, D. F., Roti-Roti, J. and Marton, L. J. Treatment with a polyamine analog alters DNA matrix association in HeLa cell nuclei:a nucleoid halo assay. Biochemistry,1993,32 (2):4073-4076
    20. Casero RA Jr, Pegg AE. Spermidine/spermine N1-acetyltransferase-the turning point in polyamine metabolism. FASEB J 1993; 7 (8):653-61.
    21. Meyskens FL Jr, Gerner EW. Development of difluoromethylornithine (DFMO) as a chemoprevention agent. Clin Cancer Res.1999,5(5):945-51
    22. Chen C, Young BA, Coleman CS, Pegg AE, Sheppard D. Spermidine/spermine N1-acetyltransferase specifically binds to the integrin alpha9 subunit cytoplasmic domain and enhances cell migration. J Cell Biol.2004,167(l):161-70.
    23. Baek, J. H., Liu, Y. V., McDonald, K. R., Wesley, J. B., Zhang, H. and Semenza, G. L. (2007) Spermidine/spermine Nl-acetyltransferase-1 binds to HIF-la and RACK1 and promotes ubiquitination and degradation of HIF-la. J. Biol. Chem. 282,33358-33366
    24. Wang Y, Casero RA Jr. Mammalian polyamine catabolism:a therapeutic target, a pathological problem, or both? J Biochem (Tokyo) 139:17-25,2006.
    25. Wang Y, Xiao L, Thiagalingam A, Nelkin BD, Casero RA Jr. The identification of a cis-element and a trans-acting factor involved in the response to polyamines and polyamine analogues in the regulation of the human spermidine/spermine N1-acetyltransferase gene transcription. J Biol Chem 273:34623-34630,1998.
    26. Fogel-Petrovic M, Kramer DL, Vujcic S, Miller J, McManis JS, Bergeron RJ, Porter CW. Structural basis for differential induction of spermidine/spermine Nl-acetyltransferase activity by novel spermine analogs. Mol Pharmacol 52:69-74,1997
    27. Fogel-Petrovic M, Vujcic S, Brown PJ, Haddox MK, Porter CW. Effect of polyamines, polyamine analogs, and inhibitors of protein synthesis on spermidine-spermine N1-acetyltransferase gene expression. Biochemistry 35: 14436-14444,1996.
    28. Marverti G, Bettuzzi S, Astancolle S, Pinna C, Monti MG, Moruzzi MS. Differential induction of spermidine/spermine N1-acetyltransferase activity in cisplatin-sensitive and resistant ovarian cancer cells in response to N1,N12-bis(ethyl)spermine involves transcriptional and post-ranscriptional regulation. Eur J Cancer 37:281-289,2001.
    29. Casero RA Jr, Ervin SJ, Celano P, Baylin SB, Bergeron RJ. Differential response to treatment with the bis (ethyl) polyamine analogues between human small cell lung carcinoma and undifferentiated large cell lung carcinoma in culture. Cancer Res 1989; 49 (3):639-43.
    30. Casero RA Jr, Celano P, Ervin SJ, Wiest L, Pegg AE. High specific induction of spermidine/spermine N1-acetyltransferase in a human large cell lung carcinoma. Biochem J 1990; 270 (3):615-20.
    31. Casero, Jr, R. A. and Pegg, A. E. (1993) Spermidine/spermine N1-acetyltransferase:the turning point in polyamine metabolism. FASEB J.7, 653-661
    32. Pegg, A. E. (2008) Spermidine/spermine Nl-acetyltransferase:a key metabolic r egulator. Am. J. Physiol. Endocrinol. Metab.294, E995-E1010
    33. Wang, Y. and Casero, R. A. (2006) Mammalian polyamine catabolism:a therapeutic target, a pathological problem, or both? J. Biochem.139,17-25
    34. Babbar, N., Gerner, E. W. and Casero, Jr, R. A. (2006) Induction of spermidine/spermine 1-acetyltransferase (SSAT) by aspirin in Caco-2 colon cancer cells. Biochem. J.394,17-324
    35. Fogel-Petrovic M, Kramer DL, Vujcic S, Miller J, McManis JS,Bergeron RJ, Porter CW. Structural basis for differential induction of spermidine/spermine N1-acetyltransferase activity by novel spermine analogs. Mol Pharmacol 52:69-74,1997.
    36. McCloskey DE, Coleman CS, Pegg AE. Properties and regulation of human spermidine/spermine N1-acetyltransferase stably expressed in Chinese hamster ovary cells. J Biol Chem 274:6175-6182,1999.
    37. Wang Y, Casero RA Jr. Mammalian polyamine catabolism:a therapeutic target, a pathological problem, or both? J Biochem (Tokyo) 139:17-25,2006.
    38. Xiao L, Casero RA Jr. Differential transcription of the human spermidine/spermine N1-acetyltransferase (SSAT) gene in human lung carcinoma cells. Biochem J 313:691-696,1996.
    39. Choi W, Proctor L, Xia Q, Feng Y, Gerner EW, Chiao PJ, Hamilton SR, Zhang W. Inactivation of I(?) B contributes to transcriptional activation of spermidine/spermine N1-acetyltransferase. Mol Carcinog 45:685-693,2006.
    40. Libby PR, Ganis B, Bergeron RJ, Porter CW. Characterization of human spermidine/spermine Nl-acetyltransferase purified from cultured melanoma cells. Arch Biochem Biophys.1991 284(2):238-44.
    41. Andersson G, Heby O. Polyamine and nucleic acid concentrations in Ehrlich ascites carcinoma cells and liver of tumor-bearing mice at various stages of tumor growth. J Natl Cancer Inst 1972; 48 (1):165-72
    42. Meyskens FL Jr, Gerner EW. Development of difluoromethylornithine (DFMO) as a chemoprevention agent. Clin Cancer Res 1999; 5 (5):945-51.
    43. Lundell L, Rosengren E. Polyamine levels in human gastric carcinoma.Scand J Gastroenterol.1986; 21(7):829-32
    44. Pines J. The cell cycle kinases. Semin Cancer Biol,1994,5(7):305-13.
    45. Hartwell LH and Weinert TA. Checkpoints:Controls that ensure the order of cell cycle events. Science 1989; 246:629-634.
    46. Heby, O. Role of polyamines in the control of cell proliferation and differentiation. Differentiation.1981,19(8):1-20
    47. Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev.1998,12 (15):2245-62.
    48. Nevins JR. Toward an understanding of the functional complexity of the E2F and retinoblastoma families. Cell Growth Differ.1998,9(8):585-93.
    49. Christensen J, Cloos P, Toftegaard U et al. Characterization of E2F8, a novel E2F-like cell-cycle regulated repressor of E2F-activated transcription. Nucleic Acids Res.2005,22; 33(17):5458-70.
    50. DeGregori J, Leone G., Miron A et al.Distinct roles for E2F proteins in cell growth control and apoptosis. Proc Natl Acad Sci U S A.1997,94(14):7245-50.
    51. Attwooll C., Lazzerini Denchi E, Helin K. The E2F family:specific functions and overlapping interests. EMBO J.2004,23(24):4709-16.
    52. Furuno N, den Elzen N, Pines J. Human cyclin A is required for mitosis until mid prophase. J Cell Biol,1999,147(2):2952306.
    53. Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev 1998; 12(15):2245-62.
    54. Trimarchi JM, Lees JA. Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 2002; 3(1):11-20.
    55. Helin K, Lees JA, Vidal M, Dyson N, Harlow E, Fattaey A. A cDNA encoding a pRB-binding protein with properties of the transcription factor E2F. Cell 1992; 70 (2):337-50.
    56. Kaelin WG Jr, Krek W, Sellers WR et al. Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell 1992; 70 (2): 351-64.
    57. Shan B, Zhu X, Chen PL et al. Molecular cloning of cellular genes encoding retinoblastoma-associated proteins:identification of a gene with properties of the transcription factor E2F. Mol Cell Biol,1992 Dec; 12:5620-31.
    58. Miller AD.Human gene therapy comes of age.Nature,1992,357:455
    59. Mμlligan RC.The basic science of gene therapy.Science,1993,260:926.
    60. Yi C, Huang Y, Guo ZY, Wang SR. Antitumor effect of cytosine deaminase/5-fluorocytosine suicide gene therapy system mediated by Bifidobacterium infantis on melanoma. Acta Pharmacol Sin 2005,26:629-34.
    61. Zhang SN, Yuan SZ, Zhu ZH, Wen ZF, Huang ZQ, Zeng ZY. Apoptosis induced by 5-flucytosine in human pancreatic cancer cells genetically modified to express cytosine deaminase. Acta Pharmacol Sin 2000,21:655-9.
    62. Hu YC. Baculovirus as a highly efficient expression vector in insect and mammalian cells. Acta Pharmacol Sin 2005,26:405-16.
    63. Li L, He DL. Transfection of promyelocytic leukemia in retro virus vector inhibits growth of human bladder cancer cells. Acta Pharmacol Sin 2005,26:610-5.
    64.万涛,曹雪涛.肿瘤基因治疗的病毒载体研究进展.国外医学肿瘤分册,1996,2 3(1):5-7.
    65. St George JA. Gene therapy progress and prospects:adenoviral vectors. Gene Ther 2003,10:1135-41.
    66. Bianchi A, Shore D. How telomerase reaches its end:mechanism of telomerase regulation by the telomeric complex.Mol Cell,2008,31(2):153.
    67. Bollmann FM. The many faces of telomerase:emerging extratelomeric effects.Bioessays,2008,30(8):728.
    68. Wirth T, Khnel F, Kubicka S. Telomerase-dependent gene therapy. Curr Mol Med, 2005,5 (2):243-251.
    69. Blackburn E. Structure and function of telomeres. Nature 1991,350:569-573
    70. Ribeiro-Silva A, Becker de Moura H, Ribero do Vale F, et al.The differential regulation of human telomerase reverse transcriptase and vascular endothelial growth factor may contribute to the clinically more aggressive behavior of p63-positive breast carcinomas.Int J Biol Markers,2005,20 (4):227-234.
    71. Horikawa I, Cable PL, Afshari C. Cloning and characterization of promoter region of human telomerase reverse transcriptase gene. Cancer Res,1999,59: 826-830.
    72. Horikawa I, Cable PL, Mazur SJ. Downstream Ebox-mediated regulation of the human telomerase reverse transcriptase (hTERT) gene transcription:evidence for an endogenous mechanism of transcriptional repression. Mol Biol Cell,2002, 13(8):1585-1597.
    73. Komata T,Kanzawa T,Kondo Y,et al.Telomerase as therapeutic target for malignant gliomas.Oncogene,2002,21656-663.
    74. Chen D, Huang H, Pan C.Antitumor effects of targeting hTERT lentivirus-mediated RNA interference against KB cell lines. Oncol Res. 2009;17(11-12):621-30
    75. Horikawa I,Cable P.L,Afshari C, et al.Cloning and characterization of the promoter region of human telomerase reverse transcriptase gene. Cancer Res,1999,59:826-830
    76. Hu Z, Robbins JS, Pister A.A modified hTERT promoter-directed oncolytic adenovirus replication with concurrent inhibition of TGFbeta signaling for breast cancer therapy. Cancer Gene Ther.2009 Oct 2.
    77. Takeda T, Inaba H, Yamazaki M. Tumor-specific gene therapy for undifferentiated thyroid carcinoma utilizing the telomerase reverse transcriptase promoter. Journal of Clinical Endocrinology& Metabolism,2003,88:3531 3538.
    78. Jacob D, Davis J, Zhu H. Suppressing orthotopic pancreatic tumor growth with a fiber-modified adenovector expressing the TRAIL gene from the human telomerase reverse transcriptase promoter. Clinical Cancer Research,2004, 10:3535-3541.
    79.聂明明,方国恩,王星华,等.基因-病毒治疗系统CNHK300-murine endostatin的构建及体外研究.中华实验外科杂志,2006,23:45-48.
    80. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in mammalian cell culture. Nature,2001,411(6836): 494-498.
    81. Guo S, Kemphues KJ. Par21, a gene required for establishing polarity in elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell,1995,81 (4):6112620.
    82. Ham ilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscrip tional gene silencing in plants. Science,1999,286(5441):9502952.
    83. Fan X, Wang Z.sTAT1 antisense oligonucleotides attenuate the proinflammatory cytokine release of alveolar macrophages in bleomycin-induced fibrosis. Cell Mol Immunol,2005,2 (3):2112217.
    84. Jemal A, Siegel R, Ward E et al. Cancer statistics,2007. CA Cancer J Clin.2007, 57(1):43-66
    85. Thomas T, Thomas TJ. Polyamines in cell growth and cell death:molecular mechanisms and therapeutic applications. Cell Mol Life Sci,2001,58(2):244-58.
    86. Faaland CA, Thomas TJ, Balabhadrapathruni S, et al. Molecular correlates of the action of bis (ethyl) polyamines in breast cancer cell growth inhibition and apoptosis. Biochem Cell Biol,2000,78(4):415-26.
    87. Canizares F, Salinas J, de las Heras M, et al. Prognostic value of ornithine decarboxylase and polyamines in human breast cancer:correlation with clinicopathologic parameters. Clin Cancer Res,1999,5(8):2035-41.
    88. Hu HY, Liu XX, Jiang CY et al. Cloning and expression of ornithine decarboxylase gene from human colorectal carcinoma. World J Gastroenterol 2003; 9:714-16.
    89. Hu HY, Liu XX, Jiang CY et al. Ornithine decarboxylase gene is overexpressed in colorectal carcinoma. World J Gastroenterol 2005; 11:2244-8.
    90. Zhang Y, Liu XX, Zhang B, et al. Inhibition of prostate cancer cells with antisense RNA of ornithine decarboxylase gene. Chin J Biochem Mol Biol 2005; 21:128-133.
    91. Zhang B, Liu XX, Zhang Y et al. Adenovirus-mediated expression of both antisense ODC and AdoMetDC inhibits colorectal cancer cell growth in vitro. Acta Pharmacol Sin 2006; 27:353-9.
    92. Zhang B, Liu XX, Zhang Y et al. Polyamine depletion by ODC-AdoMetDC antisense adenovirus impairs human colorectal cancer growth and invasion in vitro and in vivo. J Gene Med 2006; 8:980-9.
    93. Chi WL, Song XR, Jiang CY, Liu XX, Li WT, Wang XW. Lentiviral vector-mediated downregulation of ornithine decarboxylase inhibits tumor cell growth in vitro and in vivo. Tumor Biol 2006; 27:243-51.
    94. Zhang ZZ. Development and application of adenoviral vectors for gene t herapy of cancer. Cancer Gene Ther,1999,6:113-115
    95. He TC, Zhou S, da Costa LT. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA,1998,95(5):2509-2515
    96. Horikawa I, Cable PL, Mazur SJ. Downstream Ebox-mediated regulation of the human telomerase reverse transcriptase (hTERT) gene transcription:evidence for an endogenous mechanism of transcriptional repression. Mol Biol Cell,2002, 13(8):1585-1597.
    97. Basuroy UK, Gerner EW. Emerging concepts in targeting the polyamine metabolic pathway in epithelial cancer chemoprevention and chemotherapy.J Biochem.2006,139(1):27-33.
    98. Gerner EW, Meyskens FL Polyamines and cancer:Old molecules, new understanding Nature Reviews Cancer.2004,4(10):781-792.
    99. Zhang Y, Liu XX, Zhang B, Hu HY, Gong L, Antitumor effect of antisense ODC adenovirus on human prostate cancer cells. Prostate Cancer and Prostatic Diseases (2005) 8:280-286.
    100.HUANG Y,PLEDGIE A,CASERO RA Jr,et al.Molecular mechanisms of polyamine analogs in cancer cells.Anticancer Drugs,2005,16 (3):229-241.
    101.Beckers A, Organe S, Timmermans L, Scheys K, Peeters A, Brus-selmans K, Verhoeven G., Swinnen JV. Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Res 67: 8180-8187,2007.
    102.Jiang R, Choi W, Hu L, Gerner EW, Hamilton SR, Zhang W. Activation of polyamine catabolism by N1,N11-diethylnorspermine alters the cellular localization of mTOR and downregulates mTOR protein level in glioblastoma cells. Cancer Biol Ther 6:1644-1648,2007.
    103.Pledgie A, Huang Y, Hacker A, Zhang Z, Woster PM, Davidson NE, Casero RA Jr. Spermine oxidase SMO (PAOhl), not N1-acetylpolyamine oxidase PAO, is the primary source of cytotoxic H2O2 in polyamine analogue-treated human breast cancer cell lines. J Biol Chem 280:39843-39851,2005.
    104.Wang Y, Casero RA Jr. Mammalian polyamine catabolism:a therapeutic target, a pathological problem, or both? J Biochem (Tokyo) 139:17-25,2006.
    105.Zhou W, Takuwa N, Kumada M, Takuwa Y. E2F1, B-myb and selective members of cyclin/cdk subunits are targets for protein kinase C-mediated bimodal growth regulation in vascular endothelial cells. Biochem Biophys Res Commun.1994; 28; 199(1):191-8.
    106.Mitsui H, Takuwa N, Kurokawa K, Exton JH, Takuwa Y. Dependence of activated Galpha 12-induced G1 to S phase cell cycle progression on both Ras/mitogen-activated protein kinase and Ras/Racl/Jun N-terminal kinase cascades in NIH3T3 fibroblasts. J Biol Chem.1997; 21; 272(8):4904-10.
    107.Story M, Kodym R. Signal transduction during apoptosis; implications for cancer therapy.Front Bioscil998:365-75.
    108.Bergman PJ, HarrisD. Radioresistance, chemoresistance and apoptosis resistance. The past, present and future. Vet Clin North Am Small Anim Pract 1997; 27(1):47e57.
    109.McDonnell, Meyn RE, Robertson LE. Implications of apoptotic cell death regulation in cancer therapy. Cancer Biother 1995; 6:53-60.
    110.Furuno N, den Elzen N, Pines J. Human cyclin A is required for mitosis until mid prophase. J Cell Biol,1999,147(2):2952306.
    111.Huang JX, Song ZX, Qian RY. Expression of cell cycle-regulatory proteins in squamous cell carcinoma of the esophagus. Ai Zheng,2003,22(3):2772281.
    112.Nozoe T, Korenaga D, Futatsugi M. Cyclin A expression in superficial squamous cell carcinoma of the esophagus and coexisting infiltrated lymphocyte
    follicle. Cancer Lett,2002,188 (1-2):221-9.
    113.Zhang SY. E2F-1 gene transfer enhances invasiveness of human head and neck carcinoma cell lines, Cancer Res,2000,60 (21):5972-61.
    1 H.Field SJ. E2F-1 function in mice to promote apoptosis and suppress proliferation, Cell,1996,85 (4):549-561.
    115.Yamasaki L. Tumor induction and tissue atrophy in mice lacking E2F-1, Cell, 1996,85:537-548.
    116.Pierce AM, Schneider-Broussard R, Gimenez-Conti IB et al. E2F1 has both oncogenic and tumor-suppressive properties in a transgenic model. Mol Cell Biol. 1999 Sep; 19(9):6408-14.
    117.Aguda BD, Kim Y, Piper-Hunter MG et al. MicroRNA regulation of a cancer network:consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc Natl Acad Sci U S A.2008,105(50):19678-83.
    118.Devens B H, Weeks R S, Burns M R, Carlson C L, Brawer M K. Polyamine depletion therapy in prostate cancer. Prostate Cancer Prostatic Dis,2000,3(4): 275-279
    119.Frank Czauderna, Ansgar Santel, Michael Hinz, Inducible shRNA expression for application in a prostate cancer mouse model Nucleic Acids Research.2003, 21(31):127-133
    120.Miyachi K,Sasaki K,Onodera S,et al.Correlation between survivin mRNA expression and lymph node metastasis in gastric cancer. Gastric Cancer,2003, 6(4):217.
    121.Cheng XX,Sun Y,Chen XY, et al.Frequent translocalization of beta-catenin in gastric cancers and its relevance to tumor progression. Oncol Rep,2004, 11(6):1201.
    122.Amemiya H,Kono K,Itakura J,et al.c-Met expression in gastric cancer with liver metastasis.Oncology,2002,63(3):286.
    123.Garcia I, Vizoso F, Andicoechea A, et al.Clinical significance of epidermal growth factor receptor content in gastric cancer. Int J Biol Markers,2001, 16(3):183.
    124.Park GS, Joo YE, Kim HS, et al.Expression of PTEN and its correlation with angiogenesis in gastric carcinoma. Korean J Gastroenterol,2005,46(3):196.
    125.Nitti D,Belluco C,Mammano E,et al. Low level of p27 (Kipl) protein expression in gastric adenocarcinoma is associated with disease progression and poor outcome.J Surg Oncol,2002,81(4):167.
    126.Bauerschmitz GJ, Barker SD, Hemminki A. Adenoviral gene therapy for cancer: from vectors to targeted and replication competent agents. Int J Oncol,2002, 21(6):1161
    127.Sauthoff H, Hu J, Maca C, et al. Intratumoral spread of wild-type adenovirus is limited after local injection of human xenograft tumors:virus persists and spreads systemically at late time points.Hum Gene Ther,2003,14(5):425
    128.Rygaard J. Immunobiology of the mouse mutant "Nude". Preliminary investigations. Acta Pathol Microbiol Scand 1969; 77:761-762
    129.Shimosato Y, Kameya T, Nagai K, Hirohashi S, Koide T, Hayashi H, Nomura T. Transplantation of human tumors in nude mice. J Natl Cancer Inst 1976; 56: 1251-1260
    130.Su ZJ, Chen HB, Zhang JK, Xu L. Effects of dendritic cells from cord blood CD34+ cells on human hepatocarcinoma cell line BEL-7402 in vitro and in SCID mice. World J Gastroenterol 2005; 11:2502-2507
    131.Elinav E, Abd-Elnabi A, Pappo O, Bernstein I, Klein A, Engelhardt D, Rabbani E, Ilan Y. Suppression of hepatocellular carcinoma growth in mice via leptin, is associated with inhibition of tumor cell growth and natural killer cell activation. J Hepatol 2006; 44:529-536

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700