缙云山典型林分对径流水质的作用及评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文结合“十一五”国家科技支撑项目“重庆北部水源区水源涵养林构建技术试验示范(2006BAD03A1802)”,研究了重庆缙云山典型林分对径流及水质的影响,以期为重庆水源涵养林建设提供科学依据。
     研究样地计8个:马尾松×四川大头茶混交林(I1)、四川大头茶×四川山矾混交林(I2)、毛竹林(I3)、灌丛(I4)、马尾松×广东山胡椒混交林(I6)、广东山胡椒×杉木混交林(I7)、及毛竹×四川山矾×马尾松混交林(I8)等典型林分为研究对象,同时以裸地(I5)作为对照。
     首先,统计分析2002-2009年的降雨和径流监测数据,得出了该地区的降雨和产流特征。第二,首次在该地区森林水质研究中引入空气质量监测和云雾水水质的监测,了解空气质量和云雾与降雨化学性质的关系;在2007-2010年期间,对实验地区降雨、林内雨、地表径流和壤中流的水质进行监测与分析,通过对降雨、林内雨、地表径流和壤中流的分析,揭示典型林分不同层次(林冠层、枯落物层、土壤层)的水质效应及影响水质变化的原因;首次对该地区枯落物对酸雨的响应进行人工模拟试验研究,探讨典型林分枯落物对酸雨水质的影响。第三,研究了酸雨影响下森林优势乔木叶片、枯落物、土壤养分储量以及其碳储量的特征,并以这三个对象为三个层次,研究了三个层次间元素含量的相关性,探索它们之间的相互影响关系。对酸雨影响下的典型林分土壤、枯落物养分储量和酸缓冲潜力进行综合评价。第四,使用单因子评价、综合指数法、主成分分析与聚类、灰色关联法和BP神经网络法对典型林分地表径流和壤中流的水质状况进行综合评价。结果如下:
     (1)缙云山2002年-2009年平均年降雨量为1233.2mmm,主要集中在4-10月份,暴雨多发生在6-9月,且降雨量大,降雨强度高。缙云山典型林分径流量以5-8月最多,地表径流量占全年的51.05%-65.90%,地下径流量占55%-68.4%。有林地对降雨、径流的调节作用要优于裸地,林地中毛竹林(I3)调节径流的能力最差,马尾松×四川大头茶混交林(I1)和四川大头茶×四川山矾混交林(I2)较优。
     (2)缙云山地区主要空气污染气体为SO2。云雾水pH平均值(3.45)小于同期降雨pH平均值(4.04)且所含的离子浓度高于雨水。该地区降雨酸化严重,有向复合型酸雨转化的趋势。
     (3)对典型林分不同层次水质效应的分析表明:①降雨呈酸性,林冠层使降雨pH值降低,地表径流和壤中流的pH比降雨有明显的升高,其中地表汇流阶段对水体pH的缓冲作用最大。降雨中所含离子的浓度在其经过林冠层之后,除了Na+以外,其全部呈现增加的趋势。②除Ca2+外,典型林分对降雨输入的离子均有不同程度的削减作用,对SO42-、NH4+、Mg2+、Mn和A13+的削减主要阶段是地表汇流阶段,对N03"、K+、Na+和Fe的截留则主要是土壤层。③地表径流元素浓度与枯落物或者土壤中该元素的储量关系不大;壤中流相应元素的浓度与土壤中该元素的储量具有一定的关系,除了Mg2+和Mn(仅在I2、I4壤中流检出)外,其余元素在壤中流的浓度与其在土壤中的储量均具有正相关或者负相关的关系。
     (4)枯落物酸缓冲潜力综合评价结果为:P3(-82.01)>P7(-93.85)>P8(-94.98)>P6(-95.90)>P1(-97.58)>P4(-100.08)>P2(-103.16), I3枯落物的缓冲潜力最大,I2最小。土壤酸缓冲潜力综合评价结果为P6(29.37)>P4(23.23)>P8(22.71)>P7(18.50)>P1(15.39)>P2(13.61)>P3(13.22)>P5(11.31),林地土壤缓冲能力优于裸地,I6的缓冲能力最大,I1最小。
     (5)对I1、I2、I3、I4、I6、I8等6种典型林分枯落物进行的模拟酸雨淋溶实验的结果表明:6种枯落物对模拟酸雨pH值有一定的缓冲能力,在pH值2.7、3.5和4.5酸雨作用下,林分I8的枯落物层对pH值的缓冲效果最好。随着模拟酸雨pH值的降低,6种典型林分枯落物淋滤液中的盐基离子(Ca2+、Mg2+、K\Na+、H4+)、Al3+、Fe、Mn浓度呈现增加的趋势。林分I8的淋滤液中Ca/A1的摩尔比始终处于较低水平,较容易受到铝毒危害。当酸雨pH值降低到2.7时,在几种林分中,林分I8的Fe(4.4μmol/L)、Mn(10.7μmol/L)的含量均为最高的,表明该林分较易受到重金属的危害。
     (6)对地表径流和壤中流水质综合评价表明:该地区马尾松×四川大头茶混交林具有较好的水质效应。
The research about effects of subtropical typical forests on runoff and water qulity in Jinyun Mountain was conducted, which are associated with the national 11th five-year key project of state forestry administration "Technology Research and Demonstration of Vegetation Construction with Water Conservation Function in Water district of northern Chongqing city" (2006BAD03A1802). The purpose of this paper is to provide evidence for water conservation forest construction in Chongqing city, southwest China.
     Based on analysis of forest communities of Jinyun Mountain,8 plots were set:Pinus massoniana×Gordonia acuminate mixed forest(I1), Gordonia acuminate×Symplocos setchuensis mixed forest(I2), Phyllostachys pubescens forest(I3), shrub forest(I4), Lindera kwangtungensis×Cunninghamia lanceolata mixed forest(I6), Phyllostachys pubescens×Symplocos setchuensis×Pinus massoniana mixed forest(I7), Pinus massoniana×Lindera kwangtungensis mixed forest(I8) and bareland(I5).
     In this study, firstly, the characteristics of rainfall and runoff yield were discovered by analyzing the precipitation and runoff monitoring data in 2002-2009. Secondly, air quality monitoring and cloud-fog water qulity monitoring were introduced into study to reaserch relationship between their qulity and rainwater qulity. During 2007-2009, according to the temporal and special orders of interaction between water and forest ecosystem, the ecosystem was divided into several layers and every layer water quality along rainfall-runoff process was studied by comparing, contrasting and mechanism analyzing. The rainwater, through fall water, surface runoff and inter flow were collected and chemically tested. The hydro-chemical properties of litter layers of typical forests were also studied by the simulated acid rain experiment. Thirdly, the nutrient and carbon storage of dominant trees leaves, litters and soil. The element content correlation among leaves litters and soil was studied. And the acid buffer potentiality of soil and litters in typical forests was comprehensive evaluated. Finally, the water qaulity of surface runoff and interflow was assessed by single-factor evaluation, comprehensive index method, principal component analysis and cluster analysis, grey correlation analysis and BP neural network method. The mainly results in the study were as follows:
     (1)During 2002-2009, the average precipitation in Jinyun Mountain was 1233.2mm, and mainly rained from April to October. Rain storm mainly occurred in June-September, and the precipitation and rainfall intensity were great. Runoff yields in plots were largest in May-August. In this period, surface runoff took 51.05%-65.90% of annual quantity, and interflow took 55%-68.4%. Regulatory effects of forest stands were better than bareland. And I3 had worst ability of regulatory; I1 and I2 had better abilities on this effect.
     (2)The dominant gaseous pollutant was SO2. Average pH of cloud-fog water (3.45) was smaller than rainwater (4.04) collected at the same time, but its ion content was larger. Acidification of rainfall in the region was serious. The acidrain in this area had a trend to transfer into combined pollution type.
     (3)The effects of different components of typical forests on water quality during the rainfall to runoff process were investigated. The results showed that:①Rainfall was acidic. The pH of the water increased as it moved through all components of four typical forests except canopy. All elements from rainfall were increased after moving through canopy except Na+.②All elements from rainfall were reduced except Ca2+. The curtailment of SO42-, NH4+, Mg2+, Mn and Al3+ was mainly occurred in runoff generation and confluence period. Soil under typical forest played vital role in the reduction of NO3-, K+, Na+ and Fe.③Surface runoff element contents had little correlationship with litter and soil element contents. But interflow ion content had correlationship with soil element contents. Almost every element in interflow had correlationship with soil element content except Mg2+ and Mn.
     (4)Result of acid buffer ability evaluation of litter was:P3(-82.01)>P7(-93.85)>P8(-94.98) >P6(-95.90)>P,(-97.58)>P4(-100.08)>P2(-103.16). Litter in I3 had the best acid buffer ability, I2 was the worst. Result of acid buffer ability evaluation of soil was:P6(29.37)>P4(23.23)>P8(22.71) >P7(18.50)>P1(15.39)>P2(13.61)>P3(13.22)>P5(11.31). Acid buffer ability of forest soil was better than bareland.16 was the best among forest stands, and I1 was the worst.
     (5)The the hydro-chemical properties of litter layers in I1, I2, I3, I4, I6 and I8 were studied by the simulated acid rain experiment. The results showed:The acid buffer ability of litter layer in I8 was best under the leaching of acid rain whose pH=4.5,3.5 or 2.7. Base cation(Ca2+、Mg2+、K+、Na+、NH4+), Al3+, Fe and Mn concentrations of all 6 typical forest litter leachings increased with the decrease of pH of simulated acid rain. The fact that Ca/Al molar ratio of I8 is always at a low level indicated that I8 was more susceptible to aluminum toxicity hazards. Under the eluviation of pH2.7 simulated acid rain, the concentrations of Fe (4.4μmol/L) and Mn (10.7μmmol/L) in I8 litter leaching were larger than that of the others. It indicated that I8 was more vulnerable to these toxic elements.
     (6)I1(Pinus massonianaX Gordonia acuminate mixed forest) had better water quality situation by water quality evaluation analysis.
引文
[1]白清俊.流域土壤侵蚀预报模型的回顾与展望[J].人民黄河,1999,21(4):18-21.
    [2]白晓辉,张晶,杨胜天等.酸沉降对森林生长固碳和土壤盐基保持功能的影响[J].环境科学学报,2010,30(1):44-51.
    [3]蔡艳,张毅,刘辉等.峨眉山常绿阔叶林常绿和落叶物种叶片C、N、P研究[J].浙江林业科技,2009,29(3):9-13.
    [4]蔡强国.坡面侵蚀产沙模型的研究[J].地理研究,1988,4:94-102.
    [5]蔡强国,袁再健,程琴娟,等.分布式侵蚀产沙模型研究进展[J].地理科学进展,2006,25(3):48-54.
    [6]曹建华李小波,赵春梅,等.森林生态系统养分循环研究进展[J].热带农业科学,2007,27(6):68-79.
    [7]曹磊.全球十大环境问题[J].环境科学,1995,16(4):86-88.
    [8]常雅军,曹靖,李建建等.秦岭西部山地针叶林凋落物层的化学性质[J].生态学杂志,2009,28(7):1308-1315.
    [9]陈静.大气酸沉降及其环境效应的研究进展[J].首都师范大学学报,1999,20(1):79-85.
    [10]陈利秋.世界环境科技发展与实力分析[M].北京:中国环境科学出版社,1998.
    [11]陈晓宏,江涛,陈俊合等.水环境评价与规划[M].广州:中山大学出版社,2009.
    [12]陈云明,刘国彬,郑粉莉,等RUSLE侵蚀模型的应用及进展[J].水土保持研究,2004,11(4):80-83.
    [13]程鹏飞,王金亮,王雪梅,等.森林生态系统碳储量估算方法研究进展[J].林业调查规划,2009,34(6):39-44.
    [14]程煜.中亚热带木荷马尾松林恢复过程的群落及凋落物特征研究[D].福建农林大学博士学位论文,2006.
    [15]代进锋,李畅游,张生,等.乌梁素海水质指标的主成分分析[J].农业环境科学学报,2007,26(增刊):400-405.
    [16]邓湘雯,康文星,田大伦,等.不同年龄阶段杉木人工林生态系统的径流规律[J].林业科学,2007,43(6):1-6.
    [17]《地表水环境质量标准》(GB3838-2002)[S].中华人民共和国环境保护部,2002.
    [18]丁国安,徐晓斌,王淑凤,等.中国气象局酸雨网基本资料数据集及初步分析[J].应用气象学报,2004,15(增刊):85-94.
    [19]樊邦棠.环境化学[M].杭州:浙江大学出版社,1993:285-320.
    [20]樊后保.世界酸雨研究概况[J].福建林学院学报,2002,22(4):371-375
    [21]樊后保.酸雨与森林衰退关系研究[J].福建林学院学报,2003,23(1):88-92.
    [22]范兴科,吴普特,冯浩.暴雨的判定方法和评价指标[J].中国水土保持科学,2003,1(3):72-75.
    [23]甘健民,薛敬意,谢寿昌.云南哀牢山中山湿性常绿阔叶林的降水化学[J].东北林业大学学报,1997,25(1):8-11.
    [24]甘健民,薛敬意,赵恒康.云南哀牢山大气降雨过程中养分输入及输出变化的初步研究[J].自然资源学报,1995,10(1):43-50.
    [25]高成德,余新晓.水源涵养林研究综述[J].北京林业大学学报,2000,22(5):78-81.
    [26]高甲荣,肖斌,张东升,等.国外森林水文研究进展述评[J].水土保持学报,2001,1 5(5):60-64.
    [27]高人.辽宁东部山区几种主要森林植被类型水量平衡研究[J].水土保持通报,2002,22(2):5-8.
    [28]郭朝晖,黄昌勇,廖柏寒.模拟酸雨对污染土壤中Cd、Cu和Zn释放及其形态转化的影响[J].应用生态学报,2003,14(9):1547-1550.
    [29]郭佳.泰山云雾水化学研究[D].山东大学硕士学位论文,2009.
    [30]韩文轩,吴漪,汤璐瑛等.北京及周边地区植物叶的碳氮磷元素计量特征[J].北京大学学报(自然科学版),2009,45(5):855-860.
    [31]郝吉明,谢绍东,段雷,等.酸沉降临界负荷及其应用[M].北京:清华大学出版社,2001:1-26.
    [32]郝建军,康宗利.植物生理学[M].北京:化学工业出版社,2005.
    [33]候光炯.土壤学(第二版)[M].北京:农业出版社,1989.
    [34]黄昌勇.土壤学[M].北京:中国农业出版社,2000.
    [35]黄美元,沈志来,刘帅仁,等.中国西南典型地区酸雨形成过程研究[J].大气科学,1995,19(3):359-366.
    [36]黄美元,沈志来,吴玉霞等.重庆地区云水和雨水酸度及其化学组分的观测分析[J].大气科学,1988,12(4):389-395.
    [37]黄益宗,李志先,黎向东,等.酸沉降和大气污染对华南典型森林生态系统生物量的影响[J].生态环境,2007,16(1):60-65.
    [38]蒋廷惠,占新华,徐阳春等.钙对植物抗逆能力的影响及其生态学意义[J].应用生态学报,2005,16(5):971-976.
    [39]姜文华.四面山常绿阔叶林酸性降水的化学特征及其对土壤和植物影响现状的研究[J].西南大学硕士学位论文,2003.
    [40]姜文华,张晟,陈刚才等.酸沉降对重庆南山森林生态系统土壤和植被的影响[J].环境科学研究,2002,15(6):8-11.
    [41]江玉华,王强,李子华等,重庆城区浓雾的基本特征[J].气象科技,2004,32(6):450-455.
    [42]郦桂芬.环境质量评价[M].北京:中国环境科学出版社,1989:78-83.
    [43]李红艳,魏永霞,安瑞强.运用灰色关联分析法评价建三江垦区地下水水质的研究[J].东北农业大学学报,2007,38(2):243-246.
    [44]李华.原始红松林生态系统水化学特征研究[D].东北林业大学博士学位论文,2008
    [45]李庆康.茶园土壤酸化的现状及展望[J].土壤通报,1987,18(2):69-71.
    [46]李如忠.水质评价理论模式研究进展及趋势分析[J].合肥工业大学学报(自然科学版),2005,28(4):369-373.
    [47]李文宇,余新晓,马钦彦,等.密云水库水源涵养林对水质的影响[J].中国水土保持科学,2004,2(2):80-83.
    [48]李学垣.土壤化学[M].北京:高等教育出版社,2001:213-243.
    [49]李宗恺,王体健,金龙山.中国的酸雨模拟及控制对策研究[J].气象科学,2000,20(3):339-347.
    [50]李志勇,陈建军,王彦辉.酸沉降影响下香樟纯林和马尾松纯林的土壤化学性质分析[J].华南农业大学学报,2007,28(2):5-8.
    [51]李志勇,王彦辉,于澎涛等.酸沉降影响下重庆马尾松林的健康监测及调控技术研究[J].生态环境,2007,16(1):54-59.
    [52]梁宏温,黄承标,胡承彪.广西宜山县不同林型人工林凋落物与土壤肥力的研究[J].生态学报,1993,13(3):233-242.
    [53]林长城,赵卫红,蔡义勇.福建九仙山自然保护区云雾水、雨水的酸度分析[J].福建农林大学学报(自然科学版),2007,36(6):622-626.
    [54]林慧萍.酸雨对陆生植物的影响机理[J].福建林业科技,2005,32(1):60-64.
    [55]凌大炯,章家恩,欧阳颖.酸雨对土壤生态系统影响的研究进展[J].土壤,2007,39(4):514-521.
    [56]刘宝章,李金龙,王敬云,等.青岛酸雨天气边界层气象特征[J].中国环境科学,1997,17(2):103-107.
    [57]刘登峰,齐实,韩小杰等.缙云山不同土地利用类型地表径流水质评价[J].水土保持研究,2009,16(1):126-130.
    [58]刘方,王世杰,罗海波,等.喀斯特石漠化过程中植被演替及其对径流水化学的影响[J].土壤学报,2006,43(1):26-32.
    [59]刘厚田,李一川.重庆南山大气SO2污染与马尾松衰亡的关系[J].生态学报,1990,10(4):305-310.
    [60]刘厚田,田仁生.重庆南山马尾松衰亡与土壤铝活化的关系[J].环境科学学报,1992,12(3):297-305.
    [61]刘菊秀.酸沉降对森林生态系统影响的研究现状及展望[J].生态学杂志,2003,22(5):113-117.
    [62]刘可慧,彭少麟,莫江明,等.酸沉降对森林植物影响过程和机理[J].生态环境,2005,14(6):953-960.
    [63]刘连贵,曹洪法,熊严军.酸雨和S02复合污染对几种农作物的影响[J].环境科学,1996,17(2):16-19.
    [64]刘绿叶,孙国铭,刘培廷,等.应用主成分法和聚类分析法分析吕四渔场近岸海水水质[J].海洋渔业,2006,28(3):217-221.
    [65]刘楠,王玉杰.森林生态系统对水质的影响[J].中小企业管理与科技,2008,26:197-198.
    [66]刘楠,王玉杰,储小院,等.缙云山不同土地利用类型暴雨径流水质研究[J].安徽农业科学,2009,37(12):5588-5590.
    [67]刘楠,王玉杰,王毅力,等.重庆缙云山典型林分土壤有机碳密度特征[J].生态环境学报,2009,18(4):1492-1496.
    [68]刘巧铃.GIS技术在环境评价中的应用[OL].www.paper.edu.cn/index.php/default/releasepaper/content/200611-52.
    [69]刘世荣,温远光,王兵,等.中国森林生态系统水文生态功能规律[M].北京:中国林 业出版社,1996:3-9.
    [70]刘文飞.氮沉降对亚热带人工林针叶及凋落物养分动态的影响[D].福建农林大学硕士学位论文,2007.
    [71]刘煊章,田大伦,周志华.杉木林生态系统净化水质功能研究[J].林业科学,1995,31(3):193-199.
    [72]刘艳,刘学全,崔鸿侠,等.长江中游低丘黄壤坡面地表产流产沙规律初探[J].水土保持研究,2010,17(1):149-153.
    [73]刘增文,强虹.森林生态系统养分循环研究中若干问题的讨论[J].南京林业大学学报(自然科学版),2002,26(4):27-30.
    [74]刘增文,潘开文.森林养分研究国际动态[J].西北林学院学报,2004,19(3):183-187.
    [75]陆卫军,张涛.几种河流水质评价方法的比较分析[J].环境科学与管理,2009,34(6):174-176.
    [76]马良清.重庆地区的森林和空气污染对森林的影响[J].四川林业科技,1993,14(3):40-50.
    [77]马志贵,王金锡.大熊猫栖息环境的森林凋落物动态研究[J].植物生态学报,1993,17(2):155-163.
    [78]孟赐福,姜培坤,曹志洪等.酸雨对植物的危害机理及其防治对策研究进展[J].浙江农业学报,2008,20(3):208-212.
    [79]孟范平,李桂芳.酸雨对土壤元素化学行为的影响[J].中南林学院学报,1998,18(1):27-34.
    [80]孟小星,姜文华,张卫东.重庆酸雨地区森林生态系统土壤、植被与地表水现状分析[J].重庆环境科学,2003,25(12):71-73.
    [81]莫天麟,顾庆超,赵亢生.酸雨判别基准值探讨[J].环境科学学报,1998,8(1):32-38.
    [82]潘根兴.西德对土壤酸化问题的研究进展[J].土壤学进展,1991,13(3):32-36.
    [83]卜红梅,党海山,张全发.汉江上游金水河流域森林植被对水环境的影响[J].生态学报,2010,30(5):1341-1348.
    [84]秦海,李俊祥,高三平等.中国660种陆生植物叶片8种元素含量特征[J].生态学报,2010,30(5):1247-1257.
    [85]秦钟,周兆德.森林与水资源的可持续利用[J].热带农业科学,2001,3:49-55.
    [86]邱念伟.不同类型盐生植物叶片Na+区域化作用机理的比较研究[J].山东师范大学硕士学位论文,2001.
    [87]仇荣亮,董汉英,吕越娜等.南方土壤酸沉降敏感性研究Ⅶ——盐基淋溶与缓冲机理[J].环境科学,1997,18(5):23-27.
    [88]饶良懿,王玉杰,朱金兆,等.森林植被变化(采伐)对小流域水文化学循环过程的影响[J].生态学报,2008,28(8):3981-3990.
    [89]S.J.Wood.英国空气污染的环境后果[J].生态学报,1990,10(1):13-23.
    [90]《森林生态系统定位观测指标体系》(LY/T1606-2003)[S].中华人民共和国国家林业局,2003.
    [91]单运峰.酸雨、大气污染与植物[M].北京:中国环境出版社,1993:1.
    [92]沈志来,吴玉霞,肖辉等.我国西南地区云水化学的某些基本特征[J].大气科学,1993,17(1):87-96.
    [93]沈仁芳.铝在土壤-植物中的行为及植物的适应机制[M].北京:科学出版社,2008.
    [94]施立新,余新晓,马钦彦.国内外森林与水质研究综述[J].生态学杂志,2000,19(3):52-56.
    [95]史瑞和主编.土壤农化分析[M].北京:农业出版社,1 983.
    [96]宋新章,江洪,张慧玲等.全球环境变化对森林凋落物分解的影响[J].生态学报,2008,28(9):4414-4423.
    [97]孙绍清,郭丽梅.大气污染酸雨防治[J].天津化工,2005,19(6):14-15.
    [98]谭洁艳,吴天龙.关于酸雨的新理解[J].环境科学动态,2003,3:13-14.
    [99]谭燕宏.中国酸沉降现状[J].辽宁师专学报,2004,6(1):95-98.
    [100]唐大为.酸雨[J].环境教育,2000,2:38-43.
    [101]唐华丽,王晓红.GIS技术在环境评价领域的应用现状[J].山地农业生物学报,2008,27(6):534-538.
    [102]陶福禄,冯宗炜.生态系统的酸沉降临界负荷及其研究进展[J].中国环境科学,1999,19(2):123-126.
    [103]陶福禄,冯宗炜.中国南方生态系统的酸沉降临界负荷[J].中国环境科学,1999,19(1):14-17.
    [104]陶豫萍,吴宁,罗鹏,等.森林对污染物湿沉降过滤作用的研究[J].水资源保护,2006,22(3):16-19.
    [105]屠梦照,姚文华,翁轰等.鼎湖山南亚热带常绿阔叶林凋落物的特征[J].土壤学报,1993,30(1):34-41.
    [106]王波.三峡工程对库区生态环境影响的综合评价[J].北京林业大学博士学位论文,2009.
    [107]王代长.酸化土壤表面离子的反应动力学[M].郑州:黄河水利出版社,2009.
    [108]王发刚,王启基,王文颖等.土壤有机碳研究进展[J].草业科学,2008,25(2):48-54.
    [109]王峰威,李红,柴发合,等.大气气溶胶酸度的研究进展[J].环境污染与防治,2010,32(1):67-72.
    [110]汪家权,吴劲兵,李如忠,等.酸雨研究进展与问题探讨[J].水科学进展,2004,15(4):526-530.
    [111]王敬华,张效年,于天仁,等.华南红壤对酸雨敏感性的研究[J].土壤学报,1994,31(4):348-354.
    [112]王礼先,孙宝平.森林水文研究及流域治理综述[J].水土保持科技情报,1990,2:10-15
    [113]王礼先,张志强.森林植被变化的水文生态效应研究进展[J].世界林业研究.1998,6:14-23.
    [114]汪思龙,陈楚莹.森林凋落物对土壤酸化缓冲作用的初步研究[J].环境科学,1992,13(5):25-30.
    [115]王文兴.中国酸雨成因研究[J].中国环境科学,1994,14(5):323-329.
    [116]王文兴,丁国安.中国降水酸度和离子浓度的时空分布[J].环境科学研究,1997,10(2):1-7.
    [117]王文兴,刘红杰,张婉华,等.我国东部沿海地区酸雨来源研究[J].中国环境科学,1997,17(5):387-392.
    [118]王协康.小流域侵蚀产沙特性及泥沙输移非线性问题[D].四川大学博士论文,2000.
    [119]王心芳主编.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [120]王燕,宋凤斌,刘阳.坡面水蚀模型研究进展[J].农业系统科学与综合研究,2006,22(3):189-192.
    [121]王云琦,王玉杰.森林溪流水质的研究进展[J].水土保持研究,2003,10(4):242-246.
    [122]王云琦,王玉杰,张洪江等.重庆缙云山几种典型植被枯落物水文特性研究[J].水土保持学报,2004,18(3):41-44.
    [123]王占礼,黄新会,牛振华.国内主要流域侵蚀产沙模型评述[J].水土保持研究,2004,11(4):28-33.
    [124]王占礼,靳雪艳,马春艳,等.黄土坡面降雨产流产沙过程及其响应关系研究[J].水土保持学报,2008,22(2):24-28.
    [125]王自发,高超,谢付莹.中国酸雨模式研究回顾与所面临的挑战[J].自然杂志,2007,29(2):78-82.
    [126]魏复盛,王明霞,王瑞斌,等.我国降水酸度和化学组成的时空分布特征[A].中国环境科学学会编.酸雨文集[C].北京:中国环境科学出版社,1989:203-207.
    [127]魏虹,王建力,李建龙.重庆缙云山降水pH值和化学组成特征分析[J].农业环境科学学报,2005,24(2):344-348.
    [128]魏强,张秋良.地表径流与土壤侵蚀研究进展[J].中国水土保持,2008,9:30-33.
    [129]魏强,张秋良,代海燕等.大青山不同植被下的地表径流和土壤侵蚀[J].北京林业大学学报,2008,30(5):111-117.
    [130]吴丹,王式功,尚可政.中国酸雨研究综述[J].干旱气象,2006,24(2):70-77
    [131]吴国南,生原喜久雄,黄宝龙.酸性沉降环境中森林生态系统的物质循环——树冠穿透水的水质及其形成机理[J].南京林业大学学报,1996,20(4):7-11.
    [132]武海涛,吕宪国,杨青等.三江平原典型湿地枯落物早期分解过程及影响因素[J].生态学报,2007,27(10):4027-4035.
    [133]吴劲兵,汪家权,孙世群.酸沉降农业经济损失估算[J].合肥工业大学学报(自然科学版),2002,25(1):100-104.
    [134]夏尚光,梁淑英.森林生态系统养分循环的研究进展[J].安徽林业科技,2009,3:1-6.
    [135]向峰,周修萍.ILWAS模型:老虎岭流域酸化模拟[J].中国环境科学,1993,13(6):445-450.
    [136]小川滋.“森林和水”的研究现状及展望[J].水土保持科技情报,1996,1:62-65.
    [137]肖培青,郑粉莉,姚文艺.坡沟产沙关系及其侵蚀机理研究进展[J].水土保持研究,2004,11(4):101-104
    [138]肖文发等.长江三峡库区陆生动植物生态[M].北京:科学出版社,2000:16-17.
    [139]谢绍东,郝吉明,周中平.柳州地区各种红壤土种的酸沉降临界负荷研究[J].环境科学学报,1999,19(6):657-661.
    [140]谢绍东,郝吉明.应用稳态酸化模型计算酸沉降临界负荷[J].环境科学,1997,18(5):6-9.
    [141]解宪丽,孙波,周慧珍等.不同植被下中国土壤有机碳的储量与影响因子[J].土壤学报,2004,41(5):687-699.
    [142]徐明德,马元波.呼和浩特市地下水质灰色关联分析[J].科技情报开发与经济,2008, 18(1):136-137.
    [143]徐仁和,季国亮.预测土壤和地表水酸化趋势的MAGIC模型[J].土壤学进展,1994,16(5):36-39.
    [144]薛巧英.水环境质量评价方法的比较分析[J].环境保护科学,2004,30(4):64-67.
    [145]薛元忠,何青,王元叶.OBS浊度计测量泥沙含量的方法与实践研究[J].泥沙研究,2004,4:56-60.
    [146]延晓冬,赵士洞.温带针阔混交林林分碳储量动态的模拟模型[J].生态学杂志,1995,14(2):6-12.
    [147]杨昂,孙波,赵其国.中国酸雨的分布、成因及其对土壤环境的影响[J].土壤,1999,1:13-18.
    [148]杨金宽,姬南柱.酸雨地区马尾松害虫发生量的初步调查[J].生态学杂志,1988,7(2):54-55.
    [149]杨景辉.酸性沉降物对土壤的影响[J].土壤学进展,1984,6(5):1 1-19.
    [150]杨具瑞.小流域侵蚀产沙特性研究[D].四川大学博士学位论文,2003:3-16.
    [151]杨良,杨晓红,姜文,等.西南地区几种土壤的Mn毒性探讨[J].农业环境保护,2000,19(5):307-308.
    [152]杨威,卢文喜,卞玉梅,等.吉林西部地下水水质评价与分析[J].节水灌溉,2008,2:42-45.
    [153]于海霞.亚热带几种主要人工林对林下土壤性质影响的研究[J].北京林业大学硕士学位论文,2007.
    [154]于天人,陈志诚.土壤发生中的化学过程[J].北京:科学出版社,1990.
    [155]于志民,王礼先.水源涵养林效益研究[M].北京:中国林业出版社,1999.1-34.
    [156]袁红,傅瓦利,张洪等.农林利用方式下坡地紫色土黄壤基本性质研究[J].西南农业大学学报(自然科学版),2006,28(1):157-160.
    [157]曾永,樊引琴,王丽伟等.水质模糊综合评价法与单因子指数评价法比较[J].人民黄河,2007,29(2):64-65.
    [158]张丛.环境评价教程[M].北京:中国环境科学出版社,2002:32-43.
    [159]张德强,余清发,孔国辉等.鼎湖山季风常绿阔叶林凋落物层化学性质的研究[J].生态学报,1998,18(1):96-100.
    [160]张凤凤.亚热带地区不同林相对水质的影响及小流域水质预测模型研究[D].浙江大学硕士学位论文,2008.
    [161]张龚.中亚热带韶山森林水文特征与主要营养物的生物地球化学过程研究[D].湖南大学博士学位论文,2006:14-31.
    [162]张光华,赵殿五.酸雨[M].北京:中国环境科学出版社,1988:32-36.
    [163]张光辉.土壤水蚀预报模型研究进展[J].地理研究,2001,20(3):274-281.
    [164]张建列,李庆夏.国外森林水文研究概述[J].世界林业研究,1988,11(4):41-47.
    [165]张立华,林益明,叶功富等.不同林分类型叶片氮磷含量、氮磷比及其内吸收率[J].北京林业大学学报,2009,31(5):67-62.
    [166]张林波,曹洪法,沈英娃,等.苏、浙、皖、闽、湘、鄂、赣7省酸沉降对农业危害-]农业损失估算[J].中国环境科学,1997,17(6):489-491.
    [167]张胜利.秦岭南坡中山地带森林生态系统对径流和水质的影响研究[D].西北农林科 技大学博士学位论文,2005.
    [168]张胜利,李光录.秦岭火地塘森林生态系统不同层次的水质效应[J].生态学报,2007,27(5):1838-1844.
    [169]张天菊.流域产沙模型研究进展[J].太原科技,2008,9:37-38.
    [170]张听,孙腊梅,周淑梅.从酸雨到酸沉降—关于对酸雨的认识[J].生物学通报,2006,41(8):22-23.
    [171]张增哲,余新晓.中国森林水文研究现状和主要成果(综述)[C].全国森林水文学术讨论会文集.北京:测绘出版社,1987:1-9.
    [172]赵德山,王明星.烟煤型城市污染大气气溶胶[M].北京:中国环境科学出版社,1988:96-147.
    [173]赵翔.我国西南地区酸雨的特征、成因、危害及防治对策建议[J].四川工业学院学报,2004,23(4):63-66.
    [174]赵洋毅,王玉杰,王云琦等.重庆北部水源区水源涵养林构建模式对土壤养分的影响[J].水土保持学报,2009,23(4):236-240.
    [175]赵忠.森林土壤酸化及其林木生长的影响[J].土壤学进展,1988,10(2):1-5.
    [176]郑春江主编.什么是酸雨?酸雨是怎样形成的?[J].环境教育,2004,2:29.
    [177]中国标准出版社第二编辑室编.中国环境保护标准汇编-水质分析方法[M].北京:中国标准出版社,2001.
    [178]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978.
    [179]周光益.台风暴雨对热带林生态系统地球化学循环的影响[J].北京林业大学学报,1998,20(6):36-40.
    [180]周国逸,小仓纪雄.酸雨对重庆几种土壤中元素释放的影响[J].生态学报,1996,16(3):251—257
    [181]周梅,余新晓,王广山,等.国外森林环境水化学研究综述[J].中国水土保持科学,2003,1(4):78-82.
    [182]周修萍,江静蓉,秦文娟.中国南方几种土壤的酸雨淋溶特性[J].农村生态环境,1988,1:17-22.
    [183]周竹渝,陈德容,殷捷,等.重庆市降水化学特征分析[J].重庆环境科学,2003,25(11):112-114.
    [184]朱显谟.甘肃中部土壤侵蚀调查报告[R].土壤专集[G],1958,32:53-109.
    [185]A. H. Johnson, A. J. Friedland, J. G. Dushoff. Recent and historic red spruce mortality: Evidence of climatic influence [J]. Water, Air and Soil Pollution,1986,30:319-330.
    [186]A. H. Johnson, D. H. DeHayes, T. G. Siccama. Role of acid deposition in the decline of red spruce (Picea rubens Sarg.) in the montane forests of Northeastern USA [C]. In S. P. Raychudhuri, K. Maramorosch, eds. Forest Trees and Palms:Disease and Control. New Delhi (India):Oxford University Press and IBH Publishers,1996:49-71.
    [187]A. Kurkdjian, J. Guern. Intracellular pH:Measurement and importance in cell activity [J]. Ann Rev Plant Physiol Plant Mol Biol,1989,40:271-303.
    [188]A. Mahmoudzadeh, Wayne D. Erskine, C. Myers. Sediment yields and soil loss rates from native forest, pasture and cultivated land in the Bathurst area, New South Wales [J]. Australian Forestry,2002,65(2):73-80.
    [189]A. P. J. De Roo, C. G. Wesseling, C. J. Ritsema. LISEM:A SINGLE-EVENT PHYSICALLY BASED HYDROLOGICAL AND SOIL EROSION MODEL FOR DRAINAGE BASINS. I:THEORY, INPUT AND OUTPUT [J]. Hydrological Processes, 1996,10(8):1107-1117.
    [190]B. Hileman. Acid fog [J]. Environmental Science and Technology,1983,17(3):17-20.
    [191]B. ULRICH, R. MAYER, P. K. KHANNA. Chemical Changes Due To Acid Precipitation in A Loess-Derived Soil in Central Europe [J]. Soil Science,1980,130(4):193-199.
    [192]B. W. Craig, A. J. Friedland. Spatial patterns in forest composition and standing dead red spruce in montane forests of the Adirondacks and northern Appalachians [J]. Environmental Monitoring and Assessment,1991,18:129-140.
    [193]C. A. McClaugherty, J. Pastor, J. D. Aber, et al. Forest Litter Decomposition in Relation to Soil Nitrogen Dynamics and Litter Quality [J]. Ecology,1985,66(1):266-275.
    [194]C.C. Jimenez, M. Tejedor, G. Morillas, et al. Infiltration rate in andisols:Effect of changes in vegetation cover (Tenerife, Spain) [J]. Journal of Soil and Water Conservation,2006, 61(3):153-158.
    [195]C. E. Kupchella, M. C. Hyland. Environmental science [M]. Boston:Allyn and Bacon, Inc.,1986:589-601.
    [196]C. S. Cronan, R. April, R. J. Bartlett, et al. Aluminum toxicity in forests exposed to acidic deposition:The ALBIOS results [J]. Water, Air, and Soil Pollution,1989,48:181-192.
    [197]C. S. Cronan, D. F. Grigal. Use of calcium/aluminum ratios as indicators of stress in forest ecosystems [J]. Journal of Environmental Quality,1995,24:209-226.
    [198]C. T. Driscoll, K. M. Driscoll, M. J. Mitchell, et al. Effects of acidic deposition on forest and aquatic ecosystems in New York State [J]. Environmental Pollution,2003,123(3): 327-336.
    [199]C. T. Driscoll, G. B. Lawrence, A. J. Bulger, et al. Acidic deposition in the northeastern US:sources and inputs, ecosystems effects, and management strategies [J]. BioScience, 2001,51:180-198.
    [200]C. V. Cogbill, G. E. Likens. Acid precipitation in the northeastern United States [J]. Water Resource Research,1974,10(6):1133-1137.
    [201]C. W. Rose, J. R. Williams, G. C. Sander et al. A mathematical model of soil erosion and deposition processes:I. theory for a plane land element [J], Soil Science Society of America Journal,1983,47:991-995.
    [202]C. W. Rose, J. R. Williams, G. C. Sander et al. A mathematical model of soil erosion and deposition processes:Ⅱ. application to data from an aridzone catchment [J], Soil Science Society of America Journal,1983,47:996-1000.
    [203]D. H. DeHayes. Winter injury and developmental cold tolerance in red spruce [C]. In Eagar C, Adams MB, eds. The Ecology and Decline of Red Spruce in the Eastern United States. New York:Springer-Verlag,1992:296-337.
    [204]D. H. DeHayes, P. G. Schaberg, G. J. Hawley, et al. Acid rain impacts on calcium nutrition and forest health [J]. BioScience,1999,49(10):789-800.
    [205]D. J. Raynal, J. D. Joslin, F.C. Thornton, et al. Sensitivity of tree seedlings to aluminum: III. Red spruce and loblolly pine [J]. Journal of Environmental Quality,1990,19: 180-187.
    [206]David Pimentel. Soil Erosion:A Food and Environmental Threat [J]. Environment, Development and Sustainability,2006,8(1):119-137.
    [207]David Pimentel, Nadia Kounang. Ecology of Soil Erosion in Ecosystems [J]. Ecosystems, 1998,11(5):416-426.
    [208]D. R. Houston. History of sugar maple decline [R]. In:Horsley, S.B., Long, R.P. (Eds.), Sugar Maple Ecology and Health:Proceedings of an International Symposium (General Technical Report NE-261). US Department of Agriculture, Forest Service, Radnor, PA, 1999:9-26.
    [209]D. R. Parker, T. B. Kinraide, L. W. Zelazny. On the phytotoxicity of polynuclear hydroxy-aluminum complexes [J]. Soil Science Society of America journal,1989,53(3): 789-796.
    [210]D. R. Peart, M. B. Jones, P. A. Palmiotto. Winter injury to red spruce at Mt. Moosilauke, NH [J]. Canadian Journal of Forest Research,1991,21:1380-1389.
    [211]D. R. Smith, S. J. Livingston, B.W. Zuercher, et al. Nutrient losses from row crop agriculture in Indiana[J]. Journal of Soil and Water Conservation,2008,63(6):396-409.
    [212]D. S. Schmel. Terrestrial ecosystems and the carbon cycle [J]. Global Charge Biology, 1995,(1):77-91.
    [213]D. W. Zhao, J. L. Xiong, Y. Xu, et al. Acid rain in the southwest of China [J]. Atmospheric Environment,1986.
    [214]D. W. Johnson, G. E. Taylor. Role of Air Pollution in Forest Decline in Eastern North America [J]. Water, Air, & Soil Pollution,1989,48:21-43.
    [215]E. B. Cowling. Acid precipitation in historical perspective [J]. Environ. Sci. Tec.,1982, 16(2):110-123.
    [216]E. R. Cook, S. M. Zedaker.1992. The dendroecology of red spruce decline [C]. In Eagar C, Adams MB, eds. The Ecology and Decline of Red Spruce in the Eastern United States. New York:Springer-Verlag,1992:192-231.
    [217]E. V. J. Tanner, P. M. Vitousek, E. Cuevas. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains [J]. Ecology,1998,79(1):10-22.
    [218]F. S. Chapin Ⅲ, P. A. Matson, P. M. Vitousek. Principles of Terrestrial Ecosystem Ecology. New York:Springer-Verlag,2002:197-243.
    [219]G. E. Likens. Long-term effects of acid rain:responses and recovery of a forest ecosystem [J]. Science,1996,272:244-246.
    [220]G. E. Likens, F. H. Bormann, N. M. Johnson. Nitrification:Importance to nutrient losses from a cutover forest cutting herbicide treament on nutrient budgets in the Hubbard brook watershed ecosystem [J]. Ecological Monographs,1970,40(1):24-47.
    [221]G. G. Parker. Throughfall and stemflow in the forest nutrient cycle [J]. Advances in Ecological Research,1983,13:57-113.
    [222]G. P. J. Draaijers, J. W. Erisman, N. F. M. Leeuwen, et al. Impact of canopy exchange on differences observed between atmospheric deposition and throughfall fluxes [J]. Atmospheric Environment,1997,31(3):387-397.
    [223]G. W. Langdale, R. L. Blevins, D. L. Karlen, et al. Cover crop effects on soil erosion by wind and water [C]. In:W.L. Hargrove (ed.) Cover Crops for Clean Water. SWCS. Ankeny, IA.1991:15-22.
    [224]H. L. Jacobs. Water quality criteria [J]. Journal of Water Pollution Control Federation, 1965,37(5):292-300.
    [225]H. Shen, X. L. Yan. Types of aluminum toxicity and plants resistance to aluminum toxicity [J]. Chinese Journey of Soil Science,2001,32 (6):281-285.
    [226]J. J. Elser, W. F. Fagan, R. F. Denno, et al. Nutritional constraints in terrestrial and freshwater food webs [J]. Nature,2000,408:578-580.
    [227]J. Wisniewski. The potential acidity associated with dews, frosts, and fogs [J]. Water, Air, and Soil Pollution,1982,17:361-377.
    [228]K.G. Renard, G.R. Foster. Predicting soil erosion by water:a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE) [G]. USDA Handbook [M],1997.
    [229]K. G. Renard, G. R. Foster, D. C. Yoder, et al. RUSLE revisited:Status, questions, answers, and the future [J]. Journal of Soil and Water Conservation,1994,49(3):213-220.
    [230]K. G. Renard, G. R. Foster, G. A. Weesies, et al. RUSLE:Revised universal soil loss equation [J]. Journal of Soil and Water Conservation,1991,46(1):30-33.
    [231]L. D. Meyer. Evaluation of the universal soil loss equation [J]. Journal of Soil and Water Conservation.1984,39(2):99-104.
    [232]Lee Yinnan, Shen Ji, J. Paul. Chemical composition of precipitation at Long Island, N.Y. Water Air and Soil Pollution,1986,30(1):143-152.
    [233]L. Hofmann, R. E. Ries, J. E. Gilley. Relationship of Runoff and Soil Loss to Ground Cover of Native and Reclaimed Grazing Land [J]. AGRONOMY JOURNAL,1983,75: 599-602.
    [234]L. R. Oldeman. Soil Degradation:A Threat to Food Security? Report 98/01 [R], International Soil Reference and Information Centre, Wageningen.1998:2-9.
    [235]L. Thorjorn, M. S. Hans, S. Arne, et al. Acid deposition and its effects in China:an overview [J]. Environmental Science and Policy,1999,2(1):9-24.
    [236]M. A. Nearing, L. J. Lane, E. E. Alberts, et al. Prediction technology for soil erosion by water:Status and research needs [J]. Soil Science Society of American Journal,1990,54 (6):1702-1711.
    [237]Morgan, R. P. C. The European Soil Erosion Model:an update on its structure and research base [C], In Rickson, R.J. (ed.), Conserving Soil Resources, European Perspectives, CAB International, Oxon,1995:286-299.
    [238]N. Giraldez-Ruiz, I. Bonilla, F. Fernandez-Pinas. Role of external calcium in homeostasis of intracellular pH in the cyanobacterium anabaena sp. strain PCC7120 exposed to low pH [J]. New Phytol,1999,141:225-230.
    [239]Nan Liu, Yujie Wang, Yunqi Wang, et al. Effects of Forest on Soil Erosion and Sediment Yield on Sloping Land in Jinyun Mountain [C].2010 INTERNATIONAL CONFERENCE ON COMBATING LAND DEGRADATION IN AGRICULTRAL AREAS,2010:63-66.
    [240]Noel D. Uri. THE ENVIRONMENTAL IMPLICATIONS OF SOIL EROSION IN THE UNITED STATES [J]. Environmental Monitoring and Assessment,2001,66(3):293-312.
    [241]N. Kato. Analysis of structure of energy consumption and dynamics of emission of atmospheric species related to the global environmental change (SO2, NOx, and CO2) in Asia [J]. Atmospheric Environment,1996,30(4):757-785.
    [242]Oldeman L. R. Soil Degradation:A Threat to Food Security? Report 98/01, International Soil Reference and Information Centre, Wageningen.1998
    [243]P. A. Matson, P. M. Vitousek. Cross-system comparison of soil nitrogen transformations and nitrous oxide flux in tropical forest ecosystems [J]. Global Biogeochemical Cycles, 1987(1):163-170.
    [244]P. G. Whitehead, R. L. Wilby, R. W. Battarbee, et al. A review of the potential impacts of climate change on surface water quality [J]. Hydrological Sciences,2009,54(1):101-123.
    [245]P. J. Drohan, S. L. Stout, G. W. Petersen. Spatial relationships between sugar maple (Acer saccharum Marsh.), sugar maple decline, slope, aspect, and topographic position in northern Pennsylvania [R]. In:Horsley, S.B., Long, R.P. (Eds.), Sugar Maple Ecology and Health:Proceedings of an International Symposium (General Technical Report NE-261). US Department of Agriculture, Forest Service, Radnor, PA,1999:46-54.
    [246]P. M. Vitousek, P. A. Matson. Disturbance, nitrogen availability, and nitrogen losses in an intensively managed loblolly pine plantation [J]. Ecology,1985,66(4):1360-1376.
    [247]R. F. Huettl, S. Fink, H. J. Lutz, et al. Forest decline nutrient supply and diagnostic fertilization in southwestern Germany and southern California [J]. Forest Ecology and Management,1990,30:341-350.
    [248]R. J. Wright. Soil aluminum toxicity and plant growth [J]. Communications in Soil Science and Plant Analysis,1989,20:1479-1497.
    [249]R. W. McDowell, A. N. Sharpley. The Effects of Soil Carbon on Phosphorus and Sediment Loss from Soil Trays by Overland Flow [J]. J. Environ. Qua].,2003,32: 207-214.
    [250]S. B. Horsley, R. P. Long, S. W. Bailey, et al. Factors contributing to sugar maple decline along topographic gradients on the glaciated and unglaciated Alleghany Plateau [R]. In: Horsley, S.B., Long, R.P. (Eds.), Sugar Maple Ecology and Health:Proceedings of an International Symposium (General Technical Report NE-261). US Department of Agriculture, Forest Service, Radnor, PA,1999:60-62.
    [251]S. B. Horsley, R. P. Long, S. W. Bailey, et al. Factors associated with the decline of sugar maple on the Allegheny Plateau [J]. Canadian Journal of Forest Research,2000,30: 1365-1378.
    [252]S. B. McLanughlin, R. Wimmer. Calcium physiology and terrestrial ecosystem processes [J]. New Phytol,1999,142:373-417.
    [253]S. C. Christopher, L. S. Carl. Relationships between Aqueous Aluminum and Acidic Deposition in Forested Watersheds of North America and Northern Europe [J]. Environ. Sci. Technol.1990,24:1100-1105.
    [254]S. J. Riha, G. Senesac, E. Pallant. Effects of forest vegetation on spatial variability of surface mineral soil pH, soluble aluminum and carbon [J]. Water, Air, and Soil Pollution, 1986,31:929-940.
    [255]S. M. Dunn, R. C. Ferrier. Natural flow in managed catchments:a case study of a modeling approach. Water Research,1999,33(4):621-630.
    [256]Sebastian Lamontagne, Richard Carignan, Pierre D'Arcy, et al. Element export in runoff from eastern Canadian Boreal Shield drainage basins following forest harvesting and wildfires [J]. Canadian Journal of Fisheries and Aquatic Sciences,2000,57(Suppl.2): 118-128.
    [257]S. Neuvonen, J. Suomela. The Effect of Simulated Acid Rain on Pine Needle and Birch Leaf Litter Decomposition [J]. Journal of Applied Ecology,1990,27:857-872.
    [258]T. J.Toy, W. R. Osterkamp. The applicability of RUSLE to geomorphic studies [J]. Journal of Soil and Water Conservation,1995,50(5):498-503.
    [259]T. M. Walski, F. L. Parker. Consumers water quality index [J]. Journal of Environmental Engineering Division,1974,100:436-448. S
    [260]T. Oikawa. Simulation of forest carbon dynamics based on a dry-matter production model [J]. Bot. Mag. Tokyo.,1985,98:225-238.
    [261]T. Watanabe, M. R. Broadley, S. Jansen, et al. Evolutionary control of leaf element composition in plants. New Phytologist,2007,174(3):516-523.
    [262]W. C. Shortle, K. T. Smith. Aluminum-induced calcium deficiency syndrome in declining red spruce trees [J]. Science,1988,240:1017-1018.
    [263]W. H. Smith. Air pollution and forests:Interactions between air contaminants and forest ecosystems [M]. New York:Springer-Verlag,1981:178-191.
    [264]W. H. Smith. Effect of acidic precipitation on forest ecosystems in north America [J]. Advances in Environmental Science. Springer-Verlag New York, Inc., New York.1989: 165-188.
    [265]W. T. Swank and D. A. Crossley (Editers). Forest Hydrology and Ecology at Coweeta [M]. Springer- Verlag, New York,1988.
    [266]Y. M. Bian, S. W. Yu. Forest decline in Nanshan China [J]. Forest Ecology and Management,1992,51:53-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700