地山雀、黄腹山雀和红头长尾山雀线粒体全基因组序列测定和分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于长距PCR扩增及保守引物步移法测定并注释了地山雀(Pseudopodoces humilis)、黄腹山雀(Parus venustulus)和红头长尾山雀(Aegithalos concinnus)线粒体全基因组序列,并联合GenBank已收录的鸟类线粒体全基因组的数据和本室已测5种雀形目鸟类,线粒体蛋白质编码基因作为分子标记,研究了雀形目鸟类的系统发育关系,并探讨不同数据集对系统发育关系的有效性。主要结果如下:
     1、地山雀、黄腹山雀和红头长尾山雀线粒体全基因组长度分别为16809 bp、16780 bp和17926 bp;均编码13个蛋白质基因(COⅠ-Ⅲ、Cyt b、ATP8、ATP6、ND1-4和(ND4L),22个tRNA基因,2个rRNA和1-2个A+T富集区,其中地山雀与黄腹山雀为一个A+T富集区,而红头长尾山雀则含有两个A+T富集区。
     2、3种鸟类线粒体全基因组的碱基组成A+T偏向性无明显统计学差异。其中,红头长尾山雀A+T偏向性程度最高,A+T含量为54.1%,黄腹山雀最低,A+T含量为52%,地山雀居中,为52.9%。
     3、3种鸟类起始密码子方面:除地山雀和红头长尾山雀的COⅠ基因起始密码子为GTG外,3种鸟类的其余蛋白编码基因起始密码子均为典型的ATG;终止密码子方面:除COⅢ和ND4基因为不完全的终止密码子T外,其他蛋白编码基因均为完整的终止密码子,并且为典型的鸟类终止密码子TAA,AGG,AGA和TAG。
     4、3种鸟类的tRNASer(AGN)基因均缺失DHU臂,其余均能形成典型三叶草型二级结构。3种鸟的tRNA二级结构中均有一定数目碱基错配的现象发生,大部分为G-U错配。
     5、3和鸟的srRNA和lrRNA基因全序列的二级结构预测发现,rRNA的二级结构十分保守:srRNA二级结构均包含四个结构,47个茎区;lrRNA二级结构均包含六个结构,60个茎区。
     6、对17种鸟类线粒体ND3基因序列174位点进行了比对分析研究,发现13种雀形目鸟类线粒体ND3基因174位点处均无碱基胞嘧啶的插入。
     7、确定了13种雀形目鸟类的AT富集区的中央保守区,同时对CSB-1结构进行了分析,发现雀形目鸟类控制区CSB-1结构较红原鸡相比均多出一段长度为18-20bp的插入序列。
     8、将线粒体全基因组中蛋白质编码基因分成3个数据集对雀形目鸟类进行了系统发育分析:所得结果支持将鸟类分成鸣禽亚目和亚鸣禽亚目两大类;支持将鸣禽亚目划分成鸦小目和雀小目;支持将长尾山雀单列为科;确定莺总科并非为单系;建议将琴鸟科归为鸣禽亚目的鸦小目;验证地山雀并非与鸦科亲缘关系较近。
The complete sequence of Pseudopodoces humilis, Parus venustulus and Aegithalos concinnus mitochondrial genomes were determined by using long PCR and conserved primers walking approaches. The three new complete mitochondrial genomes combined with others included in GenBank, as well as other two Passeriformes complete mitochondrial genomes were accomplished in our laboratory, were used to phylogenomic analysis for Passeriformes based on protein conding genes and investigated phylogenetic utility in every data sets.
     1. The complete mitochondrial genomes of Pseudopodoces humilis, Parus venustulus and Aegithalos concinnus are 16809 bp,16780 bp and 17926 bp in length, respectively, and encode 13 protein genes (COI--Ⅲ、Cytb、ATP8、ATP6、ND1—4 and ND4L),22 tRNA genes,2 rRNA genes, and 1-2 A+T rich regions。
     2. The A+T content of Pseudopodoces humilis, Parus venustulus and Aegithalos concinnus mitochondrial genome has not significently biased statistically. The highest A+T biase is found in Aegithalos concinnus which is only 54.1%, the lowest found in Parus venustulus which is only 52% too, the value of Pseudopodoces humilis is 52.9%.
     3. For start codons, except COI in Pseudopodoces humilis and Aegithalos concinnus with GTG, the other protein genes in three Aves are all with the typical start codons ATG; for stop codons, except the COⅢand ND4 genes had shorttened stop codons T, the other genes are all have the typical stop codons TAA, AGG, AGA or TAG.
     4. All the tRNA genes of Pseudopodoces humilis, Parus venustulus and Aegithalos concinnus mitochondrial genomes have the typical clover leaf structure except the tRNA Ser(AGN) gene, which is lack of the DHU arm in their secondary structure. There are some G-U mispair from the secondary structure in all three Aves.
     5. The secondary structures of complete rRNAs have been predicted for Pseudopodoces humilis, Parus venustulus and Aegithalos concinnus. Most parts of the secondary structure are conserved in the three aves species, the main differences took place in terminal regions.
     6. Through analyzing the aligned the 174 site of the ND3 gene in 17 Aves, we found the 13 species from Passeriformes involved in this paper all do not have the C base insert.
     7. Through analyzing the aligned A+T-rich regions, we determined the central conserved region, and found that the CSB-1 region in all 13 Passeriformes have 18-20 bp sequence insert compared with Gallus gallus.
     8. The protein coding genes were partitioned into three data sets and applied to reconstruct the phylogenetic relationships of Passeriformes. The phylogenetic trees from different methods and data sets agreed that Passeriformes divide two groups Passeri and Tyranni, and Passeri include the Corvida and Passerida. The result also support Aegithalos as a section level separately, Menuridae belongs to Corvida, Sylvioidea is not a monophyletic group; Pseudopodoces humilis have not closely relationships with species of Corvidae.
引文
[1]翟中和,王喜忠,丁明孝.细胞生物学[M],北京:高等教育出版社,2000:208-209.
    [2]廖顺尧,鲁成.动物线粒体基因组研究进展[J].生物化学与生物物理进展,2000,27(5):508-512.
    [3]周发林,江世贵,苏天凤,吕俊霖.6种笛鲷鱼类线粒体16S rRNA基因片段的序列比较[J].中国水产科学,2004,11(2):87-92.
    [4]Bridge D., Cunningham C.W., Schierwater B., DeSalle R. Class-level relationships in the phylum Cnidaria:evidecnce from mitochondrial genome structure [J]. Proc. Natl.Acad. Sci, USA,1992,89:8750-8753.
    [5]Saccone C., De Giorgi C., Gissi C., Pesole G., Reyes A. Evolutionary genomics in Metazoa:the mitochondrial DNA as a model system [J]. Gene.1999,238(1):p. 195-209.
    [6]韩贻仁.分子细胞生物学[J].科学出版社.2004.
    [7]李庆伟.一个增大的鸟类线粒体基因组[J].动物学研究,1996,17:384—3921.
    [8]Wolstenholme D.R. Animal mitochondrial DNA:Structure and evolution [J]. Int Rev Cytol,1992,141:173-216.
    [9]黄原.分子系统学——原理、方法及应用[M].北京:中国农业出版社,1998,40-41,200-201,346.
    [10]Flook P.K., Rowell C.H.F., and Gellissen G. The sequence, organization, and evolution of the Locusta migratoria mitochondrial genome [J]. J Mol Evol,1995, 41:928-941.
    [11]刘银梅.动物线粒体基因与进化研究进展[J].山西农业科学,2007,35(1):80-82.
    [12]BrownT.A.著,袁建刚等译.基因组[M].北京:科学出版社,2002:132.
    [13]李庆伟,李爽,田春宇,王勇军,郭玉梅.雀形目10种鸟类线粒体的DNA变异及分子进化[n动物学报,2002,48(5):625~632.
    [14]Boore J.L. Animal mitochondrial genomes [J]. Nucleic Acids Res,1999,27(8): 1767-1780.
    [15]Quinn M.T.W. Molecular Evolution of the Mitochondrial Genome [A]. In:Mindell DP, Avian Molecular Evolution and Systematics [M] SanDiego:Academic Press, 1997,5:3~28.
    [16]Stoneking M., Soodyall H. Human evolution and the mitochondrial genome [J]. Curr Opin Genet Dev,1996,6(6):731-736.
    [17]Ramirez V., Savoiel P., Morais R. Molecular characterization and evolution of a duck mitochondrial genome [J].J Mol Evo,1993,37(3):296-310.
    [18]Peters J.L. Checklist of birds of the World [M]. Museum of Comparative Zoology, Cambridge Press, Mass,1931-1987.
    [19]Sibley C.G., Ahlquist J.A. Phylogeny and Classification of Birds:a study in molecular evolution [M]. Yale Univ Press, New Haven, Connecticut.1990.
    [20]Dimcheff D.E., Drovetski S.V., Mindell D.P. Phylogeny of Tetraoninae and other galliform birds using mitochondrial 12S and ND2 genes [J]. Mol Phylogenet Evol, 2002,24(2):203-215.
    [21]Spicer G.S., Dunipace L. Molecular phylogeny of songbirds (Passeriformes) inferred from mitochondrial 16S ribosomal RNA gene sequences [J]. Mol Phylogenet Evol,2004,30(2):325-335.
    [22]马玉堃,国会艳,牛黎明.雀形目38种鸟类线粒体Cytb的引物设计及PCR优化[J].林业科技,2005,30(6):29-32.
    [23]梁刚,张卫,雷富民,尹祚华,黄原,李天宪.雀形目15种鸟类COI与Cytb基因序列的比较[J].动物分类学报,2007,32(3):613-620.
    [24]Singh T.R., Shneor O., Huchon D. Bird mitochondrial gene order:insight from 3 warbler mitochondrial genomes [J]. Mol Biol Evol,2008,25(3):475-477.
    [25]林万明.PCR技术操作与应用指南[M].北京:人民军医出版社,1993.
    [26]Huelsenbeck J.P., Ronquist F., Nielsen R., Bollback J.P. Bayesian inference of phylogeny and its impact on evolutionary biology [J]. Science,2001,294(5550): 2310-2314.
    [27]田英芳,黄刚,郑哲民.一种简易的昆虫基因组DNA提取方法[J].陕西师范大学学报,1999,27:82-83.
    [28]萨姆布鲁克J.,拉塞尔D.W.著,黄培堂译.分子克隆试验指南.第3版[M].北京:科学出版社,2002.
    [29]Sorenson M.D., Ast J.C., Dimcheff D.E., Yuri T., Mindell D.P. Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates [J]. Mol Phylogenet Evol,1999,12(2):105-114.
    [30]Sorenson M.D. Avian mtDNA primers [OL]. http://people.bu.edu/msor- en/Primers,html.,2003-02-14.
    [31]Thompson J.D., Gibson T.J., Plewniak F. The ClustalX windows interface, flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Res,1997,25(24):4876-4882.
    [32]Rychlik W.P. Oligo, primer analysis software (ver.6.70). molecular biology Insights, Cascade, CO 80809 USA [M].2004.
    [33]Singh V.K., Mangalam A.K., Dwivedi S. Primer premier, program for design of degenerate primers from a protein Sequence [J]. BioTechniques,1998,24:318-319.
    [34]王艳秋,张培军.PCR引物设计[J].海洋科学,1995,5:9~10.
    [35]萨姆布鲁克J.,弗里厅E.F.,曼尼阿蒂斯.金冬雁等译.分子克隆实验指南(第二版)[M].北京:科学出版社.1992.
    [36]Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool [J].J. Mol. Biol,1990,215:403-410.
    [37]Bonfield J.K., Smith K.F., Staden R. A new DNA sequence assembly program [J]. Nucleic Acids Res,1995,24:4992-4999.
    [38]Lowe T.M., Eddy S.R. tRNAscan-SE, A program for Improved detection of transfer RNA genes in genomic sequence [J]. Nucleic Acids Res,1997,25: 955-964.
    [39]Kumar S., Tamura K., and Nei M. MEGA:molecular evolutionary genetics analysis software for microcomputers [J]. Comput Appl Biosci, 1994,10(2): 189-191.
    [40]Espinosa de los Monteros. Models of the primary and Secondary Structure for the 12S rRNA of birds:A Guideline for Sequence Alignment [J]. DNA Seq,2003,14 (4):241-256.
    [41]Burk A., Douzery E.J.P., Springer M.S. Springer:The secondary structure of mammalian mitochondrial 16S rRNA molecules:refinements based on a comparative phylogenetic approach [J]. J Mammal Evol,2002,9(3):225-252.
    [42]Hillis D.M., Huelsenbeck J.P. Signal, noise, and reliability in molecular phylogenetic analyses [J]. J Hered,1992,83:189-195.
    [43]Swofford D. PAUP:phylogenetic analysis using parsimony, version 4.0b10 (PPC). Sinauer Associates, Sunderland, Massachusetts [J].2001.
    [44]Posada D., Crandall K.A. Modeltest:testing the model of DNA substitution [J]. Bioinformatics.1998,14(9):817-818.
    [45]Ronquist F., Huelsenbeck J.P. MrBayes 3:Bayesian phylogenetic inference under mixed models [J]. Bioinformatics.2003,19(12):1572-1574.
    [46]Desjardins P., Morais R. Sequence and gene organization of the chicken mitochondrial genome. J Mol Biol.1990,212(4):599-634.
    [47]Crozier R.H., Crozier Y.C. The mitochondrial genome of the honeybee Apis mellifera, complete sequence and genome organization [J]. Genetics,1993, 133:97-117.
    [48]Mindell D.P., Sorenson M.D., Dimcheff D.E. Multiple independent origins of mitochondrial gene order in birds. Proc Natl Acad Sci,1998,95:10693-10697.
    [49]Bensch S., Harlid A. Mitochondrial genomic rearrangement sin songbirds [J]. Mol Biol Evol,2000,17(1):107-113.
    [50]Mindell D.P., Sorenson M.D., Dincheff D.E. Multiple independent origins of mitochondrial gene order in birds [J]. ProcNatl Acad Sci USA,1998,95 10693-10697.
    [51]Eberhard J.R., Wright T.F., Bermingham E. Duplication and concerted evolution of the mitochondrial control region in the parrot genus Amazona [J]. Mol Biol Evol, 2001,18:1330-1342.
    [52]Abbott C.L., Double M.C., Trueman J.W., Robinson A., Cockburn A. An unusual source of apparent mitochondrial heteroplasmy:duplicate mitochondrial control regions in Thalassarche albatrosses [J]. Mol Ecol,2005,14(11):3605-3613.
    [53]Li Q.W., Li S., Tian C.Y., Wang Y.J., Guo Y.M. Molecular Evolution and Variability in Mitochondrial DNA in 10 species of Passeriformes [J]. Acta Zoologica Sinica,2002,48 (5):625-632.
    [54]Lavrov D.V., Boore J.L., Brown W.M. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss [J]. Mol Biol Evol,2002,19(2):163-169.
    [55]Berthier F., Renaud M., Alziari S., Durand R. RNA mapping on Drosophila mitochondrial DNA:precursors and template strands [J]. Nucleic Acids Res,1986, 14(11):4519-4533.
    [56]Taanman J.W. The mitochondrial genome:structure, transcription, translation and replication [J]. Biochim Biophys Acta,1999,1410(2):103-123.
    [57]Anderson S., Bankier A.T., Barrell B.G., de-Bruijn M.H.L., Coulson A.R., Drouin J., Eperon I.C., Nierlich D.P., Roe B.A., Sanger F., Schreier H.P., Smith A.J.H., Stader R., Young I.G. Sequence and organization of the human mitochondrial genome [J]. Nature,1981,290:427-465.
    [58]Quinn M.T.W. Molecular Evolution of the Mitochondrial Genome. In:Mindell D.P., Avian Molecular Evolution and Systematics [M] SanDiego:Academic Press,1997, 5:3-28.
    [59]Ojala D., Montoya J., Attardi G. tRNA punctuation model of RNA processing in human mitochondria [J]. Nature,1981,290:470-474.
    [60]高英凯,苗永旺,苏小茜,池振奋,俞贇,姜枫.74种鸟类线粒体基因组碱基组成及特征分析.云南农业大学学报,2009,24(1):51-58.
    [61]Mindell D.P., Sorenson M.D., Dimcheff D.E. An extra nucleotide is not translated in mitochondrial ND3 of some birds and turtles [J]. Mol Biol Evol,1998,15(11): 1568-1571.
    [62]涂剑锋,黄银花,刘三凤,李宁.北京鸭线粒体基因组全序列测定和分析[J].动物学杂志,2009,44(2):28~33.
    [63]Sun Y., Ma F., Xiao B., Zheng J.J., Yuan X.D., Tang M.Q., Wang L., Yu Y.F., Li Q.W. The complete mitochondrial genomes sequences of Asio flammeus and Asio otus and comparative analysis [J]. Sci China C Life Sci,2004,47(6):510-520.
    [64]涂四利,方伟武.脊椎动物线粒体全基因组中的超级保守序列与进化[J].科学通报,2006,51(4):427-430.
    [65]Yokobori S., Pa"a"bo S. Transfer RNA editing in land snail mitochondria. Proc Natl Acad Sci USA.1995,92:10432-10435.
    [66]Ramirez V., Savoiel P., Morais R. Molecular characterization and evolution of a duck mitochondrial genome. J Mol Evo,1993,37 (3):296~310.
    [67]涂剑锋,黄银花,刘三凤,李宁.北京鸭线粒体基因组全序列测定和分析. 动物学杂志,2009,44(2):28~33.
    [68]Harrison G.L., McLenachan P.A., Phillips M.J., Slack K.E., Cooper A., Penny D. Four New Avian Mitochondrial Genomes Help Get to Basic Evolutionary Questions in the Late Cretaceous. Mol Biol Evol,2004,21(6):974-983.
    [69]Harlid A., Janke A., Arnason U. The mtDNA Sequence of the Ostrich and the divergence between Paleognathous and Neognathous birds [J]. Mol Biol Evol, 1997,14(7):754-761.
    [70]Hanada T., Suzuki T., Watanabe K. Translation activity of mitochondrial tRNA with unusual secondary structure [J]. Nucleic Acids Symp Ser,2000,44:249-250.
    [71]Dirheimer G., Keith G, Dumas F., Westhof E. Primary, secondary, and tertiary structures of tRNAs. tRNA:structure, biosynthesis, and function [M]. Washington: American Society for Microbiology Press,1995,93~126.
    [72]Wolstenholme D.R., Okimoto R., Macfarlane J.L. Nucleotide correlations that suggest tertiary interactions in the TV-replacement loop-containing mitochondrial tRNAs of the nematodes, Caenorhabditis elegans and Ascaris suum [J]. Nucleic Acids Res,1994,22:4300~4306.
    [73]Noller H.F. Structure of ribosomal RNA [J]. Ann Rev Biochem,1984,53 (253): 119-162.
    [74]Woese C.R., Magrum L.J., Gupta R., Siegel R.B., Stahl D.A., Kop J., Crawford N., Brosius J., Gutell R., Hogan J.J., Noller H.F. Secondary structure model for bacterial 16S ribosomal RNA phylogenetic, enzymatic and chemical evidence [J]. Nucleic Acids Res,1980,8(10):2275-2293.
    [75]Vawter L., Brown W.M. Rates and patterns of base change in the small subunit ribosomal RNA gene [J]. Genetics,1993,134:597-608.
    [76]Simon C., Frati F., Beckenbach A., Crespi B., Liu H., Flook P. Evolution weighting, and phylogenetic utility of mitochondrial gene sequences and compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am,1994, 87:651-701.
    [77]Hickson R.E., Simon C., Cooper A., Spicer G.S., Sullivan J., Penny D. Conserved sequence motifs, alignment and secondary structure for the third domain of animal 12SrRNA [J]. Mol Biol Evol,1996,13:150-169.
    [78]Zimmerman R.A., Thomas C.L., Wower J. Structure and function of rRNA in the decoding domain and at the peptidyltransferase center [A]. In:The Ribosome: Structure, Function and Evolution [M]. Hill WE, Dahlbert A, Garrett RA, Moore PB, Schlessinger D, Warner JR, Eds. Washington, DC:American Society for Microbiology Press,1990,331-347.
    [79]Stiege W., Glotz C., Brimacombe R. Localisation of a series of intra-RNA cross-links in the secondary and tertiary structure of 23S RNA induced by ultraviolet irradiation of Escherichia coli 50S ribosomal subunits [J]. Nucleic Acids Res,1983,11(6):1687-1706.
    [80]Gutell R.R., Woese C.R. Higher order structural elements in ribosomal RNAs: pseudo-knots and the use of noncanonical pairs [J]. Proc Natl Acad Sci USA,1990, 87(2):663-667.
    [81]Larsen N. Higher order interactions in 23S rRNA [J]. Proc Natl Acad Sci USA, 1992,89(11):5044-5048.
    [82]Singh T.R., Shneor O., Huchon D. Bird mitochondrial gene order:insight from 3 warbler mitochondrial genomes [J]. Mol Biol Evol,2008,25(3):475-477.
    [83]Randi E., Lucchini V. Organization and evolution of the mitochondrial DNA control region in the avian genus Alectoris [J]. J Mol Evol,1998,47(4):449-462.
    [84]Quinn T.W., Wilson A.C. Sequence evolution in and around the mitochondrial control region in birds [J]. J Mol Evol,1993,37(4):417-425.
    [85]Ruokonen M., Kvist L. Structure and evolution of the avian mitochondrial control region [J]. Mol Phylogenet Evol,2002,23:422-432.
    [86]Flook P.K., Rowell, C.H., Gellissen, G. The sequence, organization, and evolution of the Locusta migratoria mitochondrial genome [J]. J Mol Evol,1995,41(6): 928-941.
    [87]Cummings M.P., Potto S., Wakeley J. Sampling properties of DNA sequence data in phylogenetic analysis [J]. Mol Biol Evol,1995,12:814-822.
    [88]Miya M., Tsukamoto K., Nishida M., Complete mitochondrial DNA sequence of the Japanese sardine, Sardinops melanostictus, Fish [J]. Sci.2000,66:924-932.
    [89]Zardoya R., Meyer A. The complete nucleotide sequence of the mitochondrial genome of the lungfish (Protopterus dolloi) supports its phylogenetic position as a close relative of land vertebrates [J], Genetics,1996,142:1249-1263.
    [90]Peters J.L. Checklist of Birds of the World [M]. Museum of Comparative Zoology, Cambridge Press, Mass,1931-1987.
    [91]Sibley C.G., Ahlquist J.A. Phylogeny and Classification of Birds:a study in molecular evolution [M]. Yale Univ Press, New Haven, Connecticut.1990.
    [92]Irestedt M., Johansson U.S., Parsons T.J., Ericson P.G.P. Phylogeny of major lineages of suboscines (Passeriformes) analysed by nuclear DNA sequence data [J]. J Avian Biol,2001,32:15-25.
    [93]Barker F.K., Bar rowclough G.F., Groth J.G. Aphylogenetic hypothesis for passerine birds:taxonomic and biogeograp hicimplications of an analysis of nuclear DNA sequence data [J]. Proc R. Soc Lond B,2002,269:295-308.
    [94]郑作新.中国鸟类系统检索(第三版)[M].北京:科学出版社,2002.
    [95]Sheldon F.H., Gill F.B. A reeonsideration of songbird Phylogeny, with emphasis on the evolution of titmice their sylvioid relatives[J]. Syst Biol,1996,454:473-495.
    [96]Spicer G.S., DuniPace L. Molecular Phylogeny of sonhgirds (Passeriofes) inferred from mitochondrial 16S riosmal RNA gene sequence [J]. Mol Phylogenet Evol, 2004,325-335.
    [97]Erieson P.G.P., Johansson U.S. Phylogeny of Passerida (Aves:Passeriofmres) based on nuclear and mitochondrial sequence data [J]. Mol Phylogenet Evol,2003, 29(1):126-138.
    [98]Zarudny N., Loudon H.B. Uber Einteilung des genus Podoces in subgenera [J]. Om Monatsb,1902,10:185.
    [99]Riley J.H.1930. Birds collected in Inner Mongolia, Kansu and Chili by the National Geographic Society's Central China Expediation under the direction of F. R. Wulsin. Proc US Nat Mus.77:20-21.
    [100]Vaurie C. The birds of the Palaearctic fauna:a systematic reference, order Passeriformes. H F & G Witherby Limited. London,1959.
    [101]James H.F., Ericson P.G.P., Slikas B., Lei F.M., Gill F.B., Olson S.L. Pseudopodoces humilis, a misclassified terrestrial tit (Aves:Paridae) of the Tibetan Plateau:evolutionary consequences of shifting adaptive zones [J]. Ibis, 2003,145:185-202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700