拟黑多刺蚁homothorax基因的克隆及其在个体发育的mRNA水平表达的定量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拟黑多刺蚁(Polyrhachis vicina Roger)隶于膜翅目(Hymenoptera),蚁科(Formicidae),多刺蚁(Polyrhachis),于典型的营群居真社会性昆虫。具有广泛的多态现象,品级分化为工蚁、雌蚁(蚁后)和雄蚁,具有行为复杂和分工明确的特征。是研究昆虫发育机制方面较好的材料。
     Homothorax (Hth)是Meis家族中的成员,是Hox基因的辅助因子,主要存在于节肢动物中,对胚胎和成虫的发育起着重要的作用,它与附肢、中枢和外周神经系统、眼、唾液腺等发育密切相关。
     本论文拟黑多刺蚁为研究材料,提取总RNA,采用RT-PCR及RACE技术从拟黑多刺蚁体内克隆出Hth基因的全长cDNA序列,并利用生物信息学方法对其核苷酸序列和预测的蛋白序列进行分析;通过荧光实时定量PCR方法对Hth基因在拟黑多刺蚁体内的mRNA水平的相对定量表达情况进行了研究。研究结果如下:
     1.基因克隆:拟黑多刺蚁Hth基因cDNA序列全长为2111bp,包含一个长度为1257 bp的开放阅读框。5’端非编码区(5’-UTR)和3’端非编码区(3’-UTR)长度分别为290 bp和567bp,3'-UTR区可见典型的加尾信号AATAAA及长度为17 bp的PolyA尾。编码含有418个氨基酸残基的蛋白质,该蛋白质分子量和等电点分别为45.2 kDa和5.65。将该基因命名为Pv-Hth,所获序列上传到GenBank,获得的序列号为GU324093。
     2.序列分析:同源性分析表明Pv-Hth与意大利蜜蜂Hth的氨基酸序列相似性达98.2%,与脊椎动物Meis家族成员的相似性在62.7%-79.4%之间。生物信息学分析表明,该蛋白具有同源异形结构,含有1个N-糖基化位点、4个蛋白激酶C磷酸化位点、9个酪蛋白激酶Ⅱ磷酸化位点、2个酪氨酸激酶磷酸化位点、1个酰胺位点和8个N-豆蔻酰化位点,这些位点为研究该蛋白质的功能提供了信息。
     3.相对定量研究:采用荧光实时定量PCR方法对拟黑多刺蚁发育的不同阶段虫体、不同品级成虫整体及不同品级成虫头部的Pv-Hth在mRNA表达水平上进行相对定量分析。结果显示,Pv-Hth在除了蛹期的发育阶段均有表达,胚胎期表达量最高,幼虫期开始表达量显著下降,发育到第二龄幼虫时,表达量有小幅上升,但之后下降,三龄和四龄处于同一表达水平,蛹期停止表达。Pv-Hth基因从胚胎到蛹期表达的变化趋势与拟黑多刺蚁全变态发育的过程和特征密切相关,但是在蛹期停止表达的具体原因还有待于进一步的研究。Pv-Hth基因mRNA在拟黑多刺蚁三个品级成虫全身及头部中的表达情况是一致的,在雄蚁中表达量最高,工蚁次之,雌蚁最低。雄蚁全身及头部的表达量分别比工蚁全身及头部高2.6倍和5倍,比雌蚁全身及头部高6.5倍和9倍。Pv-Hth基因雄蚁中的高表达,一方面与其形态特征有关,另一方面可能与品级分化及相应的功能有关。
     本项研究首次从社会性昆虫拟黑多刺蚁中克隆Hth基因的全长cDNA序列,并将序列上传到GenBank;序列比对分析表明,Pv-Hth与脊椎动物的Meis家族成员、秀丽线虫Unc-62、节肢动物的Hth有很高的相似性,表明Meis家族基因在动物中的进化是很保守的;采用相对荧光实时定量方法研究发现,Pv-Hth mRNA在拟黑多刺蚁不同发育阶段虫体、不同品级成虫及不同品级成虫头部的表达情况有很大差异,提示Hth基因与拟黑多刺蚁的发育密切相关。这些结果将为深入探讨Hth在昆虫中的相关功能研究奠定基础。
Plyhachis vicina Roger belongs to the genus Polyrhachis (Hymenoptera Formicida). It is a typical eusocial insects characterized by common polymorphism. The group mostly consists of three castes:worker, female (queen) and male. This species possess the characteristic of sophisticated behaviors and behavioral plasticity. Consequently, P. vicina is a good material for study the mechanisms of insect development.
     Homothorax (Hth), which belongs to the Meis family that present in invertebrates and is the Hox genes cofactor, plays important role in the development of appendage, central nervous system, peripheral nervous system, eyes and salivary gland during the embryo and adult development.
     In this paper, the full-length cDNA of Hth gene is coloned from the P. vicina by RT-PCR and RACE methods. The bioinformatics method is used to analyse characteristics of full-length cDNA and predict functional motifs in the ORF. The mRNA expression levels of Hth in P. vicina were investigated by real-time RT-PCR. The major experiment results are as follow:
     1. Cloning:The full-length cDNA of P. vicina homothorax, termed Pv-Hth, is 2111 bp, which contains an ORF of 1257 bp that encodes a 418-amino acid protein with a predicted molecular mass of 45.2 kDa and the theoretical pI of 5.65. The length of the 5'and 3'UTRs are 290 bp and 567 bp, respectively. A putative polyadenylation signal AATAAA was found at 19 bp upstream from the 17-nucleotide poly (A) tail in 3'-UTR. The nucleotide sequence of Pv-Hth gene is submitted to GenBank and assigned the accession number GU324093.
     2. Sequence analysis:The results of sequence alignments analysis showed that Pv-Hth shares 98.2% identity with Apis mellifera, and an overall identity of 62.7%-79.4% with the vertebrate Meis. Sequence analysis by bioinformaties showed that, there is a Homeodomain in the the Primary structure of the animo acid sequence of the Pv-Hth. A series of predicted function motifs are found in the Pv-Hth protein sequence, including one N-glycosylation site, four Protein kinase C phosphorylation sites, nine Casein kinaseⅡphosphorylation sites, eight N-myristoylation sites, and one Amidation site, these sites provide functional information of Pv-Hth.
     3. Relative quantification expression:The relative quantification expression of the mRNA level of Pv-Hth genes in different developmental periods and the different castes were analyzed using real-time quantitative RT-PCR. The results showed that Pv-Hth was expressed in all templates at different levels expect pupae stage. During development, the expression of Pv-Hth was highest in embryos and was zero in pupae. In the course of larval growth, the levels of expression of Pv-Hth transcripts gradually increased from the first to the second instar and then decreased noticeably in the third instar,then remained the same level in fourth instar.The distinct expression of Pv-Hth from embroy to pupa is related to the Metamorphosis of holometabolous insects, herefore,the result, that the undetectable level of Pv-Hth expression in the pupa, needs more research to determine the precise role of Pv-Hth in the pupa. In the three castes, Pv-Hth gene was found to be expressed at significant higher levels in males than in either workers or females no matter in the whole bodies or heads. The levels of Pv-Hth mRNA expression in males whole body and heads is 2.6 and 5 times more than workers,6.5 and 9 times more than females, respectively. In spite of the feature in the males, the high level of Pv-Hth transcript in the males may shed light on the important physiological function of Pv-Hth mRNA in that caste.
     The full-length cDNAs of Pv-Hth genes have been cloned from the eusocial insect, P. vicina for the first time, and submitted the cDNA sequences to GenBank. Alignment analysis manifests that Pv-Hth has a high similarity to the vertebrate MEIS family and Caenorhadits elegans Unc-62, as well as arthropods Hth. It is indicated that the evolutionary pathways of MEIS genes in animals is similar. The result from real-time quantitative RT-PCR analysis revealed that Pv-Hth express at distinct developmental stages, whole body and heads of different castes, which revealed that Pv-Hth maybe related with the ant development. These results may provide the theory foundation for further researching on the concrete function of Pv-Hth in insects.
引文
[1]唐觉等编著.中国经济昆虫志[M],第四十七册,膜翅目,蚁科.北京:科学出版社,1995.
    [2](美)威尔逊著,王一名等译.昆虫的社会[M].重庆:重庆出版社,2006:5.
    [3]沈立荣.拟黑多刺蚁的生物学特性与放养技术[J].中药材.1995,18(10):491-496.
    [4]贺传生,余华星.拟黑多刺蚁生活习性的初步研究[J].白蚁科技.1994,11(3):32-33.
    [5]陈益,唐觉.鼎突多刺蚁的社会生物学研究(简报)[J].浙江农业大学学报.1987,13(2):222-323.
    [6]杨冠煌主编.中国昆虫资源和产业化[M].北京:中国农业出版社,1998:36.
    [7]翟新国.“拟黑多刺蚁”蚂蚁生物学特性观察[J].邯郸农业高等专科学校学报.2000,17(4):11-12.
    [8]赵一,王勤,李爱媛等.蚂蚁的药用研究--拟黑多刺蚁的镇静、抗炎、护肝、平喘、解痉作用和毒性的实验研究[J].广西中医药.1983,6(6):39.
    [9]杨大荣,舒畅,李朝达.五种昆虫的营养成分分析[J].营养学报.1996,18(2):231.
    [10]陈即惠.蚂蚁的药用研究—蛋白质和氨基分析[J].广西中医药,1983,6(2):41.
    [11]张俊巍,丁先露.拟黑多刺蚁微量元素及临床应用研究[J].微量元素与健康研究.1998,15(1):51.
    [12]陈即惠.蚂蚁的药用研究—石油醚部位[J].广西中医药.1985,8(6):33.
    [13]林吕何.蚂蚁的食用和药用[J].广西中医药.1981,5:48.
    [14]林启云,谢金鲜,杨柯.台湾家白蚁与拟黑多刺蚁醇提物药理作用比较Ⅰ抗炎、镇静、镇痛作用[J].广西中医药.1998,21(3):47.
    [15]吴志成.蚂蚁与类风湿性关节炎[M].南京:南京江苏科学技术出版社,1993:158.
    [16]王忠,南景一,杨正娟等.黑蚂蚁水提液恢复老龄小鼠免疫功能及抗衰老效应研究[J].老年学杂志.1987,7(4):41.
    [17]吴志成.食用药用蚂蚁展望[J].江苏中医.1989,12:40.
    [18]吴志成.蚂蚁的临床应用探讨[J].吉林中医药.1996,5:8.
    [19]邹海珠,梁兆祥,南景一.蚂蚁水提取物对机体耐力影响的实验研究[J].辽宁中医杂志.1991,8:44.
    [20]龙盛京,朱春玲,杨燕斌.拟黑多刺蚁对全血化学发光与活性氧的抑制作用[J].药物生物技术.1998,5(4):219.
    [21]李裕生,杨玉英,陈正清等.拟黑多刺蚁的安全性研究[J].广西预防医学.1995,1(6):333.
    [22]谢金鲜,林启云,杨柯等.台湾家白蚁与拟黑多刺蚁醇提物的药理作用比较Ⅱ抗应激作用[J].广西中医药.1998,21(6):39.
    [23]W. McGinnis, R. Krumlauf. Homeobox genes and axial patterning[J]. Cell.1992, 68:283-302.
    [24]R. Krumlauf.. Hox genes in vertebrate development[J]. Cell.1994,78:191-201.
    [25]J. C. Pearson, D. Lemons, W. McGinnis. Modulating Hox gene functions during animal body patterning[J]. Nat Rev Genet.2005,6:893-904.
    [26]D. Duboule. Guidebook to the homeobox genes[M]. Oxford:Oxford University Press,1994.
    [27]S. B. Carroll. Homeotic genes and the evolution of arthropods and cordates[J]. Nature,1995,376:479-485.
    [28]C. Joseph, et al. Modulating Hox gene functions during animal body pattering[J]. Nature Genetics.2005,6:893-904.
    [29]Y. Graba, D. Aragnol, J. Pradel. DrosophilaHox complex downstream targets and the function of homeotic genes[J]. BioEssays.1997,19:379-388.
    [30]T. Hoey, M. Levine. Divergent homeo box proteins recognize similar DNA sequences in Drosophila[J]. Nature.1988,332:858-861.
    [31]M. Featherstone. HOX proteins and their co-factors in trancriptional regulation. In: Lufkin T (ed) Murine homeobox gene control of embryonic patterning andorganogenesis. Elsevier Amsterdam NL.2003:1-42.
    [32]K. Mukherjee, T. R. Burglin. Comprehensive analysis of animal TALE homeobox genes:new conserved motifs and cases of accelerated evolution[J]. Joural of Moleculer Evolution.2007,65:137-153.
    [33]G. E. Rieckhof, F. Casares, H. D. Ryoo, et al. Nuclear translocation of extradenticle requires homothorax,which encodes an extradenticle-related homeodomain protein[J]. Cell.1997,91:171-183.
    [34]E. Kurant, C.Y. Pai, R. Sharf, et al. Dorsotonals/homothorax, the Drosophila homologue of meisl, interacts with extradenticle in patterning of the embryonic PNS[J]. Development.1998,125:1037-1048.
    [35]C. Y Pai, T. S. Kuo, T.J. Jaw, et al. The Homothorax homeoprotein activates the nuclear localization of another homeoprotein, extradenticle, and suppresses eye development in Drosophila[J]. Genes Dev.1998,12:435-446.
    [36]M. Abu-Shaar, H. D. Ryoo, R. S. Mann. Control of the nuclear localization of Extradenticle by competing nuclear import and exportsignals[J]. Genes Dev.1999, 13:935-945.
    [37]J. Berthelsen, C. Kilstrup-Nielsen, F. Blasi, et al. The subcellular localization of PBX1 and EXD proteins depends on nuclear import and export signals and is modulated by association with PREP1 and HTH[J]. Genes Dev.1999,13:946-953.
    [38]T. J. Jaw, L. R. You, P. S. Knoepfler, et al. Direct interaction of two homeoproteins, homothorax and extradenticle, is essential for EXD nuclear localization and function[J]. Mech Dev.2000,91:279-291.
    [39]B. Noro, J. Culi, D.J. McKay, et al. Distinct functions of homeodomain-containing and homeodomain-less isoforms encoded by homothorax[J]. Genes Dev.2006,20: 1636-1650.
    [40]H. D. Ryoo, T. Marty, F. Casares, et al. Regulation of Hox target genes by a DNA bound Homothorax/Hox/Extradenticle complex[J]. Development.1999,126: 5137-5148.
    [41]E. Kurant, D. Eytan, A. Salzberg. Mutational analysis of the Drosophila homothorax gene[J]. Genetics.2001,157:689-698.
    [42]C. B. Moens, L. Selleri. Hox cofactors in vertebrate development[J]. Developmental biology.2006,291:193-206.
    [43]J. J.Moskow, F. Bullrich, K. Huebner, et al. Meisl,a PBX1-related homeobox gene involved in myeloid leukemia in BXH-2 mice[J]. Mol Cell Biol,1995,15: 5434-5443.
    [44]O. Afonja, J. E. Smith, D. M. Cheng, et al. MEIS1 and HOXA7 genes in human acute myeloid leukemia[J]. Leuk Res.2000,24:849-855.
    [45]H. J. Lawrence, S. Rozenfeld, C. Cruz, et al. Frequent coexpression of the HOXA9 and MEIS1 homeobox genes in human myeloid leukemias[J]. Leukemia.1999,13: 1993-1999.
    [46]T.Imamura, A. Morimoro, M. Takanashi, et al. Frequent co-expression of HoxA9 and Meis1 genes in infant acute lymphoblastic leukaemia with MLL rearrangement[J]. Br J Haematol. 2002,119:119-121.
    [47]T. Rozovskaia,O. Mor, R. Foa, et al. Upregulation of Meis1 and HoxA9 in acute lymphocytic leukemias with the t (4:11) abnormality [J]. Oncogene.2001,20: 874-878.
    [48]N. Milech, N. G. Gottardo, et al. MEIS proteins as partners of the TLX1/HOX11 oncoprotein[J]. Leuk Res doi:10.1016/j.leukres.2009.06.003.
    [49]A. P. G. Crijns, P. De Graeff, D. Geerts, et al. MEIS and PBX homeobox proteins in ovarian cancer[J].Eur J Cancer.2007,43:2495-2505.
    [50]B. Dekel, S. Metsuyanim, K. M. Schmidt, et al. Multiple imprinted and sternness genes provide a link between normal and tumor progenitor cells of the developing human kidney[J]. Cancer Res.2006,66:6040-6049.
    [51]D. E. Hansel, A. Rahman, M. House, et al. Met proto-oncogene and insulin-like growth factor binding protein 3 overexpression correlates with metastatic ability in well-differentiated pancreatic endocrine neoplasms [J]. Clin Cancer Res.2004,10: 6152-6158.
    [52]P. Fernandez, J. Carretero, P. P. Medina, et al. Distinctive gene expression of human lung adenocarcinomas carrying LKB1 mutations[J]. Oncogene.2004,23: 5084-5091.
    [53]D. Geerts, N. Schilderink, G. Jorritsma, et al. The role of the MEIS homeobox genes in neuroblastoma[J]. Cancer Letters.2003,197:87-92.
    [54]D. Geerts, I. Revet, G. Jorritsma, et al. MEIS homeobox genes in neuroblastoma[J]. Cancer Letters.2005,228:43-50.
    [55]J. Capdevila, T. Tohru, C. R. Esteban, et al. Control of vertebrate limb outgrowth by the proximal factor Meis2 and distal antagonism of BMPs by Gremlin[J]. Mol Cell. 1999,4:839-849.
    [56]N. Mercader, E. Leonardo, N. Azpiazu, et al. Conserved regulation of proximodistal limb axis development by Meis1/Hth[J].Nature.1999,402:425-429.
    [57]X. Zhang, A. Friedman, S. Heaney, et al. Meis homeoproteins directly regulate Pax6 during vertebrate lens morphogenesis[J]. Genes Dev.2002,16:2097-2107.
    [58]R. Maeda, K. Mood, T. L. Jones, et al. Xmeisl, a protooncogene involved in specifying neural crest fate in Xenopus embryos[J]. Oncogene.2001,20: 1329-1342.
    [59]C. Dibner, S. Elias, D. Frank. XMeis3 protein activity is required for proper hindbrain patterning in Xenopus laevis embryos[J]. Development.2001,128: 3415-3426.
    [60]C. Dibner, S. Elias, R. Ofir, et al. The Meis3 protein and retinoid signaling interact to pattern the Xenopus hindbrain[J]. Dev Biol.2004,271:75-86.
    [61]A.Salzberg,S. Elias, N. Nachaliel, et al. A Meis family protein caudalizes neural cell fates in Xenopus[J]. Mech Dev.1999,80:3-13.
    [62]S. Ribisi, F. V. Mariani, E. Aamar, et al. Ras-mediated FGF signaling is required for the formation of posterior but not anterior neural tissue in Xenopus laevis[J]. Dev Biol.2000,227:183-196.
    [63]E. Aamar, D. Frank. Xenopus Meis3 protein forms a hindbrain-inducing center by activating FGF/MAP kinase and PCP pathways[J]. Development.2004,131: 153-163.
    [64]Y. Gutkovich, R. Ofir, Y. M. Elkouby, et al. Xenopus Meis3 protein lies at a nexus downstream to Zicl and Pax3 proteins, regulating multiple cell-fates during early nervous system development[J]. Dev Biol.2009, doi:10.1016/j.ydbio.2009.11.024.
    [65]Seong-Kyu Choe, Nikolaos Vlachakis, Charles G. Sagerstrom. Meis family proteins are required for hindbrain development in the zebrafish[J]. Development.2002,129: 585-595.
    [66]Nikolaos Vlachakis, Seong-Kyu Choe, Charles G. Sagerstrom. Meis3 synergizes with Pbx4 and Hoxblb in promoting hindbrain fates in the zebrafish[J]. Development.2001,128:1299-1312.
    [67]A. J. Waskiewicz, H. A. Rikhof, R. E. Hemandez, et al. Zebrafish Meis functions to stabilize Pbx proteins and regulate hindbrain patterning [J]. Development.2001,128: 4139-4151.
    [68]Ted Zeruchaa, Victoria E. Princeb. Cloning and developmental expression of a zebrafish meis2 homeobox gene[J]. Mechanisms of Development.2000,102: 247-250.
    [69]F. Biemar, N. Devos, J. A. Martial, et al. Cloning and expression of the TALE superclass homeobox Meis2 gene during zebrafish embryonic development[J]. Mechanisms of Development.2001,109:427-431.
    [70]J. Bessa, M. J. Tavares, J. Santos, et al. meisl regulates cyclin D1 and c-myc expression, and controls the proliferation of the multipotent cells in the early developing zebrafish eye[J]. Development.2008,135:799-803.
    [71]K. Van Auken, D. Weaver, B. Robertson, et al. Roles of the homothorax/meis/prep homolog UNC-62 and the Exd/Pbx homologs CEH-20 and CEH-40 in C. elegans embryogenesis [J]. Development.2002,129:5255-5268.
    [72]L. Yang, M. Sym, C. Kenyon. The roles of two C. elegans HOX co-factor orthologs in cell migration and vulva development[J]. Development.2005,132:1413-1428.
    [73]M. B. Potts, D. P. Wang, S. Cameron. Trithorax, Hox, and TALE-class homeodomain proteins ensure cell survival through repression of the BH3-only gene Egl-1[J]. Dev Biol.2009,329:374-385.
    [74]T. Nagao, K. Endo, H. Kawauchi, et al. Patterning defects in the primary axonal scaffolds caused by the mutations of the extradenticle and homothorax genes in the embryonic Drosophila brain[J]. Dev Genes Evol.2000,210:289-299.
    [75]K. D. Henderson, D. J. Andrew. Regulation and function of Scr, exd, and hth in the Drosophila salivary gland[J]. Dev Biol.2000,217:62-374.
    [76]Makoto Sato, Yusuke Kitada, Tetsuya Tabata. Larval cells become imaginal cells under the control of homothorax prior to metamorphosis in the Drosophila tracheal system[J]. Devlopmental Biology.2008,318:247-257.
    [77]F. Casares, R, S. Mann. Control of antennal versus leg development in Drosophila[J]. Nature.1998,392:723-726.
    [78]M. Abu-Shaar, R. S. Mann. Generation of multiple antagonistic domains along the proximodistal axis during Drosophila leg development[J]. Development.1998,125: 3821-3830.
    [79]S. Gonzalez-Crespo, M. Abu-Shaar, M. Torres, et al. Antagonism between extradenticle function and Hedgehog signalling in the developing limb[J]. Nature. 1998,394:196-200.
    [80]J. Wu, S. M. Cohen. Proximodistal axis formation in the Drosophila leg: subdivision into proximal and distal domains by Homothorax and Distal-less [J]. Development.1999,126:109-117.
    [81]J. D. Zirin, R. S. Mann. Differing strategies for the establishment and maintenance of teashirt and homothorax repression in the Drosophila wing[J]. Development. 2004,131:5683-5693.
    [82]N. Azpiazu, G. Morata. Function and regulation of homothorax in the wing imaginal disc of Drosophila[J]. Development.2000,127:2685-2693.
    [83]C. Fernando, R. S. Mann. A dual role for homothorax in inhibiting wing blade development and specifying proximal wing identities in Drosophila[J]. Development.2000,127:1499-1508.
    [84]P. D. Si Dong, Jessie Chu, Grace Panganiban.Coexpression of the homeobox genes Distal-less and homothorax determines Drosophila antennal identity [J]. Development.2000,127:209-216,
    [85]P. D. Si Dong, Jennifer Scholz Dicks, Grace Panganiban. Distal-less and homothorax regulate multiple targets to pattern the Drosophila antenna[J]. Development.2002,129:1967-1974.
    [86]F. Pichaud, F. Casares. Homothorax and iroquois-C genes are required for the establishment of territories within the developing eye disc[J]. Mech Dev.2000,96, 15-25.
    [87]J. Bessa, B. Gebelein, F. Pichaud, et al. Combinatorial control of Drosophila eye development by Homothorax, and Teashirt Eyeless[J]. Gene Dev.2002,16: 2415-2427.
    [88]J. Bessa, F. Casares. The regulation of homothorax and the control of eye-head proportion.in Drosophila[J].Int J Dev Biol.2001,45 (S1):S135-S136.
    [89]M. F. Wernet, T. Labhart, F. Baumann, et al. Homothorax switches function of Drosophila photoreceptors from color to polarized light sensors[J]. Cell.2003,115: 267-279.
    [90]Y. Inoue, T. Mito, K. Miyawaki, et al. Correlation of expression patterns of homothorax, dachshund, and Distalless with the proximodistal segmentation of the cricket leg bud[J]. Mechanisms of Development.2002,113:141-148.
    [91]M. Ronco. Antenna and all gnathal appendages are similarly transformed by homothorax knock-down in the cricket Gryllus bimaculatus[J]. Developmental Biology.2008,313:80-92.
    [92]A. P. Moczekl, D. J. Rose. Differential recruitment of limb patterning genes during development and diversification of beetle horns [J]. PNAS.2009,106(22): 8992-8997.
    [93]T. Kojima. The mechanism of Drosophila leg development along the proximodistal axis [J]. Dev Growth Differ.2004,46:115-129.
    [94]C. Tickle. Patterning systems-from one end of the limb to the other[J]. Dev Cell. 2003,4:449-458.
    [95]C. J. Tabin, S. B. Carroll, G. Panganiban. Out on a limb:parallels in vertebrate and invertebrate limb patterning and the origin of the appendages [J]. Am Zool.1999,39: 650-663.
    [96]N. Mercader, E. Leonardo, M. E. Piedra, et al. Opposing RA and FGF signals control proximodistal vertebrate limb development through regulation of Meis genes[J]. Development.2000,127:3961-3970.
    [97]F. A. Mic, I. O. Sirbu, G. Duester. Retinoic acid synthesis controlled by Raldh2 is required early for limb bud initiation and then later as a proximodistal signal during apical ectodermal ridge formation. J Biol Chem.2004,279:26698-26706.
    [98]J. I. Pueyo, J. P. Couso. Parallels between the proximal-distal development of vertebrate and arthropod appendages:homology without an ancestor?[J]. Current Opinion in Genetics Development.2005,15:439-446.
    [99]黄韧,薛成等编著.生物信息学网络资源与应用[M].广州:中山大学出版社,2003.
    [100]M. Y. Galperin. The Molecular Biology Database Collection:2005 update [J]. Nucleic Acids Research,2005,33(Database issue):15-24.
    [101]陶士珩.生物信息学.北京:科学出版社.2007.
    [102]J. Sambrook, E.F. Fritsch, T. Maniatis. Molecular Cloning:A Laboratory Manual (2nd Ed.)[M]. Cold Spring Harbor University Press, Cold Spring Harbor, NY,1989.
    [103]F. M. Ausubel. Current Protocols in Molecular Biology [M]. John Wiley and Sons, Inc., NY,1999.
    [104]F. Jeanmougin, J. D. Thompson, M. Gouy, et al. Multiple Sequence Alignment with Clustal X [J]. Trends in Biochemical Sciences.1998,23(10):403-405.
    [105]赵亚力,马学斌,韩为东.分子生物学基本实验技术[M].北京:清华大学出版社.2006.
    [106]张霞,李国勋,郭巍.甜菜夜蛾肠粘蛋白cDNA基因的分子克隆与序列分析[J].中国农业科学.2008,42(11):3898-3904.
    [107]孙秀珍,刘昀.霜天蛾cDNA表达文库的构建和初步鉴定[J].西安交通大学学报.2005,26(3):244-246,279.
    [108]刘志刚,黄炯烈,朱振宇等.美洲大蠊若虫cDNA表达文库的构建及初步鉴定[J].中华微生物和免疫学杂志.2001,21(增刊):4-6.
    [109]黎万顺,冯国忠,陈斌等.葱蝇冬滞育蛹的全长cDNA文库的构建[J].昆虫 知识.2010,47(1):53-58.
    [110]王英,张锡林,徐文岳,段建华.斯氏按蚊总RNA的提取与标本保存方法的研究[J].四川动物.2002,21(2):67-68.
    [111]张晓军,王兵,张绍萍等.中国对虾6种组织cDNA文库的构建[J].海洋学报.2005,27(5):92-102.
    [112]王淑红,邹志华,张子平等.副溶血弧菌感染的九孔鲍血细均一化全长cDNA文库的构建[J].台湾海峡.2008,8(3):278-285.
    [113]Cox R. A. Structure and functon of prokaryotic and eukaryotic ribosomes [J]. Prog Biophs Mol Biol.1977,32:193-211.
    [114]张龙翔,张庭芳,李令媛.生化实验方法与技术(第二版)[M].北京:高等教育出版社,1997:322.
    [115]C. M. Malboeuf, S. J. Isaacs, N. H. Tran, et al. Thermal effects on reverse transcription:improvement of accuracy and processivity in cDNA synthesis[J]. Biotechniques.2001,30:1074.
    [116]贺淹才.简明基因工程原理[M].北京:科学出版社,2005:187.
    [117]屈伸,刘志国.分子生物学实验技术[M].北京:化学工业出版社,2008:308.
    [118]张富春,李江伟.分子生物学实验技术[M].乌鲁木齐:新疆大学出版社,2008:69.
    [119]李桂源,钱骏.基于WWW的生物信息学应用指南[M].长沙:中南大学出版社,2004,265-266.
    [120]张庆华,茅矛,陈竺.基因组研究中全长cDNA克隆的策略[J].生物工程进展.2000,20(4):3-5.
    [121]M. Kozak. Interpreting cDNA Sequences:Some Insights from Studies on Translation[J]. Mamm Genoma.1996,7:563-574.
    [122]M. Meyerson, C. M. Counter, E. N. Eaton, et al. Hest2, the Putative Human Telomerase Catalytie Subunit Gene, Is Up-Regulated in Tumor Cells and during Immortalization[J]. Cell.1997,90:785-795.
    [123]M. Fitzgerald, T. Shenk. The sequence 5'-AAUAAA-3'forms parts of the recognition site for polyadenylation of late SV40 mRNAs[J]. Cell.1981,24(1): 251-260.
    [124]张庆华,茅矛,陈竺.基因组研究中全长cDNA克隆的策略[J].生物工程进展.2000,20(4):3-5.
    [125]顾红雅,翟礼嘉等.植物基因与分子操作[M].北京:北京大学出版社,1995:74-931.
    [126]Genome News Network (April,2004) http://www.genomenews network.org/ sequeced_genomes/genome_guide_p1.shtml.
    [127]E. D. Green. Strategies for the systematic sequencing of complex genomes [J]. Nat Rev Genet.2001,2:573-583.
    [128]S. Broder, J. C. Venter. Sequencing the entire genomes of free-living organisms: the foundation of pharmacology in the new millennium[J]. Annu Rev Pharmacol Toxicol.2000,40:97-132.
    [129]C. S. Giometti. Proteomics and bioinformatics[J]. Adv Protein Chem.2003,65: 353-369.
    [130]S. F. Altschul, L. M. Thomas, A. A. Schffer, et al. Gapped BLAST and PSI-BLAST:A New Generation of Protein Database Search Programs [J]. Nucleic Acids Research.1997,25(17):3389-3402.
    [131]A. A. Schffer, L. Arabind, T. L. Madden, et al. Improving the Accuracy of PSI-BLAST Protein Database Searches with Composition-Based Statistics and Other Refinements [J]. Nucleic Acids Research.2001,29(14):2994-3005.
    [132]J. Felsenstein.2009 PHYLIP (Phylogeny Inference Package) version 3.69. Distributed by the author (http://evolution.genetics.washington.edu/phylip.html). Department of Genome Sciences, University of Washington, Seattle.
    [133]N. Saitou, M. Nei. The Neighbor-Joining Method:A New Method for Reconstructing Phylogenetic Trees [J]. Molecular Biology and Evolution.1987, 4(4):406-425.
    [134]D. T. Jones, W. R. Taylor, J. M. Thornton. The rapid generation of mutation data matrices from protein sequences[J]. Comput Appl Biosci.1992,8:275-282.
    [135]E. Gasteiger, C. Hoogland, A. Gattiker, et al. Protein Identification and Analysis Tools on the Expasy Server; (In) John M. Walker (Ed):The Proteomics Protocols Handbook [M]. Humana Press.2005:571-607.
    [136]T. P. Hopp, K. R. Woods. Prediction of protein antigenic determinants from amino acid sequences [J]. Proc Natl Acad Sci.1981,78(6):3824-3828.
    [137]J. Kyte, R. F. Doolittle. A simple method for displaying the hydropathic character of a protein [J]. Journal of Molecular Biology.1982,151(1):105-132.
    [138]D. Eisenberg, E. Schwarz, M. Komarnomy. et al. Analysis of membrane and surface protein sequences with the hydrophobic moment plot[J]. Journal of Molecular Biology.179(1):125-142.
    [139]K. J. Jensen, S. M. Brunaks. Predietion of Novel Arehaeal Enzymes from sequenee-Derived Features[J]. Protein Seienee.2002,11:2894-2898.
    [140]G. Von. The Distribution of Positively Charged Residues In bacterial Inner Membrane Proteins Correlates with theTransmem-Brane Topology [J]. EMBO J. 1986,5(11):3021-3029.
    [141]E. L. L. Sonnhammer, G von Heijne, A. Krogh. A hidden Markov model for predicting transmembrane helices in protein sequences. Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology, pages 175-182, Menlo Park, CA,1998.
    [142]A. Krogh, B. Larsson, G von Heijne, et al. Predicting transmembrane protein topology with a hidden Markov model:Application to complete genomes[J]. Journal of Molecular Biology.2001,305(3):567-580.
    [143]K. Hofmann, W. Stoffel. Tmbase-A database of membrane spanning proteins segments[J]. Biol Chem Hoppe-Seyler.1993,374:166-166.
    [144]J. D. Bendtsen, H. Nielsen, C. S. Vonheijneq Brunal. Improved Prediction of Signal Peptides:Signal P3.0 [J]. J Mol Biol.2004,340:783-795.
    [145]H. Nielsen, J. Engelbrecht, S. Brunak, et al. Identification of Prokaryotic and Eukotic Signal Peptides and Prediction of Their Cieavage Sites [J]. Pro Eng.1997, 10:1-6.
    [146]夏其昌,曾峰等.蛋白质化学与蛋白质组学[M].北京:科学出版社,2004:395.
    [147]K. Nakai. Review:Prediction of in vivio fates of proteins in the era of genomics and proteomics[J]. Struct Biol.2001,134:103-116.
    [148]H. Nakashima, K. Nishikawa. Discrimination of intracellar and extracellar proteins using amino acid composition and resideu-pair frequencies[J]. Mol Biol, 1994,238:54-61.
    [149]K. Nakai, M. Kanehisa. Expert system for predicting protein localization sites in Gram-negative bacteria[J]. Proteins.1991,11:95-110.
    [150]K. Nakai, M. Kanehisa. A knowledge base for predicting protein localization sites in eukaryotic cells[J]. Genomics.1992,14:897-911.
    [151]P. Horton, K. Nakai. A probabilistic classification system for predicting the cellular localization sites of proteins[J]. Proc Int Cont Intellig Syst Mol Biol.1996, 4:109-115.
    [152]P. Horton, K. Nakai. Better prediction of protein cellular localization sites with the k nearest neighbor classifer. Proc Int Cont Intellig Syst Mol Biol.1997,5: 141-152.
    [153]K. Nakai, P. Horton. PSORT:a program for detecting the sorting signals of proteins and predicting their subcellular localization[J]. Trends Biochem Sci.1999, 24:34-36.
    [154]A. Marchler-Bauer, S. H. Bryant. CD-Search:Protein Domain Annotations on the Fly[J]. Nucleic Acids Researeh.2004,32:327-331.
    [155]张阳德.生物信息学[M].北京:科学出版社,2005:207.
    [156]薛庆中等.DNA和蛋白质序列数据分析工具=Tools for analysis of DNA and protein sequence data[M].北京:科学出版社,2009:81.
    [157]D. Frishman, P. Argos. Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence[J]. Protein Eng.1996, 9(2):133-142.
    [158]R. Sanchez, A. Sali. Comparative protein structure modeling in genomics[J]. J Comput Phys.1999,151:388-401.
    [159]M. J. E Sternberg. Protein structure prediction-a practical approach[M]. Oxford: Oxford University Press,1996.
    [160]石嵘,马文丽,郑文岭.后基因组研究中蛋白结构与功能的预测[J].生物技术通报.2002,(3):1-4.
    [161]D. J. Osguthorpe. Ab initio protein folding[J]. Curr Opin Struct Biol.2000, 10:146-152.
    [162]K. T. Simons, C. Strauss, D. Baker. Prospects for ab initio protein structural [J]. J Mol Biol.2001,306:1191-1199.
    [163]K. Arnold, L. Bordoli, J. Kopp, et al. The SWISS-MODEL Workspace:A web-based environment for protein structure homology modelling[J]. Bioinformatics.2006,22:195-201.
    [164]F. Kiefer, K. Arnold, M. Kunzli, et al. The SWISS-MODEL Repository and associated resources[J]. Nucleic Acids Research.2009,37:D387-D392.
    [165]C. Dingwall, R.A. Laskey. Nuclear targeting sequences-a consensus? Trends Biochem Sci.1991.16:478-481.
    [166]陶士珩.生物信息学[M].北京:科学出版社,2007:165.
    [167]欧阳霞辉.拟黑多刺蚁和意大利蜜蜂雌激素相关受体基因的克隆与表达研究[D].西安:陕西师范大学,2007.
    [168]Y. Ishii, K. Kubota, K. Hara. Postembryonic Development of the mushroom bodies in the ant, Camponotus Japonicus [J]. Zoological Science.2005,22(7): 743-753.
    [169]A. Giulietti, L. Overbergh, D. Valckx, et al. An overview of real-time quantitative PCR:Application to quantify cytokine gene expression [J]. Methods. 2001,25(4):386-401.
    [170]T. Suzuki, P. J. Higgins, D. R. Crawford. Control Selection for RNA Quantitation [J]. Biotechniques.2000,29(2):332-337.
    [171]I. Claeys, G. Simonet, T. Van-Loy, et al. cDNA Cloning and Transcript Distribution of Two Novel Members of the Neuroparsin Family in the Desert Locust, Schistocerca Gregaria [J]. Insect Molecular Biology.2003,12(5):473-481.
    [172]G. Simonet, I. Claeys, B. Breugelmans, et al. Transcript Profiling of Pacifastin-Like Peptide Precursors in Crowd and Isolated-Reared Desert Locusts [J]. Biochemical and Biophysical Research Communications.2004,317(2):565-569.
    [173]张驰宇,徐顺高,黄新祥.一种新颖简便的荧光实时RT-PCR相对定量方法的建立[J].生物化学与生物物理学进展.2005,32(9):883-888.
    [174]L. D. Ke, Z. Chen, W. K. Yung. A reliability test of standard-based quantitative PCR:exogenous vs endogenous standards [J]. Mol Cell Probes.2000,14(2): 127-135.
    [175]K. J. Livak, T. D. Schmittgen. Analysis of Relative Gene Expression Data Using, Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method [J]. Methods.2001,25(4):402-408.
    [176]郭郛.昆虫的变态[M].北京:科学出版社,1965:3.
    [177]H. Hensen. The thoretical aspect of insect metamorphosis[J]. Biol Rev.1946, 21:1-14.
    [178]D. Bodenstein. Studies on the humoral mechanism in growth and metamorphosis of roach,Periplaneta americana. Ⅰ.Transplantations of integumental structures and experimental parabiosis[J]. J exp Zool.1953,123:189-232.
    [179]O. A. Johannsen, F. H. Butt. Embryology of Insects and Myriapods[M]. New York,1941:77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700