一株氧化亚铁硫杆菌的分离鉴定及表面钝化剂三乙烯四胺(TETA)抗生物氧化机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嗜酸氧化亚铁硫杆菌(Acidthiobacillus ferrooxidans,下简称A. f菌)大量存在于酸性矿山废水及尾矿中,是目前研究得最为深入的浸矿细菌之一。我国尾矿存有量超过百亿吨,且每年几亿吨的速度增长。A. f菌的存在能大大加速尾矿风化及重金元素的溶出,会对邻近区的环境构成严重威胁。
     本研究中拟在不需要进行预处理的情况下直接对尾矿进行钝化,从微观水平上研究尾矿中A. f菌的生长特性及钝化条件下硫化物矿物的化学和生物氧化情况,从不同方面为寻找新的方法抑制尾矿的氧化及减缓重金的释放提供理论依据,主要研究内容包括:氧化亚铁硫杆菌DBS-8的分离鉴定和表面钝化剂三乙烯四胺(TETA)钝化尾矿的抗生物氧化性能研究。
     本论文选用9K培养基并Fe~(2+)作为能源,从尾矿样品中分离纯化得到对Fe~(2+)及元素硫氧化活性均较好的菌株DBS-8。通过16S rRNA扩增和DNA鉴定DBS-8为氧化亚铁硫杆菌并构建其系统发育树。另外,通过设计细菌培养条件的正交试验,重点考察了Fe~(2+)初始浓度、接种量、pH、温度及硫酸铵浓度这五个环境因素对细菌生长的影响,得出各初始条件对细菌生长影响的显著性顺序为:pH>接种量>温度>硫酸铵浓度>初始亚铁浓度。这表明pH对A. f菌生长影响最大,通过破坏其酸性环境可最大程度上抑制细菌生长。
     此外,运用TETA对尾矿进行表面钝化处理,研究钝化前后尾矿抗化学氧化和生物氧化的能力。结果表明,TETA对尾矿具有一定的钝化效果,但随着时间的延长,钝化效果逐渐减弱。浸矿60d后,除了铁离子溶出的抑制率高达73%-79%外,浸矿体系中的Cu~(2+)、Zn~(2+)、Cd~(2+)、Mn~(2+)溶出的抑制效果均较差。这可能因为TETA形成的钝化膜并不稳定,经过长期的侵蚀作用而逐渐脱落。同时,细菌的存在并没有促进溶液中金离子的溶出,反而使其离子浓度降低。这可能与细菌对金离子的吸收作用及金配合物的形成有关。溶液中因缺乏细菌生长所需的Fe~(2+)而导致细菌生长缓慢,生物浸矿作用远小于细菌对金离子的吸收强度,从而导致溶液中金离子浓度的降低。由于尾矿成分复杂,浸矿体系中影响重金溶出的因素较多,本论文只对TETA表面钝化效果和尾矿的生物浸出机理作了初步的探讨,有关钝化处理工艺的优化和生物浸出机理尚需更深入的研究。
Acidthiobacillus ferrooxidans (A. f) which exists in acid mine drainage and tailings is one of the most important and lucubrated bacteria in bioleaching process at the present. The capacity of tailings in China is more than one hundred million tons with several million tons of growth rates every year. A. f strain can accelerate the weathering of tailings and leaching process of heavy metals which threaten the environment of neighboring region.
     This research intended to get a new passivating program to passivate the mine tailings without pre-oxidation. It studied on the growth and characteristic of A. f strain and chemical and biological situation of sulfide minerals under passivation at the micro level. It aimed to find new methods of inhibiting the oxidation of tailings and slowing the release of heavy metals in different ways. The main content of the research includes: the isolation and identification of an A. f strain named by DBS-8 and researches on anti-biooxidation mechanism by surface passivation agent triethlenetetramine (TETA).
     Taking 9K medium with Fe~(2+) as energy source, a strain DBS-8 which had high Fe~(2+) and elemental sulfur oxidation activity was obtained. After PCR amplification of 16S rRNA and DNA testing, DBS-8 was identified as an A. f strain and its phylogeny was constructed. Then, an orthogonal experiment was designed to investigate the impact of inoculums volume﹑initial pH﹑concentration of ferrous﹑temperature and concentration of ammonium sulfate on the growth of the strain. The order of the above factors which affected the growth of strain DBS-8 most is: pH> inoculum> temperature> ammonium sulfate concentration > the initial ferrous concentration. This showed that pH impacted the growth of A. f strain most. Through destroying the acid environment, it can inhibit the growth of the bacteria to the maximum extent.
     In addition, through using TETA to passivate the tailing surface, the capability of its anti-chemical oxidation and anti-biological oxidation both before and after passivating was studied. Results showed that TETA had certain effect on the leaching process. However, as the time went, its effect became weak. After 60 days of leaching process, the effects of inhabitation of the leaching rate of Cu~(2+)、Zn~(2+)、Cd~(2+)、Mn~(2+) ions were weak while its effect of inhabitation of the leaching rate of Fe3+ was high to range from 73% to 79%. This was possibly due to the instability of TETA. Trough long-term leaching, TETA fell out for erosion. In the meantime, the bacteria decreased the leaching concentration of heavy metals in contrast. It is possibly related to the absorption to the metals or the formation of metal chelates. It slowed down the growth of the bacteria for lack of Fe~(2+) for energy resource. As a result, the effect of bioleaching to promote the metal leaching rate is less than the absorption by bacteria to lead to a related low concentration of metal ions. For the complicated composition of the tailings and the diversity of effects to the leaching concentration of heavy metals in the leaching solution, the thesis made a preliminary study on the effects of surface passivator TETA and bioleaching mechanism of mine tailings. However, optimization of the passivating technology and the detailed mechanism of bioleaching need further research.
引文
[1] Jcrg Matschullat, Ricardo Perobelli Borba, Eleonora Deschamps. Human and environmental contamination in the iron quadrangle [J]. Applied Geochemistry, 2000, 15: 193-201.
    [2] Licsko I, Lois L, Szebenyi G. Tailings as a source of environmental pollution [J]. Wat Sci Tech, 1999, 39(10-11): 333-336.
    [3]蒲含勇,张应红.论我国矿产资源的综合利用[J].矿产综合利用, 2001(4): 19-22.
    [4] Wang Z J. Major environmental and ecotoxicological processes of heavy metals in Lean River polluted [J]. J Environ Sci(China), 1999, 11: 322-327.
    [5] Gascia Guinca J and Harffy M(张康生译).玻利维亚采矿污染:过去、现在和未来[M]. AMBIO人类环境杂志, 1998, 27(3): 250-252.
    [6]陈天虎.矿山尾矿矿物学研究进展[J].安徽地质, 2001, 11(1): 64-70.
    [7]张渊,李俊锋,索崇慧.矿山尾矿综合利用及其环境治理的意义[J].农业与技术, 2000, 20(4): 56-57.
    [8]刑军,吕荣,宋守志等.铁尾矿微晶玻璃的组成涉及与晶化研究[J].矿产综合利用, 2001(2): 38-41.
    [9]刑军,宋守志,徐小荷.金矿尾沙微晶玻璃的在制备[J].中国有色金学报, 2001, 11(2): 319-322.
    [10]匡宇航.发光陶瓷的研制[M].北京:中国地质大学, 2002.
    [11]张在海等.从细菌学角度探讨硫化矿物的细菌浸出[J].矿冶工程, 2000(2): 15-18
    [12]童雄,微生物浸矿的理论与实践[M].冶金工业出版社, 1997,北京.
    [13] Rawlings DE Microbially assisted dissolution of minerals and its use in the mining industry [J]. Pure Appl. Chem., 2004, 76: 847-859.
    [14] Rohwerder T, Gehrke T, kinzler K, Sand W(2003) Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation[J]. Appl. Microbiol Biotechnol, 2003, 63: 239-248.
    [15]胡凯光,胡鄂明,康泉,洪春林,谢国声.细菌浸矿机理和影响因素[J].中国矿业, 2004(13): 73-77.
    [16] Johnson DB. Acidophilic Microbial Communities: Candidates for Bioremediation ofAcidic Mine Effluents [J]. International Biodeterioration &Biodegradation, 1995, 56: 41-58.
    [17] Samposn M I, Phillips C V, Blake R C. Influence of the attachment of acidophlic bacteria during the oxidation of sulfides [J]. Minerals Engineering, 2000, 13: 373-389.
    [18] Shrihari J J M, Kumar R, Gandhi K S. Dissolution of particles of pyrite mineral by direct attachment of Thiobacillus ferrooxidans [J]. Hydrometallurgy, 1995, 37(2): 175-187.
    [19] Takakuwa S, Fujimori T, Iwasaki H. Some properties of cell-sulfur adhesion Thiobacillus thiooxidans [J]. Journal of General Applied Microbiology, 1979, 25: 21-29, 30.
    [20] Loosdrechr van M C M, Lyklema J. Electrophretic mobility and hydrophobicity as a measured to predict the initial steps of bacterial adhesion [J]. Applied and Environmental Microbiology, 1987, 53(8): 1898-1901.
    [21] Devasia P, Natarajan K A, Sathyanarayana D N, et al. Surface Chemistry of Thiobacillus thiooxidans Relevant to Adhesion on Mineral Surfaces [J]. Appl Environ Microbiol, 1993, 59(12): 4051-4055.
    [22] Golovacheva R S. Attachment of Sulfobacillus thermosulfidooxidans cells to the surface of sulfide minerals [J]. Mikrobiologiia JT-Mikrobiologiia, 1979, 48(3): 528-533.
    [23] Ohmura N, Tsugita K, Koizumi J I, et al. Sulfur-binding protein of flagella of Thiobacillus ferrooxidans [J]. J Bacteriol JT-Journal of bacteriology, 1996, 178(19): 5776-5780.
    [24]傅建华.硫化铜矿浸矿细菌超微结构与吸附机理[D].中南大学, 2004.
    [25]Brasseur G, Bruscella P, Bonnefoy V, et al. The bc (1) complex of the iron-grown acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans function in the reverse but not in the forward direction. Is there a second bc (1) complex [J]. Biochim Biophys Acta JT-Biochimica etbophysica acta, 2002, 1555(1-3): 37-43.
    [26] Appia-Ayme C, Bengrine A, Cavazza C, et al. Characterization and expression of the co-transcribed cyc1 and cuc2 genes encoding the cytochrome c4 (c552) and a high-molecular-mass cytochrome c from Thiobacillus ferrooxidans ATCC 33020 [J]. FEMS Microbiol lett JT-FEMS microbiology letters, 1998, 167(2): 171-177.
    [27] Yarzabal A, Brasseur G, Ratouchniak J, et al. The high-molecular-weight cytochrome cCyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein [J]. J Bacteriol JT-Journal of bacteriology, 2002, 184(1): 313-317.
    [28] Yarzabal A, Brasseur G, Bonnefoy V. Cytochrome c of Acidithiobacillus ferrooxidans [J]. FEMS Microbiol Lett JT-FEMS microbiology letters, 2002, 209(2): 189-195.
    [29] Ramirez P, Guiliani N, Valenzuela L, et al. Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides [J]. Appl. Environ Microbiol JT-Applied and environmental microbiology, 2004, 70(8): 4491-4498.
    [30]周吉奎,钮因健等.硫化矿对浸矿细菌氧化活性的影响[J].中国有色金学报, 1997, 13(5): 1278-1282.
    [31] Visca P, Bianichi E, Polidoro M, et al. A New Solid Medium for Isolation and Enumeration Thiobacillus ferrooxidans [J]. J.Gen.Appl. Microbiol, 1989, 35:71-81.
    [32] Garcia O, Mukai J k, Andrade C B,et al. Growth of Thiobacillus ferrooxidans on solid Medium: Effects of Some Surface-Active Agents on Colony Formation [J].J.Gen.Appl.Microbiol, 1992, 38: 279-282.
    [33] Ahmad M. Khalid, Tariq M.Bhatti, M.Umar. An improved solid medium for isolation, enumeration and genetic investigation of autotrophic iron-and sulphur-oxidizing bacteria [J]. Appl Microbiol Biotechnol, 1993, 39: 259-263.
    [34] Sugio T, Uemura S, Makino I, et al. Sensitivity of iron-oxidizing bacteria, Thiobacillus ferrooxidans and Leptospirillum ferrooxidans, to bisulfite ion [J]. Applied and Environmental Microbiology, 1994: 722-725.
    [35] Govardus A.H. de Jong, Win. Hazeu, Piet. B, et al.Polythionate degradation by tetrathionate hydrolase of Thiobacillus ferrooxidans [J].Microbiology, 1997, 143: 499-504.
    [36] A.Sanhueza, I.J.Ferrer, T.Vargas, et al. Attachment of Thiobacillus ferrooxidans on synthetic pyrite of structural and electronic properties [J]. Hydrometallurgy, 1999, 51: 115-129.
    [37] M.I.Sampson, C.V.Phillps, R.C.Blake.Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulfides [J]. Minerals Engineering, 2000, 13(4): 373-389.
    [38] M.I.Sampson, C.V.Phillps, A.S.Ball. Investigation of the attachment of Thiobacillus ferrooxidans to mineral sulfides using scanning electron microscopy analysis [J]. 2000, 13(6): 643-656
    [39] Kleinmann R L P and Erickson P M. Control of acid drainage from coal refuse using anionic surfactants [R]. Report no. RI8847. Bureau of Mines, RI. 1983.
    [40] Duncan D W, Landesman J and Walden C C. Role of Thiobacillus ferrooxidans in the oxidation of sulfide mineral [J]. Canadian Journal of Microbiology. 1967, 13: 397-403
    [41] Nayvor K, Egiebor N O and Feborak P M. Supression of microbial pyrite oxidation by fatty acid amine treatment [J]. The Science of the Total Environment, 1996, 182: 75-83.
    [42] Nicholson V R, Gillham R W, Cherry J A and Reardon E J. Reduction of acid generation in mine tailings through the use of moisture-retaining cover layer as oxygen barriers [J]. Canadian Geotechnology, 1989, 26: 1-8.
    [43] Caruccio F T and Geidel G. The effect of plastic liner on acid loads/DLS site, W. V [J]. In proceedings, Fourth West Viginia Surface Mine Drainage Task Force Symposium. Clarkburg, W. V.
    [44]王尔哲译.矿山酸性水的排放[M].化工矿山译丛, 1990(2): 63-65.
    [45] Brix H and Schierop H H. The use of aguatic marophates in water pollution control [J]. AMBIO, 1980, 18(2): 100-107.
    [46]唐述虞,宋正达等.金矿山废水的湿地生态工程处理研究[J].中国环境科学, 1993, 13(5): 356-360.
    [47]唐述虞,宋正达等.矿山酸性废水的湿地生态工程处理模拟试验[J].南京林业大学学报, 1991, 15增刊.
    [48] Spotts E and Dollhopf D J. Evaluation of phosphate materials for control of acid production in mine overburden [J]. Journal of Environmental Quality, 1992, 21: 627-634
    [49] Stiller A H, Renton J J and Rymer T E. An experimental evaluation of the use of rock phosphate(apatite) for the amelioration of acid-producing coal mine waste coal mine waste [J]. Mining Science and Technology, 1989, 9: 283-287.
    [50] Huang X and Evangelou V P. Suppression of pyrite oxidation by phosphate addition. In: Alpers C N and Blowes D W(Eds) [J]. Environmental Geochemistry of sulfide oxidation, American Chemistry Socirty, Washington D.C. 1994, 562-573.
    [51] Baker B K. The evaluation of unique acid mine drainage abatement techniques [J]. Master’s Thesis, College of Endineering, West Virginia University, Morgantown, W. V.1983.
    [52]巩冠群,陶秀祥,张兴,等.氧化亚铁硫杆菌优化培养及其脱硫的研究[J].中国矿业大学学报, 2006, 35(4): 510~514.
    [53]陈伟.嗜酸氧化亚铁硫杆菌的培养特性和浸磷效果[D].武汉理工大学, 2006
    [54]王炜铭,王英刚,王林芳,等.氧化亚铁硫杆菌最佳生长条件的初步探索[J].有色矿冶, 2004, 20(5): 54~56.
    [55] Niemela S I, Riekkola-vanhanen, Sivela M, et al. Nutrient effect on the biological leaching of a black-schist ore [J]. Applied and Environmental Microbiology, 1994: 1287~1291.
    [56] Das A, Modak J M, Natarajan K A. Studies on multi-metal ion tolerance of Thiobacillus ferrooxidans [J]. Minerals Engineering, 1997, 10(7): 743~749.
    [57] WU Xue-ling, DING Jian-nan, GAO Jian, et al. Isolation and identification of metal-resistant iron-oxidizing bacteria [J]. Minerals & Metallurgical Processing, 2007, 24(1): 57~60.
    [58]张在海,邱冠周,胡岳华,等.氧化亚铁硫杆菌的菌落分离研究[J].矿产综合利用, 2001(1): 19~23.
    [59]杨宇,万民熙,彭宏,等.一株黄铜矿专浸出细菌的分离与鉴定[J].中南大学学报(自然科学版), 2007, 38(4): 639~644.
    [60]李邦梅.嗜酸氧化亚铁硫杆菌分离鉴定及其与硫化矿物相互作用的研究[D].中南大学, 2007.
    [61] Rawlings D E. The molecular genetics of Thiobacillus ferrooxidans and other mesophilic, acidophilic, chemolithot rophic, iron- or sulfur-oxidizing bacteria [J]. Hydrometallurgy, 2001, 59: 187~201.
    [62] PENG Hong, YANG Yu, LI Xuan, et al. Structure analysis of 16S rRNA sequence of strains from Acidithiobacillus ferrooxidans [J]. Journal of Biochemistry and Molecular Biology, 2006, 39(2): 178~182.
    [63] Lasse Ahmon, Olih Tuovinen. Hydrometallurgy [J], 1990, 24: 219-236.
    [64] Comez E, ballester A, Blazquez M.L, et al. Hydrometallurgy [J], 1999, 51: 37-46.
    [65]邱冠周,王军,钟康年等.铜矿石银催化研究[J],矿冶工程, 1998, 3: 22-25.
    [66]胡岳华,张在海,邱冠周等. Ag+在细菌浸出中的催化作用研究[J],矿冶工程, 2001, 21(1): 24-28.
    [67] Young, Sharon, Dreisinger, David Bruce; Munoz, Jesus. Silver-catalyzed process for bioleaching of copper from chalcopyrite ore heap(P), WO20000 37690A129 Jun 2000, 46
    [68] Curutchet C., Pogliani C., Donati E. and Tedesco P.: Effect of iron(ш) and its hydrolysis products (Jarosites) on Thiobacillus ferrooxidans growth and on bacterial leaching [J]. Biotechnol. Lett., 14, 329-334 (1992).
    [69] Shribari R. K. and Gandhi K. S.: Modelling of Fe2+ oxidation by Thiobacillus ferrooxidans [J]. Appl. Microbial Biotechnol., 33, 524-528 (1990).
    [70] Kelly D. P. and Jones, C. A.: Factors affecting metabolism and ferrous iron oxidation in suspensions and batch cultures of Thiobacillus ferrooxidans: relevance to ferric iron leach solution regeneration, p. 19-44. In Murr L. E., Torma A. E., and Brierley J. A. (ed.), Metallurgical applications of bacterial leaching and related microbiological phenomena [M]. Academic Press, New York (1978).
    [71] Lizama H. M. and Suzuki I.: Synergistic competitive inhibition of ferrous ion oxidation by Thiobacillus ferrooxidans by increasing concentrations of ferric ion and cells [J]. Appl. Environ. Microbial, 55, 2588-2591 (1989).
    [72] Nyavor K., Egiebor N. O., and Fedorah P. M.: The effect of ferric ion on the rate of ferrous oxidation by Thiobacillus ferrooxidans [J]. Appl. Microbial. Biotechnol., 45, 688-691 (1996).
    [73] Z. Sadowski, E. Jazdzyk,H. Karas, 2003. Bioleaching of copper ore ?otation concentrates [J]. Mineral engineering 16: 51-53.
    [74] P.A. Olubambi, 2009. In?uence of microwave pretreatment on the bioleaching behaviour of low-grade complex sulphide ores [J]. Hydrometallurgy 95: 159-165.
    [75] Naoki Hiroyoshi, Hajime Miki, Tsuyoshi Hirajima, Masami Tsunekawa, 2001. Enhancement of chalcopyrite leaching by ferrous ions in acidic ferric sulfate solutions [J]. Hydrometallurgy 60: 185-197.
    [76] YOSHISHIGE KAWABE, CHIHIRO INOUE, KOICHI SUTO, AND TADASHI CHIDA, 2003. Inhibitory Effect of High Concentrations of Ferric Ions on the activity ofAcidithiobacillus ferrooxidans [J]. Journal bioscience and bioengineering 96: 375-379.
    [77] David Nestor, Urquizo Valdivia, Arthur Pinto Chaves, 2001. Mechanisms of bioleaching of a refractory mineral of gold with Thiobacillus ferrooxidans. Mineral processing 62: 187-198.
    [78]张淑会,薛向欣,刘然等.尾矿综合利用及其展望[J].矿冶工程, 2005, 25(3): 44-47.
    [79]张淑会,薛向欣,刘然,等.尾矿综合利用现状及其展望[J].矿冶工程, 2005, 25(3): 44-47.
    [80] Karavaiko G I , Turova T P , Kondrateva T F , et al. Phylogenetic heterogeneity of the species Acidithiobacillus ferrooxidans[J]. Journal of Systematic and Evolutionary Microbiology, 2003, 53: 113~119.
    [81]蔡美芳,党志, NELSON Belzile等.三乙烯四胺(TETA)抑制磁黄铁矿氧化的机理研究[J].环境化学, 2005, 24(5): 528-532.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700