光电集成加速度地震检波器信号处理理论分析及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光电集成加速度检波器体积小、抗电磁干扰能力强和适合在强电磁场和高温高寒等恶劣环境下稳定工作等特点使其具有广泛的应用前景,但它的数据采集量少、实时性差和大量数据收集困难等问题极大局限了它的发展和应用,论文提出的基于优化的新解调方法、新颖的可重新配置的SOPC(System On Programmable Chip)实现方法和高速传感网络系统设计的集成化、数字智能化和系统化的现代传感系统解决了这些问题,使光电集成加速度传感系统能够在对传感系统有更高要求的导弹制导、飞机导航、大型电器设备的振动遥测及石油地震勘探等领域得到广泛应用,而且可以使得课题组研究成功的各类干涉型光电集成加速度地震检波器推广应用。
     本文研究是国家自然科学基金资助项目“混合型集成光学加速度地震检波器理论与实验研究”(No.49874031)和“光电集成加速度地震检波技术理论与实验研究”(No.40274047)的后期研究课题,旨在将研究成功的各类干涉型光电集成加速度地震检波器推广应用。论文在课题组研究成功的各类干涉型光电集成加速度地震检波器进行详尽分析基础上,对信号处理作了深入研究,提出了优化的新的数字解调方法,首次创新性提出并行工作的光电集成加速度传感器通用数字信号处理系统SOPC设计方法,首次将工业以太网接口应用在光电集成传感信号处理终端中构成传感网络,使研究的传感系统具有频带更宽、灵敏度高、抗干扰能力强、实时性好、智能化和易于构成高速测线网等优点。论文的主要研究工作如下:
     1.详细推导光电集成加速度地震检波器传感机制,对课题组研究的几种典型的传感器的特点进行了研究和分析,为数字信号处理系统奠定了研究基础。
     2.在对传统解调技术对比分析的基础上,结合交流相位跟踪零差补偿技术(PTAC)和综合外差信号解调技术,对解调理论提出了改进和优化方法,并在考虑3×3耦合输出非对称设计的情况下,提出了基于干涉型集成加速度地震检波器3×3耦合输出设计方案和集成加速度地震检波器无载波解调理论。
     3.利用Simulink仿真验证了解调理论,并详细分析加速度检波器在理想和噪音环境下的系统输入与输出关系,通过仿真得到大量实验结果,经分析得到了比传统方法更宽的动态工作频率和10rad无失真解调幅度范围及其他仿真参数。
     4.提出了新颖的并行工作的数字信号处理系统电路SOPC设计方案和实现方法,实现了400M工作时钟、采样频率达400K和系统分辨率达0.001V的DSP(Digtal signal processing)与微处理器系统并行实时工作集成化的采集、处理传感网络终端,并基于LABVIEW和SOPC系统样机完成了振动台标定、系统标定、模拟现场和实际环境测试实验。
     5.基于TCP/IP技术,构建了结合C/S和B/S结构的传输速度达10M/100M的低误码率的高速传感网络体系结构,首次将工业以太网接口应用在光电集成传感信号处理终端中构成高速传感网络,提出一种嵌入以太传感网络的新型智能化和数字化信号处理系统解决方案,构建高速通用测线网络结构,实现海量数据实时传输,满足地震勘探等领域计算机分析和解释系统的需求。
Photoelectric-integrated acceleration seismic geophone has some features, such as small size, efficient immunity to interference, and fitting to work in the powerful electromagnetic and high or low temperature environment, so it has better applicable foreground. But because of low acquiring data, poor real-time feature and the difficulty of large data acquiring, the development and application are limited. The paper proposed resolution based on a new optimized demodulated scheme, a novel reconfiguring SOPC (System On Programmable Chip) scheme and the integrated, digital intelligent and systemic modern sensing system. By these methods, the photoelectric acceleration sensor system could apply to the guide of the missile, the aircraft navigation, the vibration remote sensing of large instrument,the oil seismic exploration and so on. Especially, the research can help to generalize the interforometric photoelectricity acceleration seismic geophones which have achieved by subject team.
     The subject is the sequential reseach of the item of theory and experimentation reseach of hybrid-integrated optical acceleration seismic geophone (No. 49874031) and the item of theory and experimentation reseach of photoelectricity integrated acceleration seismic geophone imbursed (No. 40274047) by naitional neature science fund. Based on the interforometric photoelectric acceleration seismic geophones which have achieved by subject team, the method of signal processing was research, a new optimize digital demodulation was proposed, photoelectric-integrated acceleration sensor universal digital signal processing system by SOPC was proposed firstly, and the industrial enthenet interface was applied to photoelectric sensor signal processing terminal for the first time. The reseached sensing system has the features of wider frequency bandwidth, high sensitivity, efficient immunity to interference, better real-time, high intelligence and facility to construct high-speed measured net. There are some research tasks in the dissertation, as follows:
     1. The sensing principle of photoelectric-integrated acceleration seismic geophone was deduced, and the features of some typical senser that the subject team had reseached were analyzed, which established the base of the reseach of digital signal processing system.
     2. Based on the analyse of traditionary demodulated technique, combined the demodulated technique of PTAC and synthetic-heterodyne, the improved theory and optimized method of demodulation were proposed. Considering the unsymmetrical output of 3×3 coupler, the 3×3 coupler output design scheme and non-carrier demodulation theory with interferomitric integrated acceleration seismic geophone were proposed.
     3. By Simulation of Simulink tool, the demodulated theory was verified, and the relation of system input and output was analyzed in the ideal and noise circumstance. The experiment results of simulation indicate that the method has achieved wider dynamic work frequency, 10 rad non-distortion demodulated scope and other simulated parameters.
     4. The SOPC design scheme and achieved method of novel digital signal processing system were proposed, which could achieve integrated acquiring and sensor network teminal processing by real-time working of DSP and microprocessor with 400M work frequency, 400K sample frequency and 0.001V precision. By Labview and SOPC system, the experiments of vibration platform verify, system verify, virtual locale and actual environment test were achieved.
     5. Based on TCP/IP technique and C/S and B/S framework, high-speed and low error rate sensing network systemetic structure was established with 10/100M transmission rate. Industrial ethernet interface was applied to photoelectric-integrated sensing signal processing terminal for the first time, and a novel intelligent and digital signal processing resulution of embedded ethernet sensing network was proposed. It could establish high-speed universal measured network and transmit large data so as to satisfy the requirement of computer analyse system in the field of seismic reconnaissance.
引文
[1] 石油课题组,石油对国民经济的影响及石油安全问题探析,中国石油和化工经济分析,2004(18): 12~17
    [2] Milton B. Dobrin. Introduction to Geophysical Prospecting. McGraw-Hill, Inc., 1976
    [3] 李庆忠,地震高分辨率勘探中的误区与对策, 石油地球物理勘探[J], 1997,32(6):751~783
    [4] 何樵登,地震勘探原理和方法, 北京:地质出版社,1986
    [5] J.A.coffeen. seismic exploration fundamentals-the use of seismic techniques in finding oil. PPC books, the petroleum publishing co. Tulsa, Oklahoma 1978
    [6] 唱鹤鸣, 地震勘探仪器基本原理, 北京:地质出版社,1985
    [7] N.Bleistein, J.W.Stockwell. Mathematics of multidimensional seismic imaging, Migration, and inversion. 2001, springer-Verlag new york, inc.
    [8] 王文良,地震勘探仪器的发展、时代划分及其技术特征,石油仪器,2004,18(1): 1~8
    [9] 刘洪,李幼铭,高红伟等,复杂地质体三维地质模型建立及显示,中科院地球物理所,1998
    [10] 张剑秋,张福炎,地球物理勘探可视化工作的挑战与机遇,石油地球物理勘探,1997,Vol.32(6):884~888
    [11] 张剑秋,张福炎,地震层位信息三维可视化,石油物理勘探,1998,Vol.33(1):119~124
    [12] 付小宁,严正国,加速度过阻尼地震检波器测量的研究,传感器技术,2004,23(9): 16~17
    [13] 宋玉龙.压电加速度地震检波器及其频率响应特性分析,石油仪器, 2004,8(4): 36~38
    [14] 徐成明,徐爽,三维地震勘探在湖泊沼泽地区的应用,物探与化探,2002,26(2): 42~45
    [15] F.B.Wooding, K.R.Peal, and J.A.Colllins. Broadband seismometry beneath the seafloor. OCEANS 2000 MTS/IEEE Conference and Exhibition, 2000,Vol.2: 1227~1231
    [16] K.Hirata, M.Aoyagi, H.Mikada, et al.. Real-time geophysical measurements on the deep seafloor using submarine cable in the southern Kurile subduction zone. IEEE J. Oceanic Engineering, 2002.27(2): 170~181
    [17] 蓝光钊,井下地震震源和检波器的某些进展,石油仪器,1993,7(2):78~82
    [18] 刘光林,刘泰生,高中录等,地震检波器的发展方向,勘探地球物理进展,2003,26(3): 178~185
    [19] M.Balascof, D.Chianesel, V.Cuomo,et al. Design of a New Prototype of Remote Station to Detect Electrical and Seismometric Parameters in a Seismic Area of Southern Italy. Phys. Chem. Earth (C), 200l.26(10-12): 787~791
    [20] 张学营,曲秀敏,BOX 系统野外实用手册,物探装备,2002,12(4): 282~287.
    [21] 谭军,季广森,DGPS NR107V 在可控震源地震勘探中的应用, 2002,12(4): 258~260
    [22] Dieter Seidl, Margaret Hellweg, Marta Calvache. The multiparameter station at Galeras Volcano (Colombia): concept and realization. Journal of Volcanology and Geothermal Research, 2003(125): 1~12
    [23] 段文燊,吴朝容,地震资料解释工作站应用研究,物探化探计算技术,1999,21(1): 89~94
    [24] 王惠文,娄英明,江先进,光纤加速度传感器研究进展,光学技术,1997(5): 15~20
    [25] J.Marty, A.Malki, C.Renouf, et al. Fibre-optic accelerometer using silicon micromachining techniques.Sensors and Actuators A, 1995.47(1-3): 470~473
    [26] R.Dib, Y.Alayli, P.Wagstaff. A broadband amplitude fibre optic vibrometer with nanometric accuracy. 2004.35(2): 211~219
    [27] A.B.Tveten, A.Dandridge, C.M. Davis, et al. fiber optic accelerometer. Electron. Lett, 1980(16): 854~856
    [28] D.L.Gardner,D.A.Brown, S.L.Garrett. Fiber-Optic Push-Pull Sensor System. The Second National Technology Transfer Conference and Expositiont, 1991.2: 4l5~422
    [29] A.D.Kersey, T.A.Berkoff, W.W.Morey. High-resolution fiber-grating based strain sensor with interferometric wavelength-shift detection. Electron. Lett., 1992.28(3) : 236~238
    [30] T.A.Berkoff, A.D.Kersey.Experimental demonstration of a fiber Bragg grating accelerometer. IEEE Photonics Technology Letters, 1996.8(12): 1677~1679
    [31] Torben Storgarrd-Larsen, Siebe Bouwstra, Otto Leistiko. Opto-mechanical accelerometer based on strain sensing by a Bragg grating in a planar waveguide. 1996. 52(1-3): 25~32
    [32] Krakenes Kjell, Blotekjaer Kjell. Comparison of fiber-optic Sagnac and Mach-Zehnder interferometers with respect to thermal processes in the fiber. Journal of Lightwave Technology, 1995.13(4): 682~686
    [33] T. G. Giallorenzi, J. A. Bucaro, G. H. Sigel Jr., J. H. Cole, S. C.Rashleigh, and R. G. Priest. Optical fiber sensor technology. IEEE J. Quantum Electron, Apr. 1982. QE(18):626~665
    [34] 冈布林(英)著, 张志鹏译, 光纤传感器原理, 北京:中国计量出版社, 1991,163~172
    [35] D. A. Jackson, R. Priest, A. Dandridge, and A. B. Tveten. Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber. Appl. Opt., Sept.1980(19):2926~2929
    [36] P. Shajenko and E. L. Green. Signal stabilization of optical interferometric hydrophones by tuning the light source. Appl. Opt., June 1980(19):1895~1897
    [37] J. A. Bucaro and T. R. Hickman. Measurement of sensitivity of optical fibers for acoustic detection. Appl. Opt., Mar.1979(18):938~940
    [38] J. H. Cole, B. A. Danver, and J. A. Bucaro. Synthetic heterodyne in interferometric demodulation. IEEE J. Quantum Electron., Apr. 1982(18):694~697
    [39] A. Dandridge, A. B. Tveten, and T. G. Giallorenzi. Homodyne demodulation scheme for fiber optic sensors using phase generated carrier.IEEE J. Quantum Electron., Oct. 1982(18):1647~1653
    [40] S. K. Sheem, T. G. Giallorenzi, and K. Koo. Optical techniques to solve the signal fading problem in fiber interferometers. Appl. Opt., Feb. 1982(21):689~693
    [41] 王惠文,光纤传感技术与应用,北京:国防工业出版社,2001
    [42] A.Dandrigde, A.B.Tveten, T.G.Giallorenzi. Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier. IEEE Journal of Quantum Electrons, 1982.QE-18(10): 1647~1651
    [43] A.Dandrigde, A.B.Tveten, A.D.Kersey, et al. Multiplexing of interferometric sensors using phase-generated-carrier techniques.Journal of Lightwave Technol, 1987.LT-5: 947~952
    [44] Osami Sasaki, Hirokazu Okazaki. Sinusoidal phase modulating interferometry for surface profile measurement.Applied Optics,1986.25(18): 3137~3140
    [45] Chen Caihe, Hao Yongjie, Zhang Delong, et al. Study on the application of alternate current phase tracking homodyne compensation technique in the all-fiberoptic acceleration seimic geophone[J] . Earthquake engineering and engineering vibration, 2000.20(1):298~302
    [46] Caihe Chen,Delong Zhang,Guilan.Broadband Michelson fiber-optic accelerometer. Rev.Sci.Appied optics,1999.38(4):628~630
    [47] 陈才和,郝永杰,张德龙等,交流相位跟踪零差补偿技术在全光纤加速度地震检波器中的应用研究,地震工程与工程振动,2000,Vol.20 ,No.1
    [48] Dandridge A, Tveten A B, Giallorenzi T G. Homodyne demodulation scheme for fiber optic sensor using phase generated carrier. IEEE J Quantun Electron, 1982.18(10):1647
    [49] Cole JH, Danver B A, Bucaro J A. Synthetic-heterodyne interferometric demodulation. IEEE J Quantum Electron, 1982.18(4):694
    [50] 刘仲一,地震勘探仪器原理,北京:石油工业出版社, 1986
    [51] 付清锋,周明.地震检波器的进展,石油仪器,2000,14(2): 25~27
    [52] 赵镨,欧美应用地球物理现状-多波地震勘探,中国煤田地质,2004,16(6): 47~49
    [53] 范伟粹,谢剑鸣,地震勘探原理,北京:石油工业出版社,1981
    [54] 周再发,泰 明,智能集成传感器系统的研究进展[M], 微电子学, 2003,33 (5):428~431
    [55] 何立民,嵌入式系统定义与发展简史,单片机与嵌入式系统应用,2004
    [56] 林砺宗,机电一体化及其在化工行业应用专题讲座,http://www.jdyth.com/ create_edu/teacher_fa/jdythjqzhghyyy.htm
    [57] 田冰,2004 年全国嵌入式技术研讨会综述,沿海企业与科技,2005(2):152~ 153
    [58] 王苗田,嵌入式系统设计与实例开发(第二版)[M],北京:清华大学出版社,2003,18~206
    [59] 高 峰 , 王 自 强 , 硬 实 时 操 作 系 统 -Lynxos, 计 算 机 应 用 与 软件,2005,22(3):63~65
    [60] 朱显新,黄涛,卢珞先,μC/OS 和 μLinux 的比较,软件天地,2004(123):7~9
    [61] 刘君华,智能传感器系统[M] ,西安:西安电子科技大学出版社,2000,2~6
    [62] Detection and analysis of naturally fractured gas reservoirs ,Blackhawk gemetrics. Inc.etal.2000
    [63] Burg J.B, Three –dirmensional filtering with an array of seismometers [J], geophysics,1964,29(4): 693~713
    [64] Brown.A.R. Technologies of reservoir geophysics [M], Tulsa usa: society ofexploration eophysicists, 1992
    [65] JagannathNayak, V.K Saraswat, “Studies on Micro Opto Electro Mechanical (MOEM) Inertial Sensors for Future Inertial Navigation Systems”, Proceedings of ISSS 2005, Bangalore, India
    [66] S.D. Crossley, “Commercially Available Fibre Optic Sensors – 10 Years of Progress?”, Optical Fibre Sensors 94 (OFS’94), Glasgow 1994, pp. 249-252
    [67] A. Llobera, V. Seidemann, J.A. Plaza, V.J. Cadarso, S. Büttgenbach, “Surface Quad Beam Polymer Optical Accelerometer”, IEEE proceedings, 2004
    [68] A. Llobera, V. Seidemann, J.A. Plaza, V.J. Cadarso, S. Büttgenbach, “Integrated Polymer Optical Accelerometer”, IEEE Photonics Technol. Lett., Vol. 17, No. 6, 2005
    [69] J.A. Plaza, A. Llobera, Carlos Dominguez, Jaume Esteve, I?igo Salinas, Jorge Garcia, J. Berganzo, “BESOI-Based Integrated Optical Silicon Accelerometer”, J. Microelectromechanical System, Vol. 13, No. 2, 2004
    [70] A Suzuki, K Kasahara, M Shikada, “InGaAsP/InP long wavelength optoelectronic integrated circuits (OEIC's) for high-speed optical fiber communication systems” J. Lightwave Technol., Vol. 5, pp. 1479~1487, 1987
    [71] Ryuichi Kobayashi, Kimihiro Tajima, Nobuo Kuwabara, “ Optical Bias Angle Control Method for Electric Field Sensor Using Mach-Zehnder Interferometer”, Electronics and Communications in Japan, Part 1, Vol. 83, No. 8, 2000
    [72] Zhu Jun, He Peikun, Huang Changzhen, “A Design of Digital Demodulation System Using Phase Generated Carrier in Fiber Hydrophones Based on DSP”, 3nd International Conference on Computational Electromagnetics and Its Applications Proceedings, 2004
    [73] C. Angulo Barrios, VoR. Almeida, R. Panepucci, M. Lipson, “Electrooptic Modulation of Silicon-on-Insulator Submicrometer-Size Waveguide Devices”, J. Lightwave Technol., Vol. 21, No. 10, 2003
    [1] 叶培大,吴彝尊编著,光波导技术基本理论[M],北京:人民邮电出版社,1981,2~6
    [2] 冈布林(英)著, 张志鹏译, 光纤传感器原理, 北京:中国计量出版社, 1991,141~147
    [3] 张国顺,光纤传感技术[M],北京:北京水利电力出版社,1988,36~40
    [4] 姚建永等.光纤原理与技术[M].北京:科学出版社,2005,65
    [5] 刘瑞复,史锦珊.光纤传感器及其应用[M].北京:机械工业出版社,1987,1~9
    [6] 孙圣和,王廷云,徐影等.光纤测量原理与传感技术[M].哈尔滨:哈尔滨工业大学出版社,2002,97~98
    [7] 金龙,张伟刚,涂勤昌等.干涉技术在光纤传感器设计中的应用[J].激光与光电子学进展,2004,41(7):51~56
    [8] 裴雅鹏,杨军等.光纤干涉型传感器原理及其相位解调技术[J].光学与光电技术,2005,3(3):17~21
    [9] 雷肇棣.光纤通信基础[M] .北京:电子科技大学出版社,1997
    [10] 靳伟,廖延彪,张志鹏等.导波光学传感器:原理与技术[M],北京:科学出版社,1998
    [11] 屈社省.光纤干涉仪信号检测技术[J].应用光学,2000,21(4):29~34
    [12] W.A.Gambling.光纤传感器原理[M](张志鹏译). 北京:中国计量出版社, 1991,141~144
    [13] C.H. Chen, G.L. Ding, D.L. Zhang, et al., Michelson fiber-optic accelerometer[J], Rev.Sci.Instrum., 1998,69(9):3123~3126
    [14] C.H. Chen, D.L. Zhang, G.L. Ding, et al., Broadband Michelson fiber-optic accelerometer[J], Appl Opt., 1999,38(4):628~630
    [15] 傅深泳,丁桂兰,陈才和等,干涉型全光纤加速度地震检波器[J],光电工程,2003, 30(6): 39~42
    [16] Z. Zhao, M. S. Demokan, and J. M. K. MacAlpine, “Optical fiberacoustic sensor for sensing and locating partial discharges in high voltage oil-filled power transformers,” in Proc. 21st Australian Conf. Optic. Fiber Technol., Gold Coast, Queensland, Australia, Dec. 1996,pp. 286~289
    [17] F.A.Donal, Interferometric Fiber-optic Sensing Based on the Modulation of Group Delay and First Order Dispersion: Application to Strain-Temperature Measured, Journal of Lightwave Technology, 1995,13(7): 1314~1323
    [18] T.K.Lim., Zhou Y., Lin Y., et al., Fiber optic acoustic hydrophone with double Mach-Zehnder interferometers for optical path length compensation, Optics Communications, 1999,159(4-6): 301~308
    [19] J.Stone, Optical fiber fabry-perot interferometer with finesse of 300, Electronics Letters, 1985,21: 504~505
    [20] H.Sickinger, Fiber based Mach-Zehnder interferometer for measuring wave aberrations of microlenses, OPTIK, 1999,110(5): 239~243
    [21] J.Sirkis, In-line Fiber Etalon (ILFE) Fiber-Optic Strain Sensors, Journal of Lightwave Technology, 1995,13(7): 1256~1263
    [22] 恩德. 迈克尔逊干涉型集成光学加速度地震检波器的理论与实验研究:[博士学位论文],天津;天津大学,2005
    [23] 丁桂兰,陈才和,张德龙,崔宇明,李淑清,全光纤加速度地震检波器敏感元件横向振动限制的研究,光学技术,2001,Vol.27(3):278~280
    [24] R.D. Pechstedt and D.A. Jackson, Design of acompliant-cylinder-type fiber-optic accelerometer:theory and experiment, Applied Optics, Vol.34, No.16, P3009, Jun 1995.
    [25] R.D. Pechstedt and D.A. Jackson, Performanceanalysis of a fiber optic accelerometer based on a compliant cylinder design, Rev. Sci. Instrum, 66(1),P207, Jan. 1995
    [26] 唐东林. 三分量光弹波导加速度传感器敏感单元的结构设计和理论分析:[博士学位论文],天津;天津大学,2006
    [27] Isaak Isaevich Stezinger, “pizeo-optic measuring transducer and accelerometer ,pressure gauge, dynamometer, and thermometer based thereon”, US patent, 3950987
    [28] W.B.Spillman Jr, “multimode fiber-optic accelerometer based on thephotoelastic effect”, applied optics 1982, Vol.21(15): 2653~2655
    [29] Shuichi Tai, Kazuo Kyuma, and Masahiro Nunoshita. “Fiber -opticacceleration sensor based on the photoelastic effect” Applied Optics, 1983,Vol. 22(11):1771~1774
    [30] Wei Su and John A. Gilbert. “General-Purpose photoelastic fiber opticaccelerometer” Opt.Eng., 1997,36(1): 22~28
    [31] 黄佐华等.自动椭偏测厚仪测量精度的实验研究[J].机电工程技术.2004,33(4):18~20
    [32] Leo Asinovski. Performance analysis of ellipsometer system[J]. Thin Solid Films. 2004(5):455~456
    [33] 张淑芝. 用消光式椭圆偏振仪测薄膜的椭圆偏振光谱[J]. 物理. 1989,18(2):112~114
    [34] 浦天舒.椭偏仪测厚法的数值计算[J].纺织高校基础科学学报.1998,11(4):381~384
    [35] 李宁,张元培等.在 Labview 中使用 MATLAB 脚本节点[J].仪器仪表标准化与计量.2003,(5):17~19
    [36] 吴波.硅微光机械加速度地震检波器理论与实验研究:[博士学位论文],天津;天津大学,2005
    [1] 刘瑞复,史锦珊.光纤传感器及其应用[M].北京:机械工业出版社,1987,1~9
    [2] Dandridge A, Tveten A B, Giallorenzi T G. Homodyne demodulation scheme for fiber optic sensor using phase generated carrier. IEEE J Quantun Electron, 1982.18(10):1647
    [3] Cole JH, Danver B A, Bucaro J A. Synthetic-heterodyne interferometric demodulation. IEEE J Quantum Electron, 1982.18(4):694
    [4] Clearbout .J.F synthesis of a layered medium from its acoustic transmission response, geophysics 33.264~269
    [5] James H.Cole,Bruce A.Danver,Joseph A.Bucaro.Synthetic-Heterodyne Interferometric Demodulation[J].IEEE Transactions On Microwave Theory And techniques,1982,30(4):540~543
    [6] Yu-Lung,Chin-Ho Chuang.New Synthetic-Heterodyne Demodulator for an Optical Fiber Interferometer[J].IEEE Journal of Quantum Electronics,37(5):658~663
    [7] Anstey N.A attacking the problems of the synthetic seismogram, geophy. prosp.8.242~259
    [8] P.R.gutowski, S.Treitel, generalized one-dimensional synthetic seismogram, geophysics V52,No.(5):589~605
    [9] Bil T l orguson j Palacios oil: 3-Dseimic exploration ,The LeadingEdge,Vo1.14,No.1 2,1995
    [10] C.H. Chen, G.L. Ding, D.L. Zhang, et al., Michelson fiber-optic accelerometer, Rev.Sci.Instrum., 1998,69(9): 3123~3126
    [11] Valis Tomas, Passive-quadrature Demodulated Localized Michelson Optical Fiber Strain Sensor Embedded in Composite Materials, Journal of Lightwave Tech nology, 1991,9(4): 535~544
    [12] C.H. Chen, D.L. Zhang, G.L. Ding, et al., Broadband Michelson fiber-optic accelerometer, Appl Opt., 1999,38(4): 628~630
    [13] R.Mcbride, A passive phase recover technique for Sagnac interferometers based on controlled loop birefringence, Journal of modern optics, 1992,39(6): 1309~1320
    [14] 恩德,陈才和,李岷等,混合集成光学加速度计的信号处理和总体灵敏度,光子学报,2004,33(12):1428~1431
    [15] Bo Wu, CaiHe Chen, GuiLan Ding, et al., Hybrid-integrated Michelson fiber optic accelerometer, Optical Engineering, 2004,43(2):313~318
    [16] James S.Sirkis , Yu-Lung Lo.Simultaneous Measurement of Two Strain Components Using 3×3 and 2×2 Coupler-Based Passive Demodulation of Optical Fib er Sensors[J].Journal of Lightwave Technology,1994,12(12):2153~2160
    [17] D. A. Brown, C. B. Cameron, R. M. Keolian, D. L. Gardner, and S. L.Garrett, A symmetric 3×3 coupler based demodulator for fiber opticinterferometric sensors, in SPIE Fiber Optic and Laser Sensors IX, 1991 ,vol.1584, pp. 328~335
    [18] M. A. Davis, A. D. Kersey, M. J. Marrone, and A. Dandridge, Characterizationof 3×3 fiber coupler for passive homodyne ystems: sPolarization and temperature sensitivity, in Proc. Optic. FiberCommun.Conf. (OFC’89), Houston, TX, 1989, p. 103
    [19] A. Dandridge, C. C. Wang, A. B. Tveten, and A. M. Yurek, Performance of 3×3 couplers in fiber optic sensor systems, in Proc. 10th Int. Conf. Optic. Fiber Sensors, Glasgow, UK, SPIE, Oct. 1994, vol. 2360, pp. 549~552
    [20] S. K. Sheem, Optical fiber interferometers with 3×3 directional couplers: Analysis, J. Appl. Phys., vol. 52, pp. 3865~3872, June 1981
    [21] 毛良明,孟爱东,李长春等.基于 3×3 耦合器的可判向光纤干涉型传感器研究[J].南京航空航天大学学报,1998,30(6):652~657
    [22] K. P. Koo, A. B. Tveten, and A. Dandridge, Passive stabilization scheme for fiber interferometers using 3×3 fiber directional couplers,Appl. Phys. Lett. , Oct. 1982,vol. 41, pp. 616~618
    [23] Zhiqiang Zhao,M.Suleyman Demokan,etc.Improved Demodulation Scheme for Fiber Optic Interferometers Using an Asymmetric 3 × 3 Coupler[J].Journal Of Lightwave Technology,1997,15(11):2059~2068
    [1] 何江华著.计算机仿真导论.北京: 科学出版社,2001,45~92
    [2] 鲍居武编著. 仿真数值分析方法及应用.北京: 学苑出版社,1993,62~89
    [3] 车晴,电子系统仿真与 MATLAB,北京:北京广播学院出版社,2000,11
    [4] 张志涌,徐彦琴,MATLAB 教程,北京:北京航空航天大学出版社,2001,4
    [5] Law A. M Kelton W. d.Simulation Modeling and Analysis.McGraw-Hill,1991,154~148
    [6] Banks J,Carson J.Discrete System Simulation.Prentice-Hall Inc,1984,20~63
    [7] 清源计算机工作室编著.MATLAB6.0 基础及应用.北京:机械工业出版社,2001,114~118
    [8] 郝宏伟. MATLAB6.0 实例教程. 北京:中国电力出版社,2001,61~108
    [9] 刘则毅主编. 科学计算技术与 MATLAB. 北京:科学出版社,2001,23~124
    [10] 王立宁等编著. MATLAB 与通信仿真. 北京: 人民邮电出版社, 2000,15~98
    [11] 张志涌,刘瑞桢等.掌握和精通 MATLAB.北京:北京航空航天大学出版社,1997,32~220
    [1] 崔沅,张剑云.分布式控制系统内部强实时通信研究[J].计算机工程,2002(12):168~170
    [2] Douglas E. Comer. David L. Stevens 著.赵刚,林瑶,蒋慧等译.用 TCP/IP进行网际互联第三卷:客户-服务器编程与应用.北京:电子工业出版社,2001(4):32~41
    [3] 袁迅,张志彬.正在兴起的分布式控制工业以太网[J].自动化博览,2003,(4):15~16
    [4] 谢兵森,陈演平.基于 SOPC 技术的嵌入式以太网网络终端.交通部上海船舶运输科学研究所学报,2004,27(2):103~108
    [5] 白璘,孙肖子,白玉霞.基于 Nios II 的嵌入式 Web 服务器.现代电子技术,2005,28(12):30~31
    [6] Using Lightweigh IP with the Nios II Processor Tutorial.Altera Inc, December,2004
    [1] Frank Vahid,Tony Givargis 著; 骆丽译.嵌入式系统设计[M].北京:北京航空航天大学出版社,2004,1~4
    [2] 潘松,黄继业等.SOPC 技术实用教程[M].北京:清华大学出版社,2005,1~7
    [3] 徐欣,于红旗,易凡等.基于 FPGA 的嵌入式系统设计[M].北京:机械工业出版社,2004,1~5
    [4] 任爱锋,初秀琴等.基于 FPGA 的嵌入式系统设计.西安:西安电子科技大学出版社,2004,181~224
    [5] Jean J.Labrosse 著;邵贝贝译.μC/OS-II-源码公开的实时嵌入式操作系统.北京:中国电力出版社,2003,97~120
    [6] Nios II Processor Reference Handbook.Altera Inc, May, 2004
    [7] Nios II Software Developer’s Handbook.Altera Inc, May, 2004
    [8] 潘松,黄继业,王国栋.现代 DSP 技术.西安:西安电子科技大学出版社,2003,1~5
    [9] 赵雅兴.FPGA 原理、设计与应用.天津:天津大学出版社,1999, 169~172
    [10] 夏宇闻.复杂数字电路与系统的 Verilog HDL 设计技术.北京:北京航空航天大学出版社,1998, 87~106
    [11] 王金明,杨吉斌.数字系统设计与 Verilog HDL.北京:电子工业出版社,2002,182~209
    [12] J.Bhasker 著;孙海平等译.Verilog HDL 综合实用教程.北京:清华大学出版社,2004,12~20
    [13] 宋延昭.嵌入式操作系统介绍及选型原则.工业控制计算机,2005,18(7):41~42
    [14] Wong, William.RTOS runs soft RISC on system-on-a-programmable-chip. Electronic Design, 51(16), Jul 21, 2003(38)
    [15] Using MicroC/OS-II RTOS with the Nios II Processor Tutorial.Altera Inc, September, 2004
    [16] Nios Development Board Reference Manual, Stratix Professional Edition.Altera Inc, September, 2004
    [17] 吴浩涵,徐志军等.基于 SOPC 技术的嵌入式系统设计[J].军事通信技术,2006(2):31~34.
    [18] 何轩,夏应清等.LAN91C111 型控制器在嵌入式以太网接口中的应用[J].国外电子元器件,2005(10):22~26.
    [19] 王诚,吴继华.Altera FPGA/CPLD 设计(高级篇)[M],北京:人民邮电出版社,2005.
    [20] 孙伟.基于 Nios II 的 LED 显示屏控制系统的研究:[硕士论文],天津;天津工业大学,2005.
    [21] 唐如鸿.基于 Nios II 软核 CPU 嵌入式消息转发系统的设计与实现: [硕士论文],成都;西南交通大学,2006.
    [22] 齐立芳,贺占庄.SOPC 设计中的两种片上总线分析[J].微机发展,2006(1):185~187
    [23] 李瑞,张春元等.三种常用 SoC 片上总线的分析与比较[J].单片机与嵌入式系统应用.2004(2):3~6.
    [24] 徐宁仪,周祖成.Avalon 总线与 SOPC 系统架构与实例[J].半导体技术.2003(2):17~20.
    [25] Avalon Bus Specification[R].Altera Corp,May,2003.
    [26] 朱显新,黄涛等.μC/OS 和 uCLinux 的区别[J].微型机与应用,2004(12)
    [27] 冉汉正.嵌入式实时操作系统 μC/OS 在控制工程中的应用[J].现代电子技术,2003(13):84~86.
    [28] 陈渝、李明等.源码开放的嵌入式系统软件分析与实践[M].北京:北京航空航天大学出版社,2004,212~222.
    [29] 陈海军,申卫昌等.嵌入式系统引导程序详探[J].微机发展.2006(1):129~131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700