MicroRNA在姜黄素抗人脐静脉血管内皮细胞中表达差异谱的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:(1)建立脐静脉血管内皮细胞(HUVECs)体外培养的方法并探讨姜黄素对HUVECs增殖的影响。(2)探讨姜黄素抑制HUVECs中microRNAs的差异表达谱,验证在姜黄素抑制HUVECs中显著差异表达的microRNAs。
     方法:(1)采用0.25%胰蛋白酶和0.02%EDTA消化、分离、体外原代培养及消化传代脐静脉血管内皮细胞,简化完全培养液组分(不添加血管内皮细胞生长因子、肝素等辅助因子),当原代培养细胞80%以上汇合,根据细胞特有的形态学特征和Ⅷ因子进行内皮细胞的鉴定。然后用不同浓度姜黄素(20、40、80、160μmol/l)处理内皮细胞不同时间(0、24h、48h、72h、96h),MTT法测定姜黄素对HUVECs增殖的影响。(2)采用GeneChip(?)microRNA 2.0芯片技术,将对照组和姜黄素(40μmol/1)组的microRNAs进行对比,根据统计学的方法分析芯片实验数据,筛选出共同差异表达的microRNAs。采用实时荧光定量PCR的方法,分别验证这些microRNAs的差异表达情况。将芯片和实时荧光定量PCR两种方法一致的microRNAs确定为有意义的共同差异表达的microRNAs,并通过生物信息学方法预测差异显著的microRNA的靶基因。
     结果:种植在培养瓶中的内皮细胞2h贴壁生长,24h换液后内皮细胞80%融合,细胞状态好,内皮细胞呈单层铺路石样外观,经过镜下观察和Ⅷ因子相关抗原鉴定证明是脐静脉血管内皮细胞。姜黄素呈浓度依赖性和时间依赖性抑制HUVECs的增殖。(2)姜黄素(40μmol/l)处理HUVECs24h后,芯片结果显示和对照组相比,姜黄素药物组表达谱有30个microRNAs明显变化,其中11个microRNA表达上调,19个microRNA表达下调;实时荧光定量PCR证实mi-1275、mi-3127和mi-1246表达显著升高,生物信息学分析结果显示,这些表达差异的microRNAs可以调控与新生血管相关的基因的表达,如mi-1275可能靶向VEGFb等。
     结论:(1)用胰蛋白酶灌注脐静脉是一种简单、实用的获得人脐静脉血管内皮细胞的方法,可靠性大,成功率高,可以构建体外研究血管内皮细胞的模型。本研究在成功建立HUVECs体外培养方法的基础上,建立了姜黄素抑制HUVEC增殖的模型;(2)运用microRNA芯片技术,首次发现姜黄素抑制血管内皮细胞中mi-1275、mi-3127和mi-1246的表达明显增多,其中mi-1275在姜黄素抑制HUVECs中可能是通过抑制其靶基因的表达而介导的,这为进一步研究microRNA在姜黄素抗角膜新生血管中的作用创造了条件。
Objective:(1) To explore how to get and identify human umbilical vein endothelial cell (HUVECs) in vitro. To investigate the effect of curcumin on proliferation of human umbilical vein endothelial cell (HUVECs).(2) To investigate the effect of curcumin on the differential expression of microRNAs of HUVECs and to establish the relationship between HUVEC proliferation and the expression of microRNAs;
     Methods:(1) 0.25% Trypsin and 0.02%EDTA perfusion method was used to isolate HUVEC from fresh umbilical cord, and the cells were cultured and amplified.The composition of culture medium was simplified by not adding vascular endothelial cell growth factor and heparin.HUVECs were identified by morphological observation and immunofluorescencal method. Then HUVECs proliferation were examined at different curcumin concentrations(0,20,40,80,160 umol/l)by different time course (0,24,48,72,96h) by method of MTT;(2)RNA was extracted from 1 control samples of HUVECs and 1 curcumin (40umol/l) treated sample,and small RNA was isolated.Then we detected microRNA profiles in these samples by microRNA microarray.Meanwhile, examined the expression of microRNAs were examined in these samples by fluorescence based real-time quantitative PCR.Those microRNAs that were identified as differentially expressed by both microRNA microarray and RT-PCR were considered as significant microRNA; Possible target genes of these microRNAs were Predieted through bioinformaties analysis.
     Results:(1) The endothelial cells spread on the bottom of the dishes in 2h,then coalesced and grew to from confluent monolayers of polygonal cells within 24h.The cultured cells were identified as HUVECs. the effect of curcumin on proliferation of human umbilical vein endothelial cell (HUVECs) is in a time-dependent manner and a dose-dependent manner; (2) After treated with curcumin at a concentration of 40μmol/l for 24h,there are 30 significant differential expressions of microRNAs,11 microRNAs were up-regulated,19 microRNAs were down-regulated;Among them mi-1275,mi-3127 and mi-1246 were significantly up-regulated,Bioinformatie analysis showed that thesemieroRNAs with significantly different expression maybe closely related to many genes regulating conceal neovascularition,sueh as miR-1275 targeting to PEDFb.
     Conclusion:(1) Trypsin perfusion is a simple and effective method for collection of human umbilical vein endothelial cells. Cells harvest with protocol can be used as models on research of vascular endothelial in vitro.(2)Our results find that the expression of mi-1275,mi-3127,mi-1246 is up-regulated in HUVECs after treated with curcumin at a concentration of 40μmol/l for 24h for the first time,and VEGF may be the potential target genes that are involved in mi-1275-mediated protective effects.This findings will provide further qualification of microRNAs'in neovascularition.
引文
1 CLEMENTS J L, DANA R. Inflammatory corneal neovascularization: etiopathogenesis [J]. Semin Ophthalmol,2011,26(4-5):235-45.
    2 USUI T. [Mechanisms and regulation of corneal neovascularization] [J]. Nihon Ganka Gakkai Zasshi,2009,113(11):1041-9.
    3 JACOBS A T, IGNARRO L J. Nuclear factor-kappa B and mitogen-activated protein kinases mediate nitric oxide-enhanced transcriptional expression of interferon-beta [J]. J Biol Chem,2003,278(10):8018-27.
    4 WANG H, JIANG X M, XU J H, et al. The profile of gene expression and role of nuclear factor kappa B on glomerular injury in rats with Thy-1 nephritis [J]. Clin Exp Immunol,2008,152(3):559-67.
    5 STATON C A, REED M W, BROWN N J. A critical analysis of current in vitro and in vivo angiogenesis assays [J]. Int J Exp Pathol,2009,90(3):195-221.
    6 BACHMEIER B E, KILLIAN P, PFEFFER U, et al. Novel aspects for the application of Curcumin in chemoprevention of various cancers [J]. Front Biosci (Schol Ed),2010,2:697-717.
    7 HATCHER H, PLAN ALP R, CHO J, et al. Curcumin:from ancient medicine to current clinical trials [J]. Cell Mol Life Sci,2008,65(11):1631-52.
    8 LIN Y G, KUNNUMAKKARA A B, NAIR A, et al. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway [J]. Clin Cancer Res,2007,13(11):3423-30.
    9 MRUDULA T, SURYANARAYANA P, SRINIVAS P N, et al. Effect of curcumin on hyperglycemia-induced vascular endothelial growth factor expression in streptozotocin-induced diabetic rat retina [J]. Biochem Biophys Res Commun,2007,361(2):528-32.
    10 CHEN C Z, LI L, LODISH H F, et al. MicroRNAs modulate hematopoietic lineage differentiation [J]. Science,2004,303(5654):83-6.
    11 B ARTEL D P, CHEN C Z. Micromanagers of gene expression:the potentially widespread influence of metazoan microRNAs [J]. Nat Rev Genet,2004,5(5): 396-400.
    12 KHRAIWESH B, ARIF M A, SEUMEL G I, et al. Transcriptional control of gene expression by microRNAs [J]. Cell,2010,140(1):111-22.
    13 LEWIS B P, BURGE C B, BARTEL D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets [J]. Cell,2005,120(1):15-20.
    14 HATFIELD S D, SHCHERBATA H R, FISCHER K A, et al. Stem cell division is regulated by the microRNA pathway [J]. Nature,2005,435(7044):974-8.
    15 LIU R, MA X, XU L, et al. Differential MicroRNA Expression in Peripheral Blood Mononuclear Cells from Graves' Disease Patients [J]. J Clin Endocrinol Metab,2012, [Epub ahead of print]
    16 RANGANATH AN P, HEAPHY C E, COSTINEAN S, et al. Regulation of acute graft-versus-host disease by microRNA-155 [J]. Blood,2012, [Epub ahead of print]
    17 WANG L L, HUANG Y, WANG G, et al. The potential role of microRNA-146 in Alzheimer's disease:biomarker or therapeutic target? [J]. Med Hypotheses, 2012,78(3):398-401.
    18 BARBASH S, SOREQ H. Threshold-independent meta-analysis of Alzheimer's disease transcriptomes shows progressive changes in hippocampal functions, epigenetics and microRNA regulation [J]. Curr Alzheimer Res,2012, 9(4):425-35
    19 CALIN G A, CROCE C M. MicroRNA-cancer connection:the beginning of a new tale [J]. Cancer Res,2006,66(15):7390-4.
    20 CROCE C M. Oncogenes and cancer [J]. N Engl J Med,2008,358(5):502-11.
    21 LIU T, CHENG W, HUANG Y, et al. Human amniotic epithelial cell feeder layers maintain human iPS cell pluripotency via inhibited endogenous microRNA-145 and increased Sox2 expression [J]. Exp Cell Res,2012,318(4): 424-34.
    22 DAVOREN P A, MCNEILL R E, LO WERY A J, et al. Identification of suitable endogenous control genes for microRNA gene expression analysis in human breast cancer [J]. BMC Mol Biol,2008,9:76.
    23 LACONTI J J, SHIVAPURKAR N, PREET A, et al. Tissue and serum microRNAs in the Kras(G12D) transgenic animal model and in patients with pancreatic cancer [J]. PLoS One,2011,6(6):e20687.
    24 ROSENFELD N, AHARONOV R, MEIRI E, et al. MicroRNAs accurately identify cancer tissue origin [J]. Nat Biotechnol,2008,26(4):462-9.
    25 CHANG T C, MENDELL J T. microRNAs in vertebrate physiology and human disease [J]. Annu Rev Genomics Hum Genet,2007,8:215-39.
    26 STEFANI G, SLACK F J. Small non-coding RNAs in animal development [J]. Nat Rev Mol Cell Biol,2008,9(3):219-30.
    1 VAG T, SCHRAMM T, KAISER W A, et al. Proliferating and quiescent human umbilical vein endothelial cells (HUVECs):a potential in vitro model to evaluate contrast agents for molecular imaging of angiogenesis [J]. Contrast Media Mol Imaging,2009,4(4):192-8.
    2 NAKAYAMA T, HIRANO K, HIRANO M, et al. Inactivation of protease-activated receptor-1 by proteolytic removal of the ligand region in vascular endothelial cells [J]. Biochem Pharmacol,2004,68(1):23-32.
    3 BRYAN N, ANDREWS K D, LOUGHRAN M J, et al. Elucidating the contribution of the elemental composition of fetal calf serum to antigenic expression of primary human umbilical-vein endothelial cells in vitro [J]. Biosci Rep,2011,31(3):199-210.
    4 SEOL H J, OH M J, KIM H J. Endothelin-1 expression by vascular endothelial growth factor in human umbilical vein endothelial cells and aortic smooth muscle cells [J]. Hypertens Pregnancy,2011,30(3):295-301.
    5 ARAUJO C C, LEON L L. Biological activities of Curcuma longa L [J]. Mem Inst Oswaldo Cruz,2001,96(5):723-8.
    6 BACHMEIER B E, KILLIAN P, PFEFFER U, et al. Novel aspects for the application of Curcumin in chemoprevention of various cancers [J]. Front Biosci (Schol Ed),2010,2:697-717.
    7 YODKEEREE S, CHAIWANGYEN W, GARBISA S, et al. Curcumin, demethoxycurcumin and bisdemethoxycurcumin differentially inhibit cancer cell invasion through the down-regulation of MMPs and uPA [J]. J Nutr Biochem, 2009,20(2):87-95.
    8 GONZALES A M, ORLANDO R A. Curcumin and resveratrol inhibit nuclear factor-kappaB-mediated cytokine expression in adipocytes [J]. Nutr Metab (Lond),2008,5:17.
    9 ZHENG S, YUMEI F, CHEN A. De novo synthesis of glutathione is a prerequisite for curcumin to inhibit hepatic stellate cell (HSC) activation [J]. Free Radic Biol Med,2007,43(3):444-53.
    10 NARLAWAR R, BAUMANN K, SCHUBENEL R, et al. Curcumin derivatives inhibit or modulate beta-amyloid precursor protein metabolism [J]. Neurodegener Dis,2007,4(2-3):88-93.
    11 ZHANG K Z, XU J H, HUANG X W, et al. Curcumin synergistically augments bcr/abl phosphorothioate antisense oligonucleotides to inhibit growth of chronic myelogenous leukemia cells [J]. Acta Pharmacol Sin,2007,28(1):105-10.
    12 VALTER M M, WIESTLER O D, PIETSCHE T. Differential control of VEGF synthesis and secretion in human glioma cells by IL-1 and EGF [J]. Int J Dev Neurosci,1999,17(5-6):565-77.
    13 STATON C A, REED M W, BROWN N J. A critical analysis of current in vitro and in vivo angiogenesis assays [J]. Int J Exp Pathol,2009,90(3):195-221.
    14 STEVENSON W, CHENG S F, DASTJERDI M H, et al. Corneal neovascularization and the utility of topical VEGF inhibition:ranibizumab (lucentis) vs bevacizumab (avastin) [J]. Ocul Surf,2012,10(2):67-83.
    15 DU W, YU W, HUANG L, et al. Ephrin-A4 is involved in retinal neovascularization by regulating the VEGF signaling pathway [J]. Invest Ophthalmol Vis Sci,2012, [Epub ahead of print]
    16 KIRIAKIDIS S, ANDREAKOS E, MONACO C, et al. VEGF expression in human macrophages is NF-kappaB-dependent:studies using adenoviruses expressing the endogenous NF-kappaB inhibitor IkappaBalpha and a kinase-defective form of the IkappaB kinase 2 [J]. J Cell Sci,2003,116(Pt 4): 665-74.
    17 DE MARTIN R, HOETH M, HOFER-WARBINEK R, et al. The transcription factor NF-kappa B and the regulation of vascular cell function [J]. Arterioscler Thromb Vase Biol,2000,20(11):E83-8.
    18 PHILIPP W, SPEICHER L, HUMPEL C. Expression of vascular endothelial growth factor and its receptors in inflamed and vascularized human corneas [J]. Invest Ophthalmol Vis Sci,2000,41(9):2514-22.
    19 KIM J S, CHOI J S, CHUNG S K. The effect of curcumin on corneal neovascularization in rabbit eyes [J]. Curr Eye Res,2010,35(4):274-80.
    20 SHARMA A V, GANGULY K, PAUL S, et al. Curcumin heals indomethacin-induced gastric ulceration by stimulation of angiogenesis and restitution of collagen fibers via VEGF and MMP-2 mediated signaling [J]. Antioxid Redox Signal,2012,16(4):351-62.
    21 CARROLL C E, ELLERSIECK M R, HYDER S M. Curcumin inhibits MPA-induced secretion of VEGF from T47-D human breast cancer cells [J]. Menopause,2008,15(3):570-4.
    22 CHAKRABORTY G, JAIN S, KALE S, et al. Curcumin suppresses breast tumor angiogenesis by abrogating osteopontin-induced VEGF expression [J]. Mol Med Report,2008,1(5):641-6.
    23 CHEN W H, CHEN Y, CUI G H. Effects of TNF-alpha and curcumin on the expression of VEGF in Raji and U937 cells and on angiogenesis in ECV304 cells [J]. Chin Med J (Engl),2005,118(24):2052-7.
    24 BIAN F, ZHANG M C, ZHU Y. Inhibitory effect of curcumin on corneal neovascularization in vitro and in vivo [J]. Ophthalmologica,2008,222(3): 178-86.
    1 HUANG J C, BABAK T, CORSON T W, et al. Using expression profiling data to identify human microRNA targets [J]. Nat Methods,2007,4(12):1045-9.
    2 HAYASHI H, et al.An Artifact Derived from a Pseudogene Led to the Discovery of MicroRNA Binding Site Polymorphism in the 3'-Untranslated Region of the Human Dihydrofolate Reductase Gene[J].Drug Metab Pharmacokinet,2012.,27(2):263-7.
    3 PARIS S,B.M.SOLTANI, et al., Experimental Verification of a Predicted Intronic MicroRNA in Human NGFR Gene with a Potential Pro-Apoptotic Function[J]. PLoS One,2012,7(4):355-61.
    4 RANE S, SAYED D, ABDELLATIF M. MicroRNA with a MacroFunction [J]. Cell Cycle,2007,6(15):1850-5.
    5 FU H J, ZHU J, YANG M, et al. A novel method to monitor the expression of microRNAs [J]. Mol Biotechnol,2006,32(3):197-204.
    6 ZENG Y, YI R, CULLEN B R. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms [J]. Proc Natl Acad Sci U S A, 2003,100(17):9779-84.
    7 LUO X,J ZHANG,et al. PolyA RT-PCR-based quantification of microRNA by using universal TaqMan probe. Biotechnol Lett[J].2012,34(4):627-33.
    8 DIJKSTRA J R,MEKENKAMP L J,et al. MicroRNA expression in formalin-fixed paraffin embedded tissue using real time quantitative PCR:the strengths and pitfalls[J]. J Cell Mol Med,2012.16(4):683-90.
    9 YOLOV A A, KOZLOVA A V, YAROSLAVTSEVA N G, et al. Quantitative PCR as a method for monitoring retroviral infection on the gene level [J]. Virus Genes, 1995,10(1):45-51.
    10 SCHWENK R W, ECKEL J. A novel method to monitor insulin-stimulated GTP-loading of Rablla in cardiomyocytes [J]. Cell Signal,2007,19(4):825-30.
    11 OBANA E,HADA T, et al. Properties of signal intensities observed with individual probes of GeneChip Rat Gene 1.0 ST Array, an affymetric microarray system[J]. Biotechnol Lett.2012,34(2):213-9.
    12 PFEFFER S, LAGOS-QUINTANA M, TUSCHL T. Cloning of small RNA molecules [J]. Curr Protoc Mol Biol,2005, Chapter 26,Unit 264.
    13 LAGOS-QUINTANA M, RAUHUT R, YALCIN A, et al. Identification of tissue-specific microRNAs from mouse [J]. Curr Biol,2002,12(9):735-9.
    14 LE MEUR N, GOLDENBERG A, MICHEL-ADDE C, et al. Molecular characterization of a 14q deletion in a boy with features of Holt-Oram syndrome [J]. Am J Med Genet A,2005,134(4):439-42.
    15 ARMSTRONG R N,H A COLYER,K I MILLS,et al,Screening for miRNA expression changes using quantitative PCR[J]. Methods Mol Biol.2012,86(3): 293-302.
    16 LOCKHART D J, DONG H, BYRNE M C, et al. Expression monitoring by hybridization to high-density oligonucleotide arrays [J]. Nat Biotechnol,1996, 14(13):1675-80.
    17 ABE M, KLETT C, WIELAND E, et al. Two-step real-time PCR quantification of all subtypes of human immunodeficiency virus type 1 by an in-house method using locked nucleic acid-based probes [J]. Folia Med (Plovdiv),2008,50(3): 5-13.
    18 VERMEHREN J, KAU A, GARTNER B C, et al. Differences between two real-time PCR-based hepatitis C virus (HCV) assays (RealTime HCV and Cobas AmpliPrep/Cobas TaqMan) and one signal amplification assay (Versant HCV RNA 3.0) for RNA detection and quantification [J]. J Clin Microbiol,2008, 46(12):3880-91.
    19 COUSSENS M J,FORBES J K,et al.Genome-wide Screen for miRNA Targets Using the MISSION Target ID Library[J]. J Vis Exp,2012,(62):3303-07
    20 MA X, OTTINO P, BAZAN H E, et al. Platelet-activating factor (PAF) induces corneal neovascularization and upregulates VEGF expression in endothelial cells [J]. Invest Ophthalmol Vis Sci,2004,45(9):2915-21.
    21 KONNER J, DUPONT J. Use of soluble recombinant decoy receptor vascular endothelial growth factor trap (VEGF Trap) to inhibit vascular endothelial growth factor activity [J]. Clin Colorectal Cancer,2004,4 Suppl 2,S81-5.
    1 HUANG J C, BABAK T, CORSON T W, et al. Using expression profiling data to identify human microRNA targets [J]. Nat Methods,2007,4(12):1045-9.
    2 HAYASHI H, et al., An Artifact Derived from a Pseudogene Led to the Discovery of MicroRNA Binding Site Polymorphism in the 3'-Untranslated Region of the Human Dihydrofolate Reductase Gene[J].Drug Metab Pharmacokinet,2012,27(2):263-7.
    3 HUMPHREYS D T,HYNES C J,et al.Complexity of murine cardiomyocyte miRNA biogenesis, sequence variant expression and function[J]. PLoS One, 202.,7(2):309-33.
    4 LEE R C, FEINBAUM R L, AMBROS V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 [J]. Cell, 1993,75(5):843-54.
    5 AMBROS V. The functions of animal microRNAs [J]. Nature,2004,431(7006): 350-5.
    6 CHUZHANOVA N, COOPER D N, FEREC C, et al. Searching for potential microRNA-binding site mutations amongst known disease-associated 3'UTR variants [J]. Genomic Med,2007,1(1-2):29-33.
    7 DAVIS T H, CUELLAR T L, KOCH S M, et al. Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus [J]. J Neurosci,2008,28(17):4322-30.
    8 LEE Y, AHN C, HAN J, et al. The nuclear RNase III Drosha initiates microRNA processing [J]. Nature,2003,425(6956):415-9.
    9 BORCHERT G M, LANIER W, DAVIDSON B L. RNA polymerase III transcribes human microRNAs [J]. Nat Struct Mol Biol,2006,13(12):1097-101.
    10 GREGORY R I, YAN K P, AMUTHAN G, et al. The Microprocessor complex mediates the genesis of microRNAs [J]. Nature,2004,432(7014):235-40.
    11 GWIZDEK C, OSSAREH-NAZARI B, BROWNAWELL A M, et al. Exportin-5 mediates nuclear export of minihelix-containing RNAs [J]. J Biol Chem,2003, 278(8):5505-8.
    12 HUTVAGNER G, MCLACHLAN J, PASQUINELLI A E, et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA [J]. Science,2001,293(5531):834-8.
    13 PENG J J, YAN F, CHEN H R, et al. [Progress of studies on Dicer structure and function] [J]. Yi Chuan,2008,30(12):1550-6.
    14 GRIMSON A, SRIVASTAVA M, FAHEY B, et al. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals [J]. Nature,2008,455(7217): 1193-7.
    15 GRIMSON A. A targeted approach to microRNA target identification [J]. Nat Methods,2010,7(10):795-7.
    16 REHWINKEL J, BEHM-ANSMANT I, GATFIELD D, et al. A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing [J]. RNA,2005,11(11):1640-7.
    17 MOTT J L, KURITA S, CAZANAVE S C, et al. Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB [J]. J Cell Biochem,2010,110(5):1155-64.
    18 BENTWICH I, AVNIEL A, KAROV Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs [J]. Nat Genet,2005,37(7): 766-70.
    19 LEWIS B P, BURGE C B, BARTEL D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets [J]. Cell,2005,120(1):15-20.
    20 BURGESS D J. Small RNAs:A new mechanism of microRNA target recognition [J]. Nat Rev Genet,2012,13(4):233.
    21 CAO S, CHEN S J. Predicting kissing interactions in microRNA-target complex and assessment of microRNA activity [J]. Nucleic Acids Res,2012,2(3):1-10
    22 GU T, BUAAS F W, SIMONS A K, et al. Canonical A-to-I and C-to-U RNA Editing Is Enriched at 3'UTRs and microRNA Target Sites in Multiple Mouse Tissues [J]. PLoS One,2012,7(3):e33720.
    23 HATFIELD S D, SHCHERBATA H R, FISCHER K A, et al. Stem cell division is regulated by the microRNA pathway [J]. Nature,2005,435(7044):974-8.
    24 LIU R, MA X, XU L, et al. Differential MicroRNA Expression in Peripheral Blood Mononuclear Cells from Graves' Disease Patients [J]. J Clin Endocrinol Metab,2012,
    25 RANGANATHAN P, HEAPHY C E, COSTINEAN S, et al. Regulation of acute graft-versus-host disease by microRNA-155 [J]. Blood,2012, [Epub ahead of print]
    26 WANG L L, HUANG Y, WANG G, et al. The potential role of microRNA-146 in Alzheimer's disease:biomarker or therapeutic target? [J]. Med Hypotheses,2012, 78(3):398-401.
    27 BARB ASH S, SOREQ H. Threshold-independent meta-analysis of Alzheimer's disease transcriptomes shows progressive changes in hippocampal functions, epigenetics and microRNA regulation [J]. Curr Alzheimer Res,2012, 9(4):425-35.
    28 NIKAS J B,LOW W C,et al. Linear Discriminant Functions in Connection with the micro-RNA Diagnosis of Colon Cancer. Cancer Inform,2012,11:1-14.
    29 CROCE C M. Oncogenes and cancer [J]. N Engl J Med,2008,358(5):502-11.
    30 LIU T, CHENG W, HUANG Y, et al. Human amniotic epithelial cell feeder layers maintain human iPS cell pluripotency via inhibited endogenous microRNA-145 and increased Sox2 expression [J]. Exp Cell Res,2012,318(4): 424-34.
    31 DAVOREN P A, MCNEILL R E, LOWERY A J, et al. Identification of suitable endogenous control genes for microRNA gene expression analysis in human breast cancer [J]. BMC Mol Biol,2008,9:76.
    32 LACONTI J J, SHIVAPURKAR N, PREET A, et al. Tissue and serum microRNAs in the Kras(G12D) transgenic animal model and in patients with pancreatic cancer [J]. PLoS One,2011,6(6):e20687.
    33 LANDI D,MORENO V, et al.Polymorphisms affecting micro-RNA regulation and associated with the risk of dietary-related cancers:a review from the literature and new evidence for a functional role of rs 17281995 (CD86) and rs 1051690 (INSR), previously associated with colorectal cancer. Mutat Res, 2011,717(2):109-115.
    34 CHANG T C, MENDELL J T. microRNAs in vertebrate physiology and human disease [J]. Annu Rev Genomics Hum Genet,2007,8(215-39.
    35 LANDI D,GEMIGNANI F,et al.Role of variations within microRNA-binding sites in cancer. Mutagenesis,2012.27(2):205-10.
    36 NUOVO G J. In situ detection of precursor and mature microRNAs in paraffin embedded, formalin fixed tissues and cell preparations [J]. Methods,2008,44(1): 39-46.
    37 SCHNEIDER M, ANDERSEN D C, SILAHTAROGLU A, et al. Cell-specific detection of microRNA expression during cardiomyogenesis by combined in situ hybridization and immunohistochemistry [J]. J Mol Histol,2011,42(4):289-99.
    38 DEO M, YU J Y, CHUNG K H, et al. Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides [J]. Dev Dyn, 2006,235(9):2538-48.
    39 ABE M, KLETT C, WIELAND E, et al. Two-step real-time PCR quantification of all subtypes of human immunodeficiency virus type 1 by an in-house method using locked nucleic acid-based probes [J]. Folia Med (Plovdiv),2008,50(3): 5-13.
    40 VERMEHREN J, KAU A, GARTNER B C, et al. Differences between two real-time PCR-based hepatitis C virus (HCV) assays (RealTime HCV and Cobas AmpliPrep/Cobas TaqMan) and one signal amplification assay (Versant HCV RNA 3.0) for RNA detection and quantification [J]. J Clin Microbiol,2008, 46(12):3880-91.
    41 MAKAREV E, SPENCE J R, DEL RIO-TSONIS K, et al. Identification of microRNAs and other small RNAs from the adult newt eye [J]. Mol Vis,2006, 12:1386-91.
    42 TSONIS P A, CALL M K, GROGG M W, et al. MicroRNAs and regeneration: Let-7 members as potential regulators of dedifferentiation in lens and inner ear hair cell regeneration of the adult newt [J]. Biochem Biophys Res Commun, 2007,362(4):940-5.
    43 LAGOS-QUINTANA M, RAUHUT R, MEYER J, et al. New microRNAs from mouse and human [J]. RNA,2003,9(2):175-9.
    44 WIENHOLDS E, KLOOSTERMAN W P, MISKA E, et al. MicroRNA expression in zebrafish embryonic development [J]. Science,2005,309(5732): 310-1.
    45 RYAN D G, OLIVEIRA-FERNANDES M, LAVKER R M. MicroRNAs of the mammalian eye display distinct and overlapping tissue specificity [J]. Mol Vis, 2006,12:1175-84.
    46 XU S, SUNDERLAND M E, COLES B L, et al. The proliferation and expansion of retinal stem cells require functional Pax6 [J]. Dev Biol,2007,304(2):713-21.
    47 KARALI M, PELUSO I, MARIGO V, et al. Identification and characterization of microRNAs expressed in the mouse eye [J]. Invest Ophthalmol Vis Sci,2007, 48(2):509-15.
    48 KOTAJA N, BHATTACHARYYA S N, JASKIEWICZ L, et al. The chromatoid body of male germ cells:similarity with processing bodies and presence of Dicer and microRNA pathway components [J]. Proc Natl Acad Sci U S A,2006,103(8): 2647-52.
    49 HACKLER L, JR., WAN J, SWAROOP A, et al. MicroRNA profile of the developing mouse retina [J]. Invest Ophthalmol Vis Sci,2010,51(4):1823-31.
    50 LUNA C, LI G, QIU J, et al. Cross-talk between miR-29 and transforming growth factor-betas in trabecular meshwork cells [J]. Invest Ophthalmol Vis Sci, 2011,52(6):3567-72.
    51 BAI Y, BAI X, WANG Z, et al. MicroRNA-126 inhibits ischemia-induced retinal neovascularization via regulating angiogenic growth factors [J]. Exp Mol Pathol, 2011,91(1):471-7.
    52 WU J H, GAO Y, REN A J, et al. Altered MicroRNA Expression Profiles in Retinas with Diabetic Retinopathy [J]. Ophthalmic Res,2011,47(4):195-201.
    53 KOVACS B, LUMAYAG S, COWAN C, et al. MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats [J]. Invest Ophthalmol Vis Sci, 2011,52(7):4402-9.
    54 SHEN J, YANG X, XIE B, et al. MicroRNAs regulate ocular neovascularization [J]. Mol Ther,2008,16(7):1208-16.
    55 POLISENO L, TUCCOLI A, MARIANI L, et al. MicroRNAs modulate the angiogenic properties of HUVECs [J]. Blood,2006,108(9):3068-71.
    56 CAI J, LIU X, CHENG J, et al. MicroRNA-200 is commonly repressed in conjunctival MALT lymphoma, and targets cyclin E2 [J]. Graefes Arch Clin Exp Ophthalmol,2012,250(4):523-31.
    57 HURST E A, HARBOUR J W, CORNELIUS L A. Ocular melanoma:a review and the relationship to cutaneous melanoma [J]. Arch Dermatol,2003,139(8): 1067-73.
    58 CHEN X, WANG J, SHEN H, et al. Epigenetics, microRNAs, and carcinogenesis:functional role of microRNA-137 in uveal melanoma [J]. Invest Ophthalmol Vis Sci,2011,52(3):1193-9.
    59 DALGARD C L, GONZALEZ M, DENIRO J E, et al. Differential microRNA-34a expression and tumor suppressor function in retinoblastoma cells [J]. Invest Ophthalmol Vis Sci,2009,50(10):4542-51.
    60 JO D H, KIM J H, PARK W Y, et al. Differential profiles of microRNAs in retinoblastoma cell lines of different proliferation and adherence patterns [J]. J Pediatr Hematol Oncol,2011,33(7):529-33.
    61 ISHIDA W, FUKUDA K, HIGUCHI T, et al. Dynamic changes of microRNAs in the eye during the development of experimental autoimmune uveoretinitis [J]. Invest Ophthalmol Vis Sci,2011,52(1):611-7.
    62 AHLUWALIA J K, SONI K, SIVASUBBU S, et al. Modeling SNP mediated differential targeting of homologous 3'UTR by MicroRNA [J]. RNA Biol,2012, 9(3):
    63 KIM J K, CHOI K J, LEE M, et al. Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer-and microRNA-221 molecular beacon-conjugated nanoparticle [J]. Biomaterials,2012,33(1):207-17.
    64 RECZKO M, MARAGKAKIS M, ALEXIOU P, et al. Accurate microRNA Target Prediction Using Detailed Binding Site Accessibility and Machine Learning on Proteomics Data [J]. Front Genet,2011,2:103.
    65 ARORA A, MCKAY G J, SIMPSON D A. Prediction and verification of miRNA expression in human and rat retinas [J]. Invest Ophthalmol Vis Sci,2007,48(9): 3962-7.
    66 HAFNER M, LANDGRAF P, LUDWIG J, et al. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing [J]. Methods, 2008,44(1):3-12.
    67 FARH K K, GRIMSON A, JAN C, et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution [J]. Science,2005,310(5755): 1817-21.
    68 YOUNG M W, KAY S A. Time zones:a comparative genetics of circadian clocks [J]. Nat Rev Genet,2001,2(9):702-15.
    69 KARALI M, MANFREDI A, PUPPO A, et al. MicroRNA-restricted transgene expression in the retina [J]. PLoS One,2011,6(7):e22166.
    70 SUNDERMEIER T R, PALCZEWSKI K. The physiological impact of microRNA gene regulation in the retina [J]. Cell Mol Life Sci,2012, [Epub ahead of print

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700