催化加氢合成间苯二胺镍基结构化催化剂的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
间-苯二胺是一种重要的有机化工原料和中间体,具有多种用途。除了用于合成偶氮染料、毛皮染料、活性染料和硫化染料的中间体,还可用于制造媒染剂、染发剂、橡胶配合剂等,因此具有较好的应用前景。相比于传统的铁粉还原,催化加氢法制备间-苯二胺由于具有收率高,产品质量好,环境友好等优点而备受关注。
     目前传统的间二硝基苯加氢反应装置是泥浆流搅拌反应器,其转化率和选择性虽然能达到90%以上,但存在催化剂与产物分离困难、催化剂易磨损以及生产只能间歇操作等缺点。滴流床反应器虽然能克服上述缺点,但因采用的催化剂颗粒较大,扩散阻力分布不均匀,因此反应的选择性不高,且床层阻力较大。以堇青石蜂窝陶瓷为载体的结构化催化剂因床层压降小、传质效率高和放大效应小等优点,逐渐受到关注。用于催化加氢的催化剂主要有贵金属催化剂、骨架镍催化剂以及负载型镍基催化剂,其中贵金属催化剂活性较高,但价格昂贵,骨架镍催化剂由于不能回收重复利用而存在一定的环境污染,因此负载型镍基催化剂受到关注。但镍基催化剂由于活性组分与Al_2O_3载体形成NiAl_2O_4尖晶石物相,使催化剂活性不高。有相关文献报道助剂的引入可以改善镍基催化剂的性能,但原因尚不清楚。研究和开发对间-二硝基苯加氢反应具有高活性、高选择性的负载型镍基结构化催化剂是本课题的研究重点。
     本论文采用结构化反应装置研究了结构化镍基催化剂对间-二硝基苯加氢合成间-苯二胺反应的反应性能,研究了温度、压力、反应物浓度、催化剂用量等因素对间二硝基苯加氢反应的影响,助剂和制备方法对催化剂反应性能的影响规律,并利用BET、TPR、XRD、TEM和活性评价对镍基结构化催化剂物化性质进行了表征,结果表明,Ni负载量为5wt%时,催化反应活性最佳,随着Ni含量增加,反应转化率与选择性逐渐下降;添加一定量的助剂La有利于提高加氢反应的活性与选择性,TPR表征结果显示La助剂的引入提高了催化剂的还原性能。间-二硝基苯加氢反应工艺条件得到进一步优化,反应压力为3Mpa,温度为363K,溶剂比为4:1,氢气流量为100ml/min,液体流量为5ml/h时,催化剂活性较好,转化率最高为83.5%,选择性为90.2%。
     本实验研究所得出的反应结果对于今后结构化催化反应器在催化加氢合成领域中的进一步应用提供了有益信息。
m-Phenylenediamine is an important organic intermediate for the synthesis of some polymers, dyestuff and other materials. With the increasing application of engineering materials, especially aromatic polyamide fibers and polyurethane, the demand for MPD is growing. Compared with the iron-acid reduction method, the catalytic hydrogenation of MDNB in liquid phase is an attractive process due to its advantages, such as high product yield, mild reaction conditions, less pollution to the environment, and so on.
     Recently, the relatively mature reactor for hydrogenation is the stainless steel autoclave equipped with a magnetically driven agitator reactor. The conversion of MDNB and the selectivity of MPD can reach 90%, but the catalytic system has some shortcomings, such as, difficulty to separate the catalyst and the reactants, intermittent operation, the low rate of total production; Another kind of trickle-bed reactor is able to maintain continuous production, but because its use is still the catalyst particles, resulting in a larger concentration of poor, low selectivity. In recent years, the cordierite structured catalysts has caused the gas-liquid-solid reaction more and more attention for the parallel vertical channels with a regular, low pressure drop, high efficiency catalyst and a better effect of heat and mass transfer characteristics and easy to replace.
     Raney nickel and supported noble metals(such as Pd、Pt) are usually used as hydrogenation catalysts. However, the rather rare occurrence and high price of noble metals restrict their application. As to Raney nickel, the severe corrosion and pollution resulted from its preparation process, and the safety problem during its storage and application make its use less attractive. Recently, It is well known that the supported nickel catalyst is the most important catalyst for its cost and excellent hydrogenation properties, whereas the active component nickel usually combines with support Al_2O_3 easily and forms NiAl_2O_4 of spinel structure, deactivating the catalyst. Thus, the development of new catalysts is really essential. Although some reports have ever expressed that the La_2O_3 is an ideal promoter for hydrogenation process, the modified mechanism of La for nickel catalyst is still incompletely known. In this thesis,the structured nickel catalysts have been used for the hydrogenation of m-Dinitrobenzene in order to develop a catalyst with high activity, selectivity and long service life.
     The catalytic hydrogenation of m-dinitrobenzene (MDNB) to m-phenylenediamine (MPD) was tested over Ni-La/γ-Al_2O_3/cordierite structured catalyst in a structured reactor. Effects of the reaction conditions, such as temperature, pressure, space velocity of hydrogen and MDNB, and catalyst dosage on the catalyst were systematically investigated. Based on the experimental results of BET, TPR, XRD, TEM, XPS and activity evaluation, the additives and catalytic performance of the catalyst were investigated. The results show that when w(Ni) =5wt%, the activity was the best. The activity and the selectivity of the samples decreased with the increase in nickel content. Adding a certain amount of additives La could improve the activity and selectivity of hydrogenation reaction, TPR characterization results the introduction of La additives improve the reduction of the catalyst performance. For Hydrogenation reaction conditions were further optimized, the reaction pressure is 3Mpa, temperature 363K, the solvent ratio of 4:1, the hydrogen flow rate of 100ml/min, liquid flow rate of 5ml/h, the catalyst activity is better. The maximum conversion rate of 83.5% and the selectivity was 90.2%.
     The experimental research results obtained for the future structure of the reaction of catalytic hydrogenation in the catalytic reactor for further applications in the field of useful information.
引文
[1]化工百科全书编辑委员会,化工百科全书,北京化学工业出版社, 1990.
    [2]魏文德编著.有机化工原料大全(下卷)[M].北京化学工业出版社, 1999, 800-807.
    [3] Ramadas K, Srinivasan N. Iron-ammonium chloridea c: onvenient and inexpensive reductant[J]. Synth Commun, 1992, 22(22): 3189-3195.
    [4] Nagaraka D, Pasha M A. Reduction of aryl nitro compounds with aluminium/ NH4Cl: effect of ultrasound on the rate of the reaction[J]. Tetrahedron Lett, 1999, 40: 7855-7856.
    [5] Desai D G, Swami S S, Hapase S B. Rapid and inexpensive method for reduction of nitroarenes to anilines[J]. Synth Comman, 1999, 29(6): 1033-1036.
    [6]姚蒙正,程侣柏,王家儒.精细化工产品合成原理[J].北京:中国石化出版社, 2000, 430.
    [7]陈莎.选择性催化加氢合成3,4-二氯苯胺的Pd/C催化剂研究[J].工业催化, 2007, 9: 33-37.
    [8]刘迎新.镍基催化剂上间-二硝基苯加氢反应性能及其动力学研究[C].天津大学博士论文.
    [9]左东华,张志琨,崔作林等.纳米镍稀土薄壳式粒子在硝基苯加氢中的催化性能[J].催化学报, 1996, 17(2): 166-169.
    [10] Janssen H. J., Kruithof A. J. , Steghuis G. J., et al.. Kinetics of the catalytic hydrogenation of 2,4-dinitrotoluene.II.Modeling of the reaction rates and catalyst activity [J]. Ind. Eng. Chem. Res, 1990, 29: 1822-1829.
    [11] Kut O.M., Brehlmann T.,Mayer F., et al.. Kinetics of Liquid-Phase Reduction of 2,4-Dimethylnitrobenzene to 2,4-Dimethylaniline by Hydrogen with Pd/C as Catalysts[J]. Chem. Technol. Biotechnol, 1987, 39, 107-114.
    [12]龚小平,王艳勇,周黎明.间二硝基苯催化氢化合成间苯二胺反应历程研究及催化剂失活机理探讨[J].防化学报, 2000, 9(68): 59-64.
    [13]胡拖平,陈宏博.氯代芳香硝基化合物催化加氢研究[J].化学工程师, 2000, (5): 12-14.
    [14]赵磊,陈吉祥,张继炎.滴流床反应器中镍基催化剂催化加氢合成间苯二胺工艺的研究[J].化学反应工程与工艺, 2005, 21(5): 392-396.
    [15]唐培坤主编.中间体化学及工艺学[M].北京化学工业出版社, 1984, 160-174.
    [16] Chuadhari R.V, Jaganathan R., Kolhe D.S., et al.. Kinetic modelling ofhydrogenation of buytnediol using 0.2% Pd/C catalyst in a slurry reactor[J]. Appl.Catal. 1987, 29(l): 141-159.
    [17] LiVtin E.F., Freidlin L.K., Gurskii R. N., et al.. Izv Akad Nauk SSSR[J]. Ser Khim, 1975, 8: 1736-1741.
    [18]周忠信,陈继东,王文南等.活性炭负载铅催化剂对邻硝基甲苯液相加氢制邻甲苯胺的研究[J].分子催化, 1989, 3(2): 145-151.
    [19] Mizuta H., Nishimura T, Wad M, et al.. Preparation of highly pure m-phenylenediamine[P]. JP: 05331113, 1993-12-14.
    [20] Mizuta H., Nishimura T, Wad M, et a1.. Method for the preparation of pure m-phenylenediamine from crude m-dinitrobenzene[P]. JP: 0609551, 1994-08-10.
    [21]吴鹤麟,朱新宝,张金龙等.钯系催化剂加氢反应及应用开发[J].化学工业与工程技术, 2000, 21(5): 8-11.
    [22] Yu Z K, Liao S J, Xu Y, et a1.. Hydrogenation of nitroaromatics by polymer-anchored bimetallic palladium-ruthenium and palladium- platinum catalysts under mild conditions[J]. Journal of Molecular Catalysis. 1997, 120: 247-255.
    [23] Islam M, Dose A, Mal D, et a1.. A reusable polymer-anchored palladium catalyst for reduction of nitroorganics,alkenes,alkynes and schiff base[J]. Journal of Chemical Research Synopsis, 1998, 1: 44-45.
    [24]刘迎新,张继炎,陈吉祥等.助剂对Ni/SiO_2催化剂结构和间-二硝基苯加氢性能的影响[J].石油学报, 2005, 21 (2): 58-62.
    [25] Shimazu K, Tatrno Y, Magara M, et a1.. Hydrogenation of orgarlic compounds with recyclable lump raney nickel catalyst[P]. JP: 09132536, 1997-05-20.
    [26]滕俊江,李英春,王现稳.间-二硝基苯催化加氢制备间-苯二胺[J].青岛科技大学学报, 2003, 24: 16-17.
    [27] Liu Y X, Chen J X, Zhang J Y. Effects of the supports on activity of supported nickel catalysts for hydrogenation of m-dinitrobenzene to m-phenylenediamine[J]. Chinese Journal of Chemical Engineering, 2007, 15(1): 63-67.
    [28]刘迎新,陈吉祥,张继炎. Ni/SiO_2催化剂上间-二硝基苯液相加氢制间-苯二胺[J].催化学报, 2003, 24 (3): 224-228.
    [29] Lin Y X, Wei Z J, Zhang J Y, et al.. Effects of the preparation methods on theproperties of Ni/La_2O_3-SiO_2 catalysts for m-dinitrobenzene hydrogenation[J]. Reaction kinetics and Catalysis Letters, 2007, 92(1): 121-127.
    [30]曲其昌,罗杰盛,姚培洪等.干燥方式对载体硅胶性能的影响[J].石化技术与应用, 2006, 24 (4): 275-277.
    [31] Pajonk G M. Catalytic aerogels[J]. Catalysis Today, 1997, 35 (3): 319-337.
    [32] Diaz A, Montes M, Odriozola J A. Influence of alkali additives on activity and toxicity of H_2S and thiophene over a Ni/SiO_2 catalyst[J]. Applied Catalysis A, 1998, 166(1): 163-172.
    [33] Chen J X, Zhang J X, Zhao J Y. Effects of La_2O_3, Li_2O and K_2O promoters on properties of a Ni/SiO_2 catalyst for hydrogenation of m-dinitrobenzene to m-phenylenediamine[J]. Reaction Kinetics and Catalysis Letters, 2008, 93(2): 359-366.
    [34]胡泽善,张量渠. La_2O_3对天然气蒸汽转化Ni/α-Al_2O_3催化剂性能的影响[J].催化学报, 1992, 13(2): 83-89.
    [35]谢有畅,钱民协,唐有祺.添加剂La_2O_3对甲烷化催化剂中镍的分散度和热稳定性的影响[J].中国科学(B辑), 1983, 9: 788-795.
    [36] Zhao L, Chen J X, Zhang J Y. Deactivation of Ni/K_2O-La_2O_3-SiO_2 catalyst in hydrogenation of m-dinitrobenzene to m-phenylenediamine [J]. Journal of Molecular Catalysis A: Chemical, 2006, 246(1-2): 140-145.
    [37] Telkar M M, Nadgeri J M, Rode C V, et a1.. Role of Co-metal in bimetallic Ni-Ptcatalyst for hydrogenation of m-dinitrobenzene to m-phenylenediamine[J]. Applied Catalysis, 2005, 295: 23-30.
    [38] Fernando C L, Santiago G Q, Mark A K. Gas Phase Hydrogenation of m-Dinitrobenzene over Alumina Supported Au and Au-Ni Alloy[J]. Catalysis Letters, 2009, 127: 25-32.
    [39]赵松林,刘新梅,周娅芬等.负载型含钌催化剂催化间二硝基苯选择加氢反应[J].石油化工, 2004, 33: 941-943.
    [40]王明辉,李和兴. Ni-B/SiO_2非晶态催化剂应用于硝基苯液相加氢制苯胺[J].催化学报, 2001, 22 (3) : 287 - 290.
    [41]姜恒,徐筠,廖世健,等,可溶高分子负载钯催化剂对于硝基苯加氢反应催化性能的研究[J].石油化工, 1996, 25(11): 757-761.
    [42] Kumbhar P S, Sanchez V, Millet J M M, et a1.. Mg-Fe hydrotalcite as a catalyst for the red uction of aromatic nitrocompounds with hydrazine hydrate[J]. Journal of Catalysis, 2000, 191: 467-473.
    [43]苏保卫,李建隆,李红海等.规整装填滴流床反应器实验[J].天津大学学报, 2002, 35(2): 217-221.
    [44]王蓉,毛在砂,熊天英等.滴流床反应器的研究现状和展望[J].化工进展, 1992, 3:10-16.
    [45] Johnson L L, Johnson W C . Brein D L1 [J]. Chemical Engineering Progress , Symposium Section, 1961, 35: 55-67.
    [46] Anderson H C , Green W J , Romeo P L.[J]. Engelhard Indust ries Inc. Technical Bulletin , 1966, 7: 100.
    [47] Keith C , Kenah P , Bair D. A Catalyst for Oxidation of Automobile and Industrial Fumer [P]. US 3565830, 1971.
    [48] Lachman I M , Lewis R M. Anisotropic Cordierite Monolith[P]. US 3885977,1975.
    [49] Cybulski Andrej , Moulijn Jacob A. Chemical Idustries [M]. NewYork : Marcel Dekker Inc., 1998. 1-14.
    [50] Irandoust Said . Andersson Bengt[J]. Catalysis Review -Science Engineering , 1988, 30(3): 341-392.
    [51] Cybulski Andrej , Moulijn Jacob A. Structured Catalysts and Reactors [M] . New York : Marcel Dekker Inc., 1998. 670.
    [52] Gabriele Centi , Siglinda Perathoner[J]. Catalysis Today ,2003 ,79(80) :3-13.
    [53]闵恩泽. 21世纪石油化工催化材料的发展与对策[J].石油与天然气化工, 2000, 29(5): 215-220.
    [54] Roy S, Heibel A K, Liu W, et al.. Design of monolithic catalysts for multiphase reactions[J]. Chemical Engineering Science, 2004, 59(5): 957-966.
    [55] Ding H M, Weng D, Wu X D, Effect of rare earth on the thermostability and the surface area of auto-catalyst washcoats[J]. Journal of Alloys and Compounds, 2000, 311: 26-29.
    [56] Beauseigneur P A, Lachman I M, Patil M D. Pore impregnated catalyst device[P].US: 5334570, 1994-8-2.
    [57] Duisterwinkel A E, Thesis Ph D, Delft University of Technology[R]. Delft: Iutam Symposium, 1991.
    [58] Addiego W P, Lachman I M, Patil M D, et al.. High surface area washcoated substrate and method for producing same[P]. US: 5212130, 1993-5-18.
    [59]刘振林,伏义路.制备方法对Pd催化剂上丙烯选择性还原NO反应性能的影响[J].催化学报, 2001, 22(1): 62-66.
    [60]杨德辽,陈良才,刘建江等.不同方法制备二甲醚合成催化剂的物相表征[J].化学工业与工程技术, 2009, 30(2): 26-28.
    [61]徐军科,任克威,周伟等.制备方法对甲烷干重整催化剂Ni/La_2O_3/Al_2O_3结构及性能的影响[J].燃料化学学报, 2009, 37(4): 473-479.
    [62] Kikuchi R, Maeda S, Sasaki K, et al. Catalytic activity of oxide-supported Pdcatalysts on a honeycomb for low-temperature methane oxidation[J]. Applied Catalysis, 2003, 239: 169-179.
    [63] Hart M H, Aim Y S, Kim S K, et al. Synthesis of manganese sultituted hexaalnminate and its fabrication into monolithic honeycombs for catalytic combustion[J]. Mater Science Engineering A, 2001, 302: 286-293.
    [64]华金铭,郑起,林性贻等.整体式高温水煤气变换催化剂的初步研制[J].工业催化, 2003, 11(3): 16-20.
    [65] Edvinsson A R, Nystromm M, Siverstrom M, et al.. Development of a monolithic based process for H_2O_2 production: from Idea to Large-Scale Implementation[J]. Catalysis Today, 2001, 69(3): 247-252.
    [66] Nijhuis T A, Kreutzer M T, Romijn A C, et al.. Monolithic catalysts as more efficient three-phase reactors[J]. Catalysis Today, 2001, 66(2-4): 157-165.
    [67] Groppi G, Tronconi E. Simulation of structure catalytic reactor with enhanced thermal conductivity for selective oxidation reaction[J]. Catalysis Today, 2001, 69(1): 63-73.
    [68] Shalvoy R B, Reucroft P J. Characterization of Coprecipitated Nickle on Silica Methanation Catalysts by X-Ray Photoelectron Spetroscopy[J]. J.Catal. 1979,56: 336-348.
    [69] Yu X. F. ,Wu N. Z. , Xie Y. C. ,et al.. J. Mater.[J], 2000, 10: 1629-1634.
    [70]许珊,赵睿,王晓来.微乳化法制备Ni/Al_2O_3催化剂及其在甲烷部分氧化反应中的高温稳定性和抗积碳性能[J].复旦学报, 2003, 42(3): 343-346.
    [71]董亮,季生福,吴平易等. NiP/SiO_2/堇青石整体式催化剂的制备及加氢脱硫性能[J].无机化学学报, 2009, 25(9): 1651-1656.
    [72]任杰,陈仰光,吴东等.甲烷、二氧化碳重整制合成气催化剂的研究[J].分子催化, 1994, 8(3): 181-190.
    [73] Chen. J. X., Qiu. Y. J., Zhang. J. Y., et al.. Acta Phys. Chim.Sin., 2004, 20(1):76.
    [74]张利峰,王一平,黄群武.. Ni-La/γ-Al_2O_3·SiO_2催化剂上乙醇水蒸气重整制氢[J].化工进展,2008,27(10):1605-1623.
    [75]刘寿长,罗鸽,韩民乐等.浸渍法制备的苯部分加氢制环己烯催化剂的表征[J].催化学报, 2001, 22(6):559-562.
    [76]张兆斌,余长春,沈师孔.甲烷部分氧化制合成气的La_2O_3助Ni/MgAl_2O_4催化剂[J].催化学报, 21(1): 14-18.
    [77] Slagtern.A, Olsbye,U.,Blom.R,etal.Appl.Catal.A,1997, 165(1-2):379.
    [78]任世彪,邱金恒,王春燕等. Ni~(2+)在γ-Al_2O_3上的分散状态及负载型Ni/γ-Al_2O_3的α-蒎烯加氢活性[J].无机化学学报, 2007, 23(6): 1021-1028.
    [79]王晓立,丁宝宏.甲乙酮催化氨化加氢合成仲丁胺工艺研究[J].抚顺石油学院学报,2003, 23(001): l-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700